-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
239 lines (185 loc) · 6.97 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import glob
import hashlib
import itertools
import json
import multiprocessing
import os
import ipdb
import sys
import random
from typing import Any, Dict, List, NamedTuple, Optional
import jax.numpy as jnp
import numpy as np
""" Relevant Directories """
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
DATA_DIR = os.path.join(BASE_DIR, 'data')
RESULT_DIR = os.path.join(BASE_DIR, 'results')
"""Available GPUs"""
class GPU(NamedTuple):
name: str
gpu_memory: int # In GBs
available_gpus = {
0: GPU(name='gtx_1080_ti', gpu_memory=11),
1: GPU(name='rtx_2080_ti', gpu_memory=11),
2: GPU(name='rtx_3090', gpu_memory=24),
3: GPU(name='rtx_4090', gpu_memory=24),
4: GPU(name='titan_rtx', gpu_memory=24),
5: GPU(name='quadro_rtx_6000', gpu_memory=24),
6: GPU(name='v100', gpu_memory=32),
7: GPU(name='a100-pcie-40gb', gpu_memory=40),
8: GPU(name='a100_80gb', gpu_memory=80),
}
""" Async executor """
class AsyncExecutor:
def __init__(self, n_jobs=1):
self.num_workers = n_jobs if n_jobs > 0 else multiprocessing.cpu_count()
self._pool = []
self._populate_pool()
def run(self, target, *args_iter, verbose=False):
workers_idle = [False] * self.num_workers
tasks = list(zip(*args_iter))
n_tasks = len(tasks)
while not all(workers_idle):
for i in range(self.num_workers):
if not self._pool[i].is_alive():
self._pool[i].terminate()
if len(tasks) > 0:
if verbose:
print(n_tasks - len(tasks))
next_task = tasks.pop(0)
self._pool[i] = _start_process(target, next_task)
else:
workers_idle[i] = True
def _populate_pool(self):
self._pool = [_start_process(_dummy_fun) for _ in range(self.num_workers)]
def _start_process(target, args=None):
if args:
p = multiprocessing.Process(target=target, args=args)
else:
p = multiprocessing.Process(target=target)
p.start()
return p
def _dummy_fun():
pass
""" Command generators """
def generate_base_command(module, flags: Optional[Dict[str, Any]] = None, unbuffered: bool = True) -> str:
""" Generates the command to execute python module with provided flags
Args:
module: python module / file to run
flags: dictionary of flag names ant the values to assign to them.
assumes that boolean flags are encoded as store_true flags with False as default.
unbuffered: whether to invoke an unbuffered python output stream
Returns: (str) command which can be executed via bash
"""
""" Module is a python file to execute """
interpreter_script = sys.executable
base_exp_script = os.path.abspath(module.__file__)
if unbuffered:
base_cmd = interpreter_script + ' -u ' + base_exp_script
else:
base_cmd = interpreter_script + ' ' + base_exp_script
if flags is not None:
assert isinstance(flags, dict), "Flags must be provided as dict"
for flag, setting in flags.items():
# scrap this special treatment of bools.
# my argparse wants --flag=True not --flag
base_cmd += f" --{flag}={setting}"
'''
if type(setting) == bool or type(setting) == np.bool_:
if setting:
base_cmd += f" --{flag}"
else:
base_cmd += f" --{flag}={setting}"
'''
return base_cmd
def generate_run_commands(command_list: List[str],
output_file_list: Optional[List[str]] = None,
num_cpus: int = 1,
num_gpus: int = 0,
gpu: GPU | None = None,
dry: bool = False,
mem: int = 2 * 1028,
duration: str = '3:59:00',
mode: str = 'local',
prompt: bool = True) -> None:
if mode == 'euler':
cluster_cmds = []
bsub_cmd = 'sbatch ' + \
f'--time={duration} ' + \
f'--mem-per-cpu={mem} ' + \
f'--cpus-per-task {num_cpus} '
if num_gpus > 0 and gpu is not None:
bsub_cmd += f'--gpus={gpu.name}:{num_gpus} '
elif num_gpus > 0:
bsub_cmd += f'-G {num_gpus} --gres=gpumem:10240m '
assert output_file_list is None or len(command_list) == len(output_file_list)
if output_file_list is None:
for cmd in command_list:
cluster_cmds.append(bsub_cmd + f'--wrap="{cmd}"')
else:
for cmd, output_file in zip(command_list, output_file_list):
cluster_cmds.append(bsub_cmd + f'--output={output_file} --wrap="{cmd}"')
if dry:
for cmd in cluster_cmds:
print(cmd)
else:
if prompt:
answer = input(f"about to launch {len(command_list)} jobs with {num_cpus} "
f"cores each. proceed? [yes/no] ")
else:
answer = 'yes'
if answer == 'yes':
for cmd in cluster_cmds:
os.system(cmd)
elif mode == 'local':
if prompt:
answer = input(f"about to run {len(command_list)} jobs in a loop. proceed? [yes/no] ")
else:
answer = 'yes'
if answer == 'yes':
for cmd in command_list:
if dry:
print(cmd)
else:
os.system(cmd)
elif mode == 'local_async':
if prompt:
answer = input(f"about to launch {len(command_list)} commands in {num_cpus} "
f"local processes. proceed? [yes/no] ")
else:
answer = 'yes'
if answer == 'yes':
if dry:
for cmd in command_list:
print(cmd)
else:
executor = AsyncExecutor(n_jobs=num_cpus)
executor.run(lambda command: os.system(command), command_list)
else:
raise NotImplementedError
""" Some aggregation functions """
def dict_permutations(d: dict) -> List[dict]:
keys = d.keys()
values = d.values()
perms = []
# Calculate the Cartesian product of all values in the dictionary
for value_combo in itertools.product(*values):
perms.append(dict(zip(keys, value_combo)))
return perms
def random_dict_permutations(d: dict, N: int) -> List[dict]:
# random subset of dict permuations.
perms = []
for j in range(N):
perm = {k: random.choice(v) for k, v in d.items()}
perms.append(perm)
return perms
if __name__ == '__main__':
# Example for dict_permutations
d = {
"A": [1, 2],
"B": ["x", "y"],
"C": ["!", "@"]
}
result = dict_permutations(d)
for r in result:
print(r)