-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_section.py
180 lines (142 loc) · 5.94 KB
/
cross_section.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import itertools
from scipy.spatial import Delaunay
from color_transformations_skimage import rgb2lab, lab2rgb
from mapping_3d_to_2d import Mapping3Dto2D
class NoIntersectionError(Exception):
# Used when computing intersections of line segments with a plane.
pass
def compute_intersection_of_image_curve_with_plane(P1, P2, plane, fun=rgb2lab, TOL=1e-6):
"""
Given two points `P1`, `P2` in RGB space and a transformation
function `fun` (e.g. from RGB space to CIELab space), find the
intersection of the curve which is the image of the line segment
`P1`, `P2` under `fun` with a given plane in the image space.
"""
P1 = np.asarray(P1, dtype=float)
P2 = np.asarray(P2, dtype=float)
Q1 = fun(P1)
Q2 = fun(P2)
# If the image points are close enough, we are done
if np.linalg.norm(Q1 - Q2) < TOL:
return 0.5 * (Q1 + Q2)
# If the image points lie on the same side of the plane, we assume
# that there is no intersection (this will not be true for some
# positions of cross section planes through CIELab space, but is a
# good assumption for most cases of interest to us).
if plane.same_side(Q1, Q2):
raise NoIntersectionError()
P3 = 0.5 * (P1 + P2)
Q3 = fun(P3)
if plane.same_side(Q2, Q3):
return compute_intersection_of_image_curve_with_plane(P1, P3, plane, fun=fun, TOL=TOL)
elif plane.same_side(Q1, Q3):
return compute_intersection_of_image_curve_with_plane(P3, P2, plane, fun=fun, TOL=TOL)
else:
raise RuntimeError("This should not happen!")
class Plane(object):
def __init__(self, pt, n):
"""
Initialise plane from an incident point `pt` and a normal vector `n`.
"""
self.pt = np.asarray(pt, dtype=float)
self.n = np.asarray(n, dtype=float)
self.n /= np.linalg.norm(n)
def contains_point(self, P, TOL=1e-8):
"""
Return `True` if the point `P` lies on the plane (up to the
given tolerance), otherwise `False`.
"""
P = np.asarray(P, dtype=float)
return abs(np.dot(P - self.pt, self.n)) < TOL
def same_side(self, P1, P2):
"""
Return `True` if the points `P1` and `P2` lie on the same side
of the plane, otherwise return `False`. If one of the points
lies exactly in the plane then `False` is returned.
"""
a = np.dot(self.n, self.pt - P1)
b = np.dot(self.n, self.pt - P2)
return (a * b > 0)
class CrossSection(object):
"""
Cross section through the set of all "RGB-representable" colors in
a given color space.
"""
color_transformations = {
'CIELab': rgb2lab
}
def __init__(self, plane, color_space='CIELab'):
self.vertices_3d = None
self.vertices_2d = None
self.vertex_colors = None
self.faces = None
self.color_space = color_space
self.set_plane(plane)
def set_plane(self, plane):
self.plane = plane
self.mapping_3d_to_2d = Mapping3Dto2D(self.plane)
self.compute_triangulation()
@property
def color_space(self):
return self._color_space
@color_space.setter
def color_space(self, value):
if value in self.color_transformations.keys():
self._color_space = value
else:
raise ValueError(
"Unsupported color space: '{}'. Must be one of: {}"
"".format(value, self.color_transformations.keys()))
def compute_triangulation(self, N=5):
"""
Compute a triangulation of the cross section.
This works by subdividing the RGB cube into line segments
parallel to each coordinate axis, transforming these line
segments using the functon `fun` and computing the
intersections of the resulting curves with `plane`. The
argument `N` specifies the number of subdivisions of each edge
of the RGB cube.
"""
fun = self.color_transformations[self.color_space]
# Compute the intersections of the images in CIELab space of a
# bunch of line segments parallel to the coordinate axes with the
# cross section plane.
pts_intersection = []
def add_intersection_point(P1, P2):
try:
Q = compute_intersection_of_image_curve_with_plane(P1, P2, self.plane, fun=fun)
pts_intersection.append(Q)
except NoIntersectionError:
pass
vals = np.linspace(0., 1., N)
for a, b in itertools.product(vals, vals):
add_intersection_point([a, b, 0.], [a, b, 1.])
add_intersection_point([a, 0., b], [a, 1., b])
add_intersection_point([0., a, b], [1., a, b])
self.vertices_3d = np.array(pts_intersection)
self.vertices_2d = self.mapping_3d_to_2d.apply(pts_intersection)
# # The points are coplanar but the plane they lie in has general
# # position in space. Here we rotate the points so that one
# # coordinate is constant and drop this coordinate. This allows us
# # to determine a 2D Delaunay triangulation of the point cloud
# # below.
# pts_2d, _, _, _ = find_planar_coordinates(pts_intersection)
# Compute Delaunay triangulation of the now 2D point set
tri = Delaunay(self.vertices_2d)
self.faces = tri.simplices
# Compute vertex colors (RGBA)
self.vertex_colors = np.empty((len(self.vertices_3d), 4))
self.vertex_colors[:, 0:3] = np.array([lab2rgb(pt) for pt in self.vertices_3d])
self.vertex_colors[:, 3] = 1.0 # set alpha value to 1.0 (no transparency)
class CrossSectionL(CrossSection):
def __init__(self, L):
super(CrossSectionL, self).__init__(Plane([L, 0, 0], n=[1, 0, 0]))
self._L = L
@property
def L(self):
return self._L
@L.setter
def L(self, value):
self._L = value
self.set_plane(Plane([value, 0, 0], n=[1, 0, 0]))