-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmpiobservablehandlerpt.h
341 lines (297 loc) · 13.5 KB
/
mpiobservablehandlerpt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. See the enclosed file LICENSE for a copy or if
* that was not distributed with this file, You can obtain one at
* http://mozilla.org/MPL/2.0/.
*
* Copyright 2017 Max H. Gerlach
*
* */
#ifndef MPIOBSERVABLEHANDLERPT_H
#define MPIOBSERVABLEHANDLERPT_H
// manage measurements of an observable, gather measurement values
// from various replicas, calculate expectation values and jackknife
// error bars; optionally store time series
#include <memory>
#include <string>
#include <map>
#include <vector>
#include <tuple>
#include <armadillo>
#include "tools.h"
#include "detqmcparams.h"
#include "detqmcptparams.h"
#include "observable.h"
#include "metadata.h"
#include "dataserieswritersucc.h"
#include "datamapwriter.h"
#include "statistics.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wshadow"
#include "boost/serialization/vector.hpp"
#include "boost/serialization/export.hpp"
#include "boost_serialize_uniqueptr.h"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include "boost/mpi.hpp"
#pragma GCC diagnostic pop
template <typename ObsType>
class ObservableHandlerPTCommon {
public:
ObservableHandlerPTCommon(
const Observable<ObsType>& localObservable,
const std::vector<int>& current_process_par,
const DetQMCParams& simulationParameters,
const DetQMCPTParams& ptParams,
const MetadataMap& metadataToStoreModel,
const MetadataMap& metadataToStoreMC,
const MetadataMap& metadataToStorePT,
ObsType zeroValue = ObsType());
virtual ~ObservableHandlerPTCommon() { }
//To be called from rank 0:
//return [mean value, error] at end of simulation
//if jkBlockCount <= 1, only estimate an error (using variance()) if the whole
//timeseries is in memory
//
//return [mean value, 0] if this is called earlier.
//return [0, 0] if this is called from rank != 0.
std::tuple<ObsType,ObsType> evaluateJackknife(int control_parameter_index) const;
protected:
// this is to be called at rank0 by method insertValue() of a
// derived class
void handleValues(uint32_t curSweep);
Observable<ObsType> localObs; // Handle containing the last measured value for
// the observable, at the local replica
const std::string& name; //reference to name in obs
ObsType zero; //an instance of ObsType that works like the number zero
//for addition -- this is not totally trivial for vector
//valued observables
DetQMCParams mcparams;
DetQMCPTParams ptparams;
MetadataMap metaModel;
MetadataMap metaMC;
MetadataMap metaPT;
uint32_t jkBlockCount;
uint32_t jkBlockSizeSweeps;
uint32_t lastSweepLogged;
uint32_t countValues;
//MPI specifics
int numProcesses; //total number of parallel processes
int processIndex; //MPI-rank of the current process
// root process specifics:
// -----------------------
// This is indexed by process number, and contains the control
// parameter value currently associated to each process. It is a reference
// to the vector held and kept uptodate by DetQMCPT. It is only sensible
// at the root process.
const std::vector<int>& process_par;
//This is the receive buffer of most recently measured observable
//values for each replica, ordered by process. The method
//insertValue() of the derived classes below fill this, then
//call handleValues() defined above in this base class.
std::vector<ObsType> process_cur_value;
// These vectors contain one entry per control parameter value,
// they are indexed by the control parameter index.
std::vector<std::vector<ObsType>> par_jkBlockValues; // running counts of jackknife block values
std::vector<ObsType> par_total; // running accumulation regardless of jackknife block
// for each control parameter value [sorted by index]: store a
// separate MetadataMap with just that entry replaced
std::vector<MetadataMap> par_metaModel;
public:
// serialization by DetQMC::serializeContents
template<class Archive>
void serializeContents(Archive &ar) {
ar & lastSweepLogged;
ar & countValues;
ar & par_jkBlockValues;
ar & par_total;
// par_metaModel does not need to be serialized -- is reset
// upon initialization
}
};
template <typename ObsType>
ObservableHandlerPTCommon<ObsType>::ObservableHandlerPTCommon(
const Observable<ObsType>& localObservable,
const std::vector<int>& current_process_par,
const DetQMCParams& simulationParameters,
const DetQMCPTParams& ptParams,
const MetadataMap& metadataToStoreModel,
const MetadataMap& metadataToStoreMC,
const MetadataMap& metadataToStorePT,
ObsType zeroValue)
: localObs(localObservable), name(localObs.name),
zero(zeroValue), //ObsType() may not be a valid choice!
mcparams(simulationParameters),
ptparams(ptParams),
metaModel(metadataToStoreModel),
metaMC(metadataToStoreMC),
metaPT(metadataToStorePT),
jkBlockCount(mcparams.jkBlocks),
jkBlockSizeSweeps(mcparams.sweeps / jkBlockCount),
lastSweepLogged(0),
countValues(0),
numProcesses(1),
processIndex(0),
process_par(current_process_par),
process_cur_value(),
par_jkBlockValues(),
par_total(),
par_metaModel()
{
boost::mpi::communicator world;
processIndex = world.rank();
numProcesses = world.size();
assert(int(ptparams.controlParameterValues.size()) == numProcesses);
if (processIndex == 0) {
process_cur_value.resize(numProcesses, zero);
par_jkBlockValues.resize(numProcesses, std::vector<ObsType>(jkBlockCount, zero));
par_total.resize(numProcesses, zero);
par_metaModel.resize(numProcesses, metaModel);
for (int cpi = 0; cpi < numProcesses; ++cpi) {
par_metaModel[cpi][ptparams.controlParameterName] =
numToString(ptparams.controlParameterValues[cpi]);
}
}
}
template <typename ObsType>
void ObservableHandlerPTCommon<ObsType>::handleValues(uint32_t curSweep) {
if (processIndex == 0) {
uint32_t curJkBlock = curSweep / jkBlockSizeSweeps;
for (int p_i = 0; p_i < numProcesses; ++p_i) {
int controlParameterIndex = process_par[p_i];
for (uint32_t jb = 0; jb < jkBlockCount; ++jb) {
if (jb != curJkBlock) {
par_jkBlockValues[controlParameterIndex][jb] += process_cur_value[p_i];
}
}
par_total[controlParameterIndex] += process_cur_value[p_i];
}
}
++countValues;
lastSweepLogged = curSweep;
}
template <typename ObsType>
std::tuple<ObsType,ObsType> ObservableHandlerPTCommon<ObsType>::evaluateJackknife(
int cpi) const {
if (processIndex != 0) {
return std::make_tuple(zero, zero);
} else {
ObsType mean = par_total[cpi] / countValues;
ObsType error = zero;
if (mcparams.sweeps - lastSweepLogged <= mcparams.measureInterval) {
//after the first sweep lastSweepLogged==1 and so on --> here the simulation is finished.
//we can only calculate an error estimate if we have multiple jackknife blocks
if (jkBlockCount > 1 and not mcparams.sweepsHasChanged) {
uint32_t jkBlockSizeSamples = countValues / jkBlockCount;
uint32_t jkTotalSamples = countValues - jkBlockSizeSamples;
// std::cout << jkTotalSamples << std::endl;
std::vector<ObsType> jkBlockAverages = par_jkBlockValues[cpi]; //copy
for (uint32_t jb = 0; jb < jkBlockCount; ++jb) {
jkBlockAverages[jb] /= jkTotalSamples;
}
error = jackknife(jkBlockAverages, mean, zero);
}
}
return std::make_tuple(mean, error);
}
}
// Below here we explicitly use `double` instead of `num` because the
// MPI calls explicitly use MPI_DOUBLE. This can easily be extended
// if some other floating precision type is ever to be used for num.
//specialized ObservableHandlerPT that uses num as a value type
// -- can store time series, can be output into common files "results*.values"
// for all scalar observables [in subdirectories]
class ScalarObservableHandlerPT : public ObservableHandlerPTCommon<double> {
public:
ScalarObservableHandlerPT(const ScalarObservable& localObservable,
const std::vector<int>& current_process_par,
const DetQMCParams& simulationParameters,
const DetQMCPTParams& ptParams,
const MetadataMap& metadataToStoreModel,
const MetadataMap& metadataToStoreMC,
const MetadataMap& metadataToStorePT
);
// Log newly measured observable value at each replica via the the
// reference contained in this->obs, pass the number of the
// current sweep. Measurements from all replicas are gathered at
// the root process. Measurements do not need to be stored at
// every sweep, but the number of skipped sweeps must be constant.
void insertValue(uint32_t curSweep);
//If we don't have multiple jackknife blocks and the whole timeseries is stored
//in memory, this can also give a naive variance estimate for the error
std::tuple<double, double> evaluateJackknife(int control_parameter_index) const;
//update timeseries files, discard batch of
//data written to files from memory
void outputTimeseries();
friend void outputResults(
const std::vector<std::unique_ptr<ScalarObservableHandlerPT>>& obsHandlers);
protected:
//in addition to base class functionality supports adding to the timeseries buffers
void handleValues(uint32_t curSweep);
// time series entries added since last call to writeData(),
// for each control parameter value
std::vector<std::vector<double>> par_timeseriesBuffer;
std::vector<std::unique_ptr<DoubleVectorWriterSuccessive>> par_storage;
std::vector<char> par_storageFileStarted; // avoiding vector<bool>, but using it equivalently [true/false]
public:
// serialization by DetQMC::serializeContents
template<class Archive>
void serializeContents(Archive &ar) {
ObservableHandlerPTCommon<double>::serializeContents(ar);
ar & par_timeseriesBuffer;
ar & par_storageFileStarted;
//*storage should not need to be serialized. It will always write to the end
//of the timeseries file it finds at construction.
}
};
//Vector valued observables. We use Armadillo vectors as they support arithmetics.
//A fixed vector size must be specified at initialization. This indexes the vector from 0 to
//the vector size.
class VectorObservableHandlerPT : public ObservableHandlerPTCommon<arma::Col<double>> {
public:
VectorObservableHandlerPT(const VectorObservable& localObservable,
const std::vector<int>& current_process_par,
const DetQMCParams& simulationParameters,
const DetQMCPTParams& ptParams,
const MetadataMap& metadataToStoreModel,
const MetadataMap& metadataToStoreMC,
const MetadataMap& metadataToStorePT);
void insertValue(uint32_t curSweep); //compare to ScalarObservableHandlerPT function
uint32_t getVectorSize() {
return vsize;
}
friend void outputResults(
const std::vector<std::unique_ptr<VectorObservableHandlerPT>>& obsHandlers);
protected:
uint32_t vsize;
arma::Col<double> indexes;
std::string indexName;
// at rank 0 this holds contiguous memory where the vector data
// gathered from all replicas is stored
std::vector<double> mpi_gather_buffer;
};
//Vector indexed by arbitrary key
class KeyValueObservableHandlerPT : public VectorObservableHandlerPT {
public:
KeyValueObservableHandlerPT(const KeyValueObservable& observable,
const std::vector<int>& current_process_par,
const DetQMCParams& simulationParameters,
const DetQMCPTParams& ptParams,
const MetadataMap& metadataToStoreModel,
const MetadataMap& metadataToStoreMC,
const MetadataMap& metadataToStorePT) :
VectorObservableHandlerPT(observable, current_process_par,
simulationParameters, ptParams,
metadataToStoreModel, metadataToStoreMC,
metadataToStorePT) {
//this code is convenient, but sets the vector indexes twice upon construction
indexes = observable.keys;
indexName = observable.keyName;
}
};
//Write expectation values and error bars for all observables to a file
//take metadata to store from the first entry in obsHandlers
//This is to be called by rank 0
void outputResults(const std::vector<std::unique_ptr<ScalarObservableHandlerPT>>& obsHandlers);
//write the results for each vector observable into a seperate file
void outputResults(const std::vector<std::unique_ptr<VectorObservableHandlerPT>>& obsHandlers);
#endif /* MPIOBSERVABLEHANDLERPT_H */