From c782a5a64c0c6ac53505142d0548224d4d19feeb Mon Sep 17 00:00:00 2001 From: avk256 Date: Tue, 28 May 2024 09:28:50 +0300 Subject: [PATCH 1/3] Add benchmarks/matbench_v0.1_StackNet-mat_v0.2 --- .../StackNet_matv0_2.ipynb | 27565 ++++++++++++++++ .../matbench_v0.1_StackNet-mat_v0.2/info.json | 8 + .../requirements.txt | 507 + .../results.json.gz | Bin 0 -> 4725 bytes 4 files changed, 28080 insertions(+) create mode 100644 benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb create mode 100644 benchmarks/matbench_v0.1_StackNet-mat_v0.2/info.json create mode 100644 benchmarks/matbench_v0.1_StackNet-mat_v0.2/requirements.txt create mode 100644 benchmarks/matbench_v0.1_StackNet-mat_v0.2/results.json.gz diff --git a/benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb b/benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb new file mode 100644 index 00000000..7f37b5b5 --- /dev/null +++ b/benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb @@ -0,0 +1,27565 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "machine_shape": "hm" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "11b4244294aa4d42b38911fd5fc49918": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a21458c70aad44719ae8b24fd3865d6b", + "IPY_MODEL_b7e488a326c14d1499c2e615a031038e", + "IPY_MODEL_7d1320e4db5943999bf84fe33bb882ec" + ], + "layout": "IPY_MODEL_736855b37c144b609c98a37ba3705663" + } + }, + "a21458c70aad44719ae8b24fd3865d6b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d894dd29dc57497e9ac29c1643d97107", + "placeholder": "​", + "style": "IPY_MODEL_6304c23c072841d18553007521cfde34", + "value": "BandCenter: 100%" + } + }, + "b7e488a326c14d1499c2e615a031038e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44392292a4ab4bf581af0a518fcf618a", + "max": 312, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7f1f1f06a134869b958fef80be83633", + "value": 312 + } + }, + "7d1320e4db5943999bf84fe33bb882ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9bc3591f2bff4182a090fa8c82210c74", + "placeholder": "​", + "style": "IPY_MODEL_4f94db1c516148ae80e1489f56dce60a", + "value": " 312/312 [00:00<00:00, 568.39it/s]" + } + }, + "736855b37c144b609c98a37ba3705663": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d894dd29dc57497e9ac29c1643d97107": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6304c23c072841d18553007521cfde34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44392292a4ab4bf581af0a518fcf618a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7f1f1f06a134869b958fef80be83633": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9bc3591f2bff4182a090fa8c82210c74": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4f94db1c516148ae80e1489f56dce60a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "740e0dad714c4165a8fd2f20b365cb7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d6d5015c811413eab609042a095a666", + "IPY_MODEL_2736c06011b94a1f864ef08d3610ec1a", + "IPY_MODEL_7ebf753a4bab43fdad4fbcd3b0949740" + ], + "layout": "IPY_MODEL_d2d8a5f3236d41b4b5765a9ce601eaa8" + } + }, + "7d6d5015c811413eab609042a095a666": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd30ce5fa89a4af393e18a7ae0f020c2", + "placeholder": "​", + "style": "IPY_MODEL_34db3f81395f405e894d7799cc8f8ee0", + "value": "ElementFraction: 100%" + } + }, + "2736c06011b94a1f864ef08d3610ec1a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0fd44e88d8b84f3f97fca5b3ebcf329d", + "max": 312, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dca8e99c636948d782ae9c3408c5379a", + "value": 312 + } + }, + "7ebf753a4bab43fdad4fbcd3b0949740": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e3eb70559f94d15946e5f69e2337b1d", + "placeholder": "​", + "style": "IPY_MODEL_8caf3b91fd8d4064a1c774820c2874c2", + "value": " 312/312 [00:00<00:00, 1349.79it/s]" + } + }, + "d2d8a5f3236d41b4b5765a9ce601eaa8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd30ce5fa89a4af393e18a7ae0f020c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "34db3f81395f405e894d7799cc8f8ee0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0fd44e88d8b84f3f97fca5b3ebcf329d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dca8e99c636948d782ae9c3408c5379a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e3eb70559f94d15946e5f69e2337b1d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8caf3b91fd8d4064a1c774820c2874c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f6b45047bef14d799468426862568e62": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5bdf3fa39d084bd0aa5c22d9fc39ce91", + "IPY_MODEL_d2720c54cef0492ab71223dba0b078fa", + "IPY_MODEL_6d42f7727ee3429ea0ca193d90affb35" + ], + "layout": "IPY_MODEL_cedbadd4e63f4f6b8b4fef1ae5229fb9" + } + }, + "5bdf3fa39d084bd0aa5c22d9fc39ce91": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_743a0e9275c24189ac5a164d729b9d65", + "placeholder": "​", + "style": "IPY_MODEL_2326785aa4dd450d89b3fcbefb630c92", + "value": "TMetalFraction: 100%" + } + }, + "d2720c54cef0492ab71223dba0b078fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_77592d0a57b34ecc985646f281f12998", + "max": 312, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6fbbc3a8541548888afe89042c27644d", + "value": 312 + } + }, + "6d42f7727ee3429ea0ca193d90affb35": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_223c7b02f0c34780b79c81f787e654ad", + "placeholder": "​", + "style": "IPY_MODEL_074c46c79f144415ad43fa95bb68433b", + "value": " 312/312 [00:00<00:00, 532.12it/s]" + } + }, + "cedbadd4e63f4f6b8b4fef1ae5229fb9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "743a0e9275c24189ac5a164d729b9d65": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2326785aa4dd450d89b3fcbefb630c92": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "77592d0a57b34ecc985646f281f12998": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fbbc3a8541548888afe89042c27644d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "223c7b02f0c34780b79c81f787e654ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "074c46c79f144415ad43fa95bb68433b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e3aec42386234935a45ec6797720fbf4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5002f942143b45cab246352ea1084751", + "IPY_MODEL_5124a80ff3fe4e30bc12559ebf9d4a14", + "IPY_MODEL_323272527f4d43bab7ee6659871704b5" + ], + "layout": "IPY_MODEL_c68db0ef6165441782726e6e3990967e" + } + }, + "5002f942143b45cab246352ea1084751": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9e4755717fd46619686fce16b8d8641", + "placeholder": "​", + "style": "IPY_MODEL_4876beee10984f038614abcafceade50", + "value": "Stoichiometry: 100%" + } + }, + "5124a80ff3fe4e30bc12559ebf9d4a14": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53068bb95cc2494ab9931acd33e84406", + "max": 312, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3378757992b044f199653305f3fb69d0", + "value": 312 + } + }, + "323272527f4d43bab7ee6659871704b5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8da8c8921a3a485c945d6a3711b1b30b", + "placeholder": "​", + "style": "IPY_MODEL_c812c7809c7d4131af62ed000aea3648", + "value": " 312/312 [00:00<00:00, 545.85it/s]" + } + }, + "c68db0ef6165441782726e6e3990967e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9e4755717fd46619686fce16b8d8641": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4876beee10984f038614abcafceade50": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "53068bb95cc2494ab9931acd33e84406": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3378757992b044f199653305f3fb69d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8da8c8921a3a485c945d6a3711b1b30b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c812c7809c7d4131af62ed000aea3648": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a54a162a17c94dfcaaa8718536295d23": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f260e33e9e844b30a62e1fa0ac3d8531", + "IPY_MODEL_7e2afbe8ab6f4f7d9d980a8500883128", + "IPY_MODEL_c2e8680e8f7f4a81958b650eea8719c1" + ], + "layout": "IPY_MODEL_106265f8ccd24b83b1da14e3e30c4395" + } + }, + "f260e33e9e844b30a62e1fa0ac3d8531": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40081259d2fb47798b6a3dc7946d208b", + "placeholder": "​", + "style": "IPY_MODEL_ae6694ce16c24c98a973cae14aaae874", + "value": "Meredig: 100%" + } + }, + "7e2afbe8ab6f4f7d9d980a8500883128": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_90896d92141246c0806e16dc171e7b87", + "max": 312, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2fc201f12dbb401089b5d4efa8c7a272", + "value": 312 + } + }, + "c2e8680e8f7f4a81958b650eea8719c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cd502e772be46b5877654c685f8e6eb", + "placeholder": "​", + "style": "IPY_MODEL_bde9b13a52464851848834ffc6c93b05", + "value": " 312/312 [00:24<00:00, 11.18it/s]" + } + }, + "106265f8ccd24b83b1da14e3e30c4395": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40081259d2fb47798b6a3dc7946d208b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae6694ce16c24c98a973cae14aaae874": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "90896d92141246c0806e16dc171e7b87": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fc201f12dbb401089b5d4efa8c7a272": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6cd502e772be46b5877654c685f8e6eb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bde9b13a52464851848834ffc6c93b05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0093155ab7645818b33ecf805a4e24f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_766de92e3f0e4517a1e7a6e7983715cf", + "IPY_MODEL_ff2172e8a95847a6895e6eaa82d4c0b7", + "IPY_MODEL_79ccedbfc0b849e186928fc496f10196" + ], + "layout": "IPY_MODEL_4ba509948c234cec9f1aa9fa12268ee8" + } + }, + "766de92e3f0e4517a1e7a6e7983715cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8118f09611604defb1d6e7fe2c7a38cc", + "placeholder": "​", + "style": "IPY_MODEL_9cea02a758864db7a7d4bd8287706480", + "value": "BandCenter: 100%" + } + }, + "ff2172e8a95847a6895e6eaa82d4c0b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_066d9ed6d0324512b2387e8fad51d6d7", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c83a7c55d0574b84a7055880d6e21609", + "value": 249 + } + }, + "79ccedbfc0b849e186928fc496f10196": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2dc9c8229b934bb3829fe16604d4aa40", + "placeholder": "​", + "style": "IPY_MODEL_77e8ec0fee7f46d2b64459f78a19eac4", + "value": " 249/249 [00:00<00:00, 938.47it/s]" + } + }, + "4ba509948c234cec9f1aa9fa12268ee8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8118f09611604defb1d6e7fe2c7a38cc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9cea02a758864db7a7d4bd8287706480": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "066d9ed6d0324512b2387e8fad51d6d7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c83a7c55d0574b84a7055880d6e21609": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2dc9c8229b934bb3829fe16604d4aa40": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "77e8ec0fee7f46d2b64459f78a19eac4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1d8f97605c1e4ebda22df2204b314c2b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_65c4970c344345e3915a46fff6d1eaac", + "IPY_MODEL_5e46b086557e4aa8a0aa8b8fb7f2d91f", + "IPY_MODEL_f1245ebe0f2c4b90a22f4e3f0c4be3ac" + ], + "layout": "IPY_MODEL_8f9dfa28bd7c46119cee66b08553243d" + } + }, + "65c4970c344345e3915a46fff6d1eaac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_28a2679f2e5f4b788eaafc4aa34d95cf", + "placeholder": "​", + "style": "IPY_MODEL_86568ce023fe4f4d8aa75e0ad073b4cc", + "value": "ElementFraction: 100%" + } + }, + "5e46b086557e4aa8a0aa8b8fb7f2d91f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_70603e4f25084a4ba8f4ac487b1e64c2", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_380722e242bb4f949442e000a7a8a18d", + "value": 249 + } + }, + "f1245ebe0f2c4b90a22f4e3f0c4be3ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b81cb03e2960461e8b25cdf076102f05", + "placeholder": "​", + "style": "IPY_MODEL_25290564fada419abb5d1edf25158455", + "value": " 249/249 [00:00<00:00, 1495.30it/s]" + } + }, + "8f9dfa28bd7c46119cee66b08553243d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "28a2679f2e5f4b788eaafc4aa34d95cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86568ce023fe4f4d8aa75e0ad073b4cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "70603e4f25084a4ba8f4ac487b1e64c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "380722e242bb4f949442e000a7a8a18d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b81cb03e2960461e8b25cdf076102f05": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25290564fada419abb5d1edf25158455": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d9c8fee7b6a1491bbe534cd40cecbe7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0d4578184d0e435b82f357354333004d", + "IPY_MODEL_10fd038b7ecf4e29a6a62707f8e259be", + "IPY_MODEL_c75c476a09c049e7a8586cde63ecef4e" + ], + "layout": "IPY_MODEL_890ed1d7e6ea4fa18330471dc8d28efd" + } + }, + "0d4578184d0e435b82f357354333004d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fb44735df1544cc99eb004c1d65e02f5", + "placeholder": "​", + "style": "IPY_MODEL_c826dd76f82848608270dce93d3c8e76", + "value": "TMetalFraction: 100%" + } + }, + "10fd038b7ecf4e29a6a62707f8e259be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a519e55faec481784a64dc40e750607", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_189dfb02af004234ae3054fdd2df340d", + "value": 249 + } + }, + "c75c476a09c049e7a8586cde63ecef4e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_884eff2df3b247bdac5128737e515cd8", + "placeholder": "​", + "style": "IPY_MODEL_d253702326274bb8928fbdd0acad04b8", + "value": " 249/249 [00:00<00:00, 814.86it/s]" + } + }, + "890ed1d7e6ea4fa18330471dc8d28efd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb44735df1544cc99eb004c1d65e02f5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c826dd76f82848608270dce93d3c8e76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5a519e55faec481784a64dc40e750607": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "189dfb02af004234ae3054fdd2df340d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "884eff2df3b247bdac5128737e515cd8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d253702326274bb8928fbdd0acad04b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d0c1558ce6d453593ca99f01dbce797": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d818f633c3544459a9d58f2b93d4c09", + "IPY_MODEL_9cd4f12d02f84aa2b37872e08c3ed8a0", + "IPY_MODEL_18c4307ff6e149b898d120882db641f0" + ], + "layout": "IPY_MODEL_8912d1e447f64f418065f3cf4865886b" + } + }, + "6d818f633c3544459a9d58f2b93d4c09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a49bbad175304be68b85173134ea6d8b", + "placeholder": "​", + "style": "IPY_MODEL_72c045a425bb42978095ad2d0317a848", + "value": "Stoichiometry: 100%" + } + }, + "9cd4f12d02f84aa2b37872e08c3ed8a0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85322731b7a649d7be83ba900df9559b", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e880ed1e4d3444bb0423388e828dede", + "value": 249 + } + }, + "18c4307ff6e149b898d120882db641f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e57ddc7b222416e89bfac4b6c23b7c6", + "placeholder": "​", + "style": "IPY_MODEL_07e6c8cedffc49c59bf89b7c1afa9896", + "value": " 249/249 [00:00<00:00, 740.76it/s]" + } + }, + "8912d1e447f64f418065f3cf4865886b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a49bbad175304be68b85173134ea6d8b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72c045a425bb42978095ad2d0317a848": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "85322731b7a649d7be83ba900df9559b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e880ed1e4d3444bb0423388e828dede": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0e57ddc7b222416e89bfac4b6c23b7c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07e6c8cedffc49c59bf89b7c1afa9896": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec584f58337b496c84b587d1fe752dfd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_87e09ea5d7e54f9ea5e36873e0de41fa", + "IPY_MODEL_fb19e169c5d44d85aaa1d85e2f901041", + "IPY_MODEL_9ab203fc4eb04191bebf107f410344d2" + ], + "layout": "IPY_MODEL_95ee095155fa4ea5914217218a78acfb" + } + }, + "87e09ea5d7e54f9ea5e36873e0de41fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5bc0f7acb8c4d4fab1e93e99baeac75", + "placeholder": "​", + "style": "IPY_MODEL_ad52ea9000fa4a8394bda119a39e0c5e", + "value": "Meredig: 100%" + } + }, + "fb19e169c5d44d85aaa1d85e2f901041": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff87035dac4b470095f7d0aee1bb8fac", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_749229f666914aee84eee47a8cc094b4", + "value": 249 + } + }, + "9ab203fc4eb04191bebf107f410344d2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e21813045d6d4e02ae29ee6b4d1ab67a", + "placeholder": "​", + "style": "IPY_MODEL_a9c67d629b5a4fc2a9c0511ef30941b6", + "value": " 249/249 [00:18<00:00, 12.30it/s]" + } + }, + "95ee095155fa4ea5914217218a78acfb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5bc0f7acb8c4d4fab1e93e99baeac75": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad52ea9000fa4a8394bda119a39e0c5e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff87035dac4b470095f7d0aee1bb8fac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "749229f666914aee84eee47a8cc094b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e21813045d6d4e02ae29ee6b4d1ab67a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9c67d629b5a4fc2a9c0511ef30941b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "005afc83071e47a5a806ec196d9a3d25": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf9c1faf12514836a08b1cdbc94a35dc", + "IPY_MODEL_3edee656fea24fd9bb8fc76c54e7d8d9", + "IPY_MODEL_21422ae0e7454c718322aee7e425f4c0" + ], + "layout": "IPY_MODEL_55280c73ec7f4a3eaa6a3866c70dad2d" + } + }, + "cf9c1faf12514836a08b1cdbc94a35dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e66188816324a48bc5d60613fac588d", + "placeholder": "​", + "style": "IPY_MODEL_38390d6e49ff4cd3949f244c90615fee", + "value": "BandCenter: 100%" + } + }, + "3edee656fea24fd9bb8fc76c54e7d8d9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_333f8e522a5d48cc90568a03f7b907cb", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_70476cabeb2841f59416cb9633de9fff", + "value": 63 + } + }, + "21422ae0e7454c718322aee7e425f4c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_21e2032f107b42e9a25d7d82a47fe2d8", + "placeholder": "​", + "style": "IPY_MODEL_9831ebd6eac34466b0208bc8f0a5b942", + "value": " 63/63 [00:00<00:00,  7.73it/s]" + } + }, + "55280c73ec7f4a3eaa6a3866c70dad2d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e66188816324a48bc5d60613fac588d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38390d6e49ff4cd3949f244c90615fee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "333f8e522a5d48cc90568a03f7b907cb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "70476cabeb2841f59416cb9633de9fff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "21e2032f107b42e9a25d7d82a47fe2d8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9831ebd6eac34466b0208bc8f0a5b942": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1c2c7949383a4d0e8ba5771281a1c107": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b7611a1934984b608cf9871a326669ef", + "IPY_MODEL_9b9716dbc1ea457fb6d7118d1351a427", + "IPY_MODEL_a62c0dbbca9c41888541f07ccd944a2e" + ], + "layout": "IPY_MODEL_beb4e4220ddb41b68c3100c438ea1d9a" + } + }, + "b7611a1934984b608cf9871a326669ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b63c4d6fa0e344c1b3ca534598dd7894", + "placeholder": "​", + "style": "IPY_MODEL_f5944f2ef55e439e868be4a470afe3dc", + "value": "ElementFraction: 100%" + } + }, + "9b9716dbc1ea457fb6d7118d1351a427": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0f4c38e8884d42a4aa39e2140ae392e7", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_79bd3753658548678b76a4bc6e45339c", + "value": 63 + } + }, + "a62c0dbbca9c41888541f07ccd944a2e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bfc5feef74864714adecf811a1d82af1", + "placeholder": "​", + "style": "IPY_MODEL_19994b11b4fe4be2a3776b400dae5853", + "value": " 63/63 [00:00<00:00,  7.26it/s]" + } + }, + "beb4e4220ddb41b68c3100c438ea1d9a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b63c4d6fa0e344c1b3ca534598dd7894": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f5944f2ef55e439e868be4a470afe3dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0f4c38e8884d42a4aa39e2140ae392e7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "79bd3753658548678b76a4bc6e45339c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bfc5feef74864714adecf811a1d82af1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19994b11b4fe4be2a3776b400dae5853": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8cf2dac6348044288062182852cc2209": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3360160845bf4d4eb7d161be69ea5439", + "IPY_MODEL_5662acc71d144c1993d1753aa35aaf6e", + "IPY_MODEL_30452411d1f849a38384464c080a36b9" + ], + "layout": "IPY_MODEL_6807559f4435411ca603998e709238ab" + } + }, + "3360160845bf4d4eb7d161be69ea5439": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf7604300c9047b1acd67e37b4a57f94", + "placeholder": "​", + "style": "IPY_MODEL_580baaacf25b465385948ae402c0af97", + "value": "TMetalFraction: 100%" + } + }, + "5662acc71d144c1993d1753aa35aaf6e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b443c4cd76174702afe25d2519b57d3e", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab56ce442ec34d1992f1a3187ae75a64", + "value": 63 + } + }, + "30452411d1f849a38384464c080a36b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a45d07455574434082ac718101ed1583", + "placeholder": "​", + "style": "IPY_MODEL_3c9452bbd65247c993685e5f9e1362f6", + "value": " 63/63 [00:00<00:00,  8.19it/s]" + } + }, + "6807559f4435411ca603998e709238ab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bf7604300c9047b1acd67e37b4a57f94": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "580baaacf25b465385948ae402c0af97": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b443c4cd76174702afe25d2519b57d3e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab56ce442ec34d1992f1a3187ae75a64": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a45d07455574434082ac718101ed1583": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c9452bbd65247c993685e5f9e1362f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "49920193317b41dbb02b128a837a9399": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d298ec24ced45fa904f3418e5bae4d7", + "IPY_MODEL_404bcf2db3ee4334adb3e7b296b83026", + "IPY_MODEL_96ea55d911db493ca0babbbe066689b6" + ], + "layout": "IPY_MODEL_96e9d1d46c664d9fa78e03ff06e57083" + } + }, + "5d298ec24ced45fa904f3418e5bae4d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e78f3289bc140399154bdc9fe019b4f", + "placeholder": "​", + "style": "IPY_MODEL_33c884f5fe3f4d4fb402adae056ab435", + "value": "Stoichiometry: 100%" + } + }, + "404bcf2db3ee4334adb3e7b296b83026": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e686f569ef154b109f9a69ce99fcd07d", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d2fe9a454054dbb8a1fd73ee1007047", + "value": 63 + } + }, + "96ea55d911db493ca0babbbe066689b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_08a5c2339bf94585b9cc573c16208680", + "placeholder": "​", + "style": "IPY_MODEL_083a7ed0e73e4df5b1c20cfe2f72d4df", + "value": " 63/63 [00:00<00:00,  7.31it/s]" + } + }, + "96e9d1d46c664d9fa78e03ff06e57083": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e78f3289bc140399154bdc9fe019b4f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33c884f5fe3f4d4fb402adae056ab435": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e686f569ef154b109f9a69ce99fcd07d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d2fe9a454054dbb8a1fd73ee1007047": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08a5c2339bf94585b9cc573c16208680": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "083a7ed0e73e4df5b1c20cfe2f72d4df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8b4c2f2c07fe48a8bc1a051bf907e27c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff14942f5bb6431ba7e1ae464d30e575", + "IPY_MODEL_cd19ec9d9c414799a98f7e23b42b77c3", + "IPY_MODEL_11da03b07b314a609c0c9ddc13b622dc" + ], + "layout": "IPY_MODEL_6106d702a16743ef8c197cce465a4b29" + } + }, + "ff14942f5bb6431ba7e1ae464d30e575": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dadaf301fe4d44b19bae05195cf7e35a", + "placeholder": "​", + "style": "IPY_MODEL_0c908fb9724c4a3ca4bc2d7854ca58cb", + "value": "Meredig: 100%" + } + }, + "cd19ec9d9c414799a98f7e23b42b77c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c9f9a367a0a46f1b0008869387bf178", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f1a57ebe457b4c2b8723368b22c659b6", + "value": 63 + } + }, + "11da03b07b314a609c0c9ddc13b622dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ddb664b856841daa9cd55c27acae1cb", + "placeholder": "​", + "style": "IPY_MODEL_589bfc27f46a49359db0808cdce343bf", + "value": " 63/63 [00:03<00:00, 16.10it/s]" + } + }, + "6106d702a16743ef8c197cce465a4b29": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dadaf301fe4d44b19bae05195cf7e35a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c908fb9724c4a3ca4bc2d7854ca58cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c9f9a367a0a46f1b0008869387bf178": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1a57ebe457b4c2b8723368b22c659b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ddb664b856841daa9cd55c27acae1cb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "589bfc27f46a49359db0808cdce343bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cb533cde781b44b7930f6f87ff829212": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_397287e97c8245d280ad9d533d941405", + "IPY_MODEL_631f1aaf70b94f2bb21e857dfd7be1f6", + "IPY_MODEL_93a7ea64251341df8125278dce5a93be" + ], + "layout": "IPY_MODEL_962e360c2afd43ccb15b27b834aef8d1" + } + }, + "397287e97c8245d280ad9d533d941405": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c811d8e265f4a4d82bc12a6423c38f6", + "placeholder": "​", + "style": "IPY_MODEL_a779aec87f974c958d1454d87acb8d98", + "value": "BandCenter: 100%" + } + }, + "631f1aaf70b94f2bb21e857dfd7be1f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8c40a98fbf6b48ba96727bfd083a16f5", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_45425416c716440781e33f783dcb34c3", + "value": 249 + } + }, + "93a7ea64251341df8125278dce5a93be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c64a73c9da84795b098adecd18e7840", + "placeholder": "​", + "style": "IPY_MODEL_60dbbbff81d44e63834ea8d3b7cbb187", + "value": " 249/249 [00:00<00:00, 973.25it/s]" + } + }, + "962e360c2afd43ccb15b27b834aef8d1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c811d8e265f4a4d82bc12a6423c38f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a779aec87f974c958d1454d87acb8d98": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8c40a98fbf6b48ba96727bfd083a16f5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45425416c716440781e33f783dcb34c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2c64a73c9da84795b098adecd18e7840": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "60dbbbff81d44e63834ea8d3b7cbb187": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9479f9433a2b40d184cb460ebea45a14": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bd358e314a0142239a3593ee2c107481", + "IPY_MODEL_f4a85e18ae374799b1368bc7c59fd10b", + "IPY_MODEL_6237554367e74f82b96524f997dae48d" + ], + "layout": "IPY_MODEL_b7ba161c7f454a76abb3a4069d67267f" + } + }, + "bd358e314a0142239a3593ee2c107481": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2a513caaa7e4cc9b6c4fe356804d6db", + "placeholder": "​", + "style": "IPY_MODEL_3987e2875f7f41a2a9c48b9d500cbe2f", + "value": "ElementFraction: 100%" + } + }, + "f4a85e18ae374799b1368bc7c59fd10b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a26b00d2194e4e60aa3786516965cdd0", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b308a6f2782549699fd6c4aa84c2f834", + "value": 249 + } + }, + "6237554367e74f82b96524f997dae48d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ba890c95090481cbfa7043f26eb660d", + "placeholder": "​", + "style": "IPY_MODEL_4ffa2d36ac27496086af760c68aabf0a", + "value": " 249/249 [00:00<00:00, 985.24it/s]" + } + }, + "b7ba161c7f454a76abb3a4069d67267f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2a513caaa7e4cc9b6c4fe356804d6db": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3987e2875f7f41a2a9c48b9d500cbe2f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a26b00d2194e4e60aa3786516965cdd0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b308a6f2782549699fd6c4aa84c2f834": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4ba890c95090481cbfa7043f26eb660d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ffa2d36ac27496086af760c68aabf0a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "abeb221871b84d88b0db18c710a73b63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_75c434447d944b1eaa6ab1e4ced5de78", + "IPY_MODEL_a3d72067b8b049e9a8ad51e9e4cfcc1b", + "IPY_MODEL_f71734e4ae554b0a83463e9800983141" + ], + "layout": "IPY_MODEL_b9b57a07133f4fbf8bd6ca3c6363d3d5" + } + }, + "75c434447d944b1eaa6ab1e4ced5de78": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db0a4d39be6c4e6eb2e1fbb08c7491dd", + "placeholder": "​", + "style": "IPY_MODEL_f762eb228c354c10be3ef054024b9f25", + "value": "TMetalFraction: 100%" + } + }, + "a3d72067b8b049e9a8ad51e9e4cfcc1b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ca1aa0ac12d42b992fc558758aba381", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a4b0d3734df14b1284964eacdbf82fb1", + "value": 249 + } + }, + "f71734e4ae554b0a83463e9800983141": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c0da42ef3e3b45ca8aae73ee17bad05d", + "placeholder": "​", + "style": "IPY_MODEL_0f0a0bfdae424c879f15373744b78dce", + "value": " 249/249 [00:00<00:00, 989.53it/s]" + } + }, + "b9b57a07133f4fbf8bd6ca3c6363d3d5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "db0a4d39be6c4e6eb2e1fbb08c7491dd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f762eb228c354c10be3ef054024b9f25": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5ca1aa0ac12d42b992fc558758aba381": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4b0d3734df14b1284964eacdbf82fb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c0da42ef3e3b45ca8aae73ee17bad05d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f0a0bfdae424c879f15373744b78dce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "34b5a434f30544c18e7044df0bda541d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a30d9a359aa44339bf1a71cd5d081c3b", + "IPY_MODEL_953b84f47e2747718c82b8dcbdfd8eba", + "IPY_MODEL_d879475eb84a4e05a13c07086368ab71" + ], + "layout": "IPY_MODEL_279ca74ece194992b39426a6571e10d4" + } + }, + "a30d9a359aa44339bf1a71cd5d081c3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99a670e95e6640fe838b5d77cd49b276", + "placeholder": "​", + "style": "IPY_MODEL_63eefaecb257465ebc21f51e4465db74", + "value": "Stoichiometry: 100%" + } + }, + "953b84f47e2747718c82b8dcbdfd8eba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03106cb1ad84414f9eb27da153086d22", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_76e48c17a3414755a1ab1f5ccbeb0c51", + "value": 249 + } + }, + "d879475eb84a4e05a13c07086368ab71": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_213058eaee7f42e1a72ddcc1844862c5", + "placeholder": "​", + "style": "IPY_MODEL_43572c01ed354483848f27809b0b76bf", + "value": " 249/249 [00:00<00:00, 936.00it/s]" + } + }, + "279ca74ece194992b39426a6571e10d4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99a670e95e6640fe838b5d77cd49b276": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63eefaecb257465ebc21f51e4465db74": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "03106cb1ad84414f9eb27da153086d22": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76e48c17a3414755a1ab1f5ccbeb0c51": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "213058eaee7f42e1a72ddcc1844862c5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43572c01ed354483848f27809b0b76bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2acd74345acc4fc7a3fe4b1ed6e9250d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b253c5366ad747a2bd508287e09af96d", + "IPY_MODEL_e9c858c99c6248e8bdb2a4dd91eba565", + "IPY_MODEL_7d331e96bcaf42258fca6d2e12d32fcd" + ], + "layout": "IPY_MODEL_8f15f2176c554932be7bad56fce652fd" + } + }, + "b253c5366ad747a2bd508287e09af96d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9e552df119c4d5693b9b4a923bf6d2e", + "placeholder": "​", + "style": "IPY_MODEL_9ba68c3e54e84a7ebd7a0f82394cbb7d", + "value": "Meredig: 100%" + } + }, + "e9c858c99c6248e8bdb2a4dd91eba565": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_446685b32df94c6687849d8befb3c9af", + "max": 249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6a3d9ca3ba89467a834f087642155258", + "value": 249 + } + }, + "7d331e96bcaf42258fca6d2e12d32fcd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c7bffd0b517d4ed387fae8eb27e5e471", + "placeholder": "​", + "style": "IPY_MODEL_f032d8b19da34fadb9b8915de276aed5", + "value": " 249/249 [00:19<00:00, 12.83it/s]" + } + }, + "8f15f2176c554932be7bad56fce652fd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9e552df119c4d5693b9b4a923bf6d2e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ba68c3e54e84a7ebd7a0f82394cbb7d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "446685b32df94c6687849d8befb3c9af": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a3d9ca3ba89467a834f087642155258": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c7bffd0b517d4ed387fae8eb27e5e471": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f032d8b19da34fadb9b8915de276aed5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "949d05a45cf04c70b4bab6c1969b2c4a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_517530edb7264097b6b630b38813b6df", + "IPY_MODEL_5117c358f2e1433a87310ec61f675bad", + "IPY_MODEL_b73bc9d558d741479ed298517f838986" + ], + "layout": "IPY_MODEL_9d9f5a11df824ed3b4659ec98eb8668e" + } + }, + "517530edb7264097b6b630b38813b6df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1be6153e6c084de89434d1c8bec9a8a9", + "placeholder": "​", + "style": "IPY_MODEL_c756c8ce48fe4b89abc71dcae8aedf09", + "value": "BandCenter: 100%" + } + }, + "5117c358f2e1433a87310ec61f675bad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a004a3ff8bf8494f80197891e3cf29f6", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8af5131eda874194b68d817455c0e72e", + "value": 63 + } + }, + "b73bc9d558d741479ed298517f838986": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c067f39cfad7430eba175990d1af5a67", + "placeholder": "​", + "style": "IPY_MODEL_fbbbbcdcacac43d59f6264bdd9606c2d", + "value": " 63/63 [00:00<00:00,  8.48it/s]" + } + }, + "9d9f5a11df824ed3b4659ec98eb8668e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1be6153e6c084de89434d1c8bec9a8a9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c756c8ce48fe4b89abc71dcae8aedf09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a004a3ff8bf8494f80197891e3cf29f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8af5131eda874194b68d817455c0e72e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c067f39cfad7430eba175990d1af5a67": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fbbbbcdcacac43d59f6264bdd9606c2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8ef671b320714fae93cf2324277d5d4d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_623f44d5acf0439793bd89fdb1e4ec26", + "IPY_MODEL_a1d83dfdc2af488a8a6b22ee31507270", + "IPY_MODEL_746f920c74414e5b9750dca2cfa27ba0" + ], + "layout": "IPY_MODEL_8b1568890698441cb252e27cb7b34e52" + } + }, + "623f44d5acf0439793bd89fdb1e4ec26": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7492039d8134388bb63d331e062ca3d", + "placeholder": "​", + "style": "IPY_MODEL_c9dbae65476a47de91cf994d3b1d5f55", + "value": "ElementFraction: 100%" + } + }, + "a1d83dfdc2af488a8a6b22ee31507270": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8c75eb77daa422c8c623a1f7bdab322", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_730c0cde4f164d1facac591dcd6b2dc5", + "value": 63 + } + }, + "746f920c74414e5b9750dca2cfa27ba0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0a53d49e2224526abda9468ea5e6470", + "placeholder": "​", + "style": "IPY_MODEL_1dbdf3a6c38748bdbd000da852e187b5", + "value": " 63/63 [00:00<00:00,  5.69it/s]" + } + }, + "8b1568890698441cb252e27cb7b34e52": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a7492039d8134388bb63d331e062ca3d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9dbae65476a47de91cf994d3b1d5f55": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a8c75eb77daa422c8c623a1f7bdab322": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "730c0cde4f164d1facac591dcd6b2dc5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e0a53d49e2224526abda9468ea5e6470": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1dbdf3a6c38748bdbd000da852e187b5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6677592bd88d48f39a39f02fb3f51ecb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ee406823272a4d96a4499ec31e5d243b", + "IPY_MODEL_525a958c4982457fa90829beac4e6d95", + "IPY_MODEL_1690ed5f1bf8461c91d26c4ddfdb1801" + ], + "layout": "IPY_MODEL_b429cc4164f243bc914cb12afe6bcfc2" + } + }, + "ee406823272a4d96a4499ec31e5d243b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b4e40c2f65e4159ba9115f16824456f", + "placeholder": "​", + "style": "IPY_MODEL_128704cd8f9c48c78ed8aa908c5c43f6", + "value": "TMetalFraction: 100%" + } + }, + "525a958c4982457fa90829beac4e6d95": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2454bd719ed94c02a5a8c7dc711b9b44", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_03deb66d2de6400db7ef22c25eb8431c", + "value": 63 + } + }, + "1690ed5f1bf8461c91d26c4ddfdb1801": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_846978974be14da38c9bd9adfe19eeee", + "placeholder": "​", + "style": "IPY_MODEL_769a0db5b90e46238e8f1099d5f579e5", + "value": " 63/63 [00:00<00:00,  6.97it/s]" + } + }, + "b429cc4164f243bc914cb12afe6bcfc2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b4e40c2f65e4159ba9115f16824456f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "128704cd8f9c48c78ed8aa908c5c43f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2454bd719ed94c02a5a8c7dc711b9b44": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "03deb66d2de6400db7ef22c25eb8431c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "846978974be14da38c9bd9adfe19eeee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "769a0db5b90e46238e8f1099d5f579e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "84799302b17948fe998cfc69f64c2707": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ccf5affb96454a86a58fcb0d93485a2d", + "IPY_MODEL_0920db3f48c64a198f7607e4f36ab72e", + "IPY_MODEL_9c67ae75fe174801a7d73deff44a6391" + ], + "layout": "IPY_MODEL_d81dc0a8fc6b47c6a2916bd9825c3eaa" + } + }, + "ccf5affb96454a86a58fcb0d93485a2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_06bc949890c04e728b9ac0be1c44e448", + "placeholder": "​", + "style": "IPY_MODEL_d198dd7d6e52422cb6bae22de0b7ad64", + "value": "Stoichiometry: 100%" + } + }, + "0920db3f48c64a198f7607e4f36ab72e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_179c6883e95746af97b0d0831e55e984", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f4dcbd6460a4d3a93d1198aa3c3e396", + "value": 63 + } + }, + "9c67ae75fe174801a7d73deff44a6391": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9505015db00346c8ba9a9add0117b4a8", + "placeholder": "​", + "style": "IPY_MODEL_377464a3ac2e4c00874a1ab4048ccbf2", + "value": " 63/63 [00:00<00:00,  8.42it/s]" + } + }, + "d81dc0a8fc6b47c6a2916bd9825c3eaa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06bc949890c04e728b9ac0be1c44e448": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d198dd7d6e52422cb6bae22de0b7ad64": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "179c6883e95746af97b0d0831e55e984": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f4dcbd6460a4d3a93d1198aa3c3e396": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9505015db00346c8ba9a9add0117b4a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "377464a3ac2e4c00874a1ab4048ccbf2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c230b98570b24bdc9b296cb3a52a1997": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d79e9f87986a4c56bb6eeeaa40086939", + "IPY_MODEL_29e7f35dc7c543db8401c29c5109d3a3", + "IPY_MODEL_7925491c19824db48254aaa6084665b0" + ], + "layout": "IPY_MODEL_31b5916f2bed46449ac402b77380bf38" + } + }, + "d79e9f87986a4c56bb6eeeaa40086939": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_287a59efab6d4e928b87dc5f74e5f8fc", + "placeholder": "​", + "style": "IPY_MODEL_6fd345f55d954dc7905407f38e645afd", + "value": "Meredig: 100%" + } + }, + "29e7f35dc7c543db8401c29c5109d3a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e4911872e0d4f4e9702d289f7c8a08a", + "max": 63, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f35bead1a69744dfacb26509ed038689", + "value": 63 + } + }, + "7925491c19824db48254aaa6084665b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ac57f4db7bb47edbb3b88156e274a5c", + "placeholder": "​", + "style": "IPY_MODEL_fc93639cd5b54321b9ee646cd1466030", + "value": " 63/63 [00:02<00:00, 16.88it/s]" + } + }, + "31b5916f2bed46449ac402b77380bf38": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "287a59efab6d4e928b87dc5f74e5f8fc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fd345f55d954dc7905407f38e645afd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4e4911872e0d4f4e9702d289f7c8a08a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f35bead1a69744dfacb26509ed038689": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8ac57f4db7bb47edbb3b88156e274a5c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc93639cd5b54321b9ee646cd1466030": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b48490e695154529a0f898298b5f99e0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e484faf1efcd4202bfa6251f6b8d5572", + "IPY_MODEL_a049f98127a4470a90936dfc85b8433a", + "IPY_MODEL_26448ea6c5ad41039de4f12a3594fc6d" + ], + "layout": "IPY_MODEL_7ab1bc29f427443b94979c2760cdd7d4" + } + }, + "e484faf1efcd4202bfa6251f6b8d5572": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_252c56cfd1c045f6a971f953890c25c7", + "placeholder": "​", + "style": "IPY_MODEL_53171a3c0de14d478a381b729d18da83", + "value": "BandCenter: 100%" + } + }, + "a049f98127a4470a90936dfc85b8433a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d0797ec0964f43559d80611047e0708b", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_505558c4ccaf45bba5b041a381340055", + "value": 250 + } + }, + "26448ea6c5ad41039de4f12a3594fc6d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_738d0a917c50453a9a3ee1b6594b2c68", + "placeholder": "​", + "style": "IPY_MODEL_b317affed0e34e119aea85faf046daeb", + "value": " 250/250 [00:00<00:00, 921.27it/s]" + } + }, + "7ab1bc29f427443b94979c2760cdd7d4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "252c56cfd1c045f6a971f953890c25c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "53171a3c0de14d478a381b729d18da83": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0797ec0964f43559d80611047e0708b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "505558c4ccaf45bba5b041a381340055": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "738d0a917c50453a9a3ee1b6594b2c68": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b317affed0e34e119aea85faf046daeb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "768bc41c329641c98d40230df8d4e97d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bd37eec584564c06ab7ca1749dae3b3a", + "IPY_MODEL_2dde36a3c2b143a2a1f13940ad48e882", + "IPY_MODEL_97650e6e280b43a6b8a0d30da990031f" + ], + "layout": "IPY_MODEL_b36eec3567384f5999ba04d9f7e86146" + } + }, + "bd37eec584564c06ab7ca1749dae3b3a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ee07e67e315444b993c2d4a38cbfddc", + "placeholder": "​", + "style": "IPY_MODEL_a92dc101d88b49ecbf82227052bb64c6", + "value": "ElementFraction: 100%" + } + }, + "2dde36a3c2b143a2a1f13940ad48e882": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca9cf9d860bf4eefb3c4a51443a3d7ef", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_457d128cdf564941b15cc2c79e23c9b1", + "value": 250 + } + }, + "97650e6e280b43a6b8a0d30da990031f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4bdf314d12474846bd0a0bad18a3da12", + "placeholder": "​", + "style": "IPY_MODEL_650dc244579d46fb8308256a68438cfb", + "value": " 250/250 [00:00<00:00, 943.03it/s]" + } + }, + "b36eec3567384f5999ba04d9f7e86146": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ee07e67e315444b993c2d4a38cbfddc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a92dc101d88b49ecbf82227052bb64c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ca9cf9d860bf4eefb3c4a51443a3d7ef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "457d128cdf564941b15cc2c79e23c9b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4bdf314d12474846bd0a0bad18a3da12": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "650dc244579d46fb8308256a68438cfb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9fb9891626c246c396a299122922f56c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb0af518801d4c36a1af938d2b9e5ad1", + "IPY_MODEL_0296ffceac7a430a88a90e3ec868f8da", + "IPY_MODEL_b0b99702c49a45059fc1451306934454" + ], + "layout": "IPY_MODEL_3be0f6c84a8c4127ab5ba15694ea9c44" + } + }, + "eb0af518801d4c36a1af938d2b9e5ad1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_841c8639aad4411c9107330422c4c9bd", + "placeholder": "​", + "style": "IPY_MODEL_3d42b9817b2447ce8bf5336f54a8f45d", + "value": "TMetalFraction: 100%" + } + }, + "0296ffceac7a430a88a90e3ec868f8da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9944b283538e49f9ab2430445a6a734e", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8493453c97d2482ab2bad6164df0f360", + "value": 250 + } + }, + "b0b99702c49a45059fc1451306934454": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5201f7dcec1e441b974f804b8de09d12", + "placeholder": "​", + "style": "IPY_MODEL_fe67741343c64d3eab57faba439ec994", + "value": " 250/250 [00:00<00:00, 998.34it/s]" + } + }, + "3be0f6c84a8c4127ab5ba15694ea9c44": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "841c8639aad4411c9107330422c4c9bd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d42b9817b2447ce8bf5336f54a8f45d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9944b283538e49f9ab2430445a6a734e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8493453c97d2482ab2bad6164df0f360": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5201f7dcec1e441b974f804b8de09d12": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe67741343c64d3eab57faba439ec994": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25a86fe8394d451e8f6d02f8167317a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_02a3a100934441e29f6ab684c6851bcf", + "IPY_MODEL_12e7cf7f142f4292942eb15fcbf27516", + "IPY_MODEL_0e5697e32488480a9de3f15f1d8c5321" + ], + "layout": "IPY_MODEL_54ad0c00789343fe8d3f01e636cccb42" + } + }, + "02a3a100934441e29f6ab684c6851bcf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6feee4ca68d84e1997f7c2d06241b154", + "placeholder": "​", + "style": "IPY_MODEL_eafb495d69814e9c85bce2150aee2d97", + "value": "Stoichiometry: 100%" + } + }, + "12e7cf7f142f4292942eb15fcbf27516": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_80000dd923d54eb89684f8082cfee852", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d2f2c7dc8fec4cd28b30126b04cf3520", + "value": 250 + } + }, + "0e5697e32488480a9de3f15f1d8c5321": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf2b766f902949cb88d82eb182c8bb9d", + "placeholder": "​", + "style": "IPY_MODEL_8bc1e4e043b34dd1aa50b0cae860e59d", + "value": " 250/250 [00:00<00:00, 886.27it/s]" + } + }, + "54ad0c00789343fe8d3f01e636cccb42": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6feee4ca68d84e1997f7c2d06241b154": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eafb495d69814e9c85bce2150aee2d97": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "80000dd923d54eb89684f8082cfee852": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2f2c7dc8fec4cd28b30126b04cf3520": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bf2b766f902949cb88d82eb182c8bb9d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8bc1e4e043b34dd1aa50b0cae860e59d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e8845ff39a7b4ddb9559e91b35b3dc59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8da400794d074aa8bce71e1b3e551562", + "IPY_MODEL_bad62dc89fd247aeb8dda6764a7e961e", + "IPY_MODEL_a6fcce4e0d7a4373b622eadbf1915589" + ], + "layout": "IPY_MODEL_5d66472d41d643d1956fd57bf9f5e832" + } + }, + "8da400794d074aa8bce71e1b3e551562": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2668e50ef9c458d9a135b7d77caba56", + "placeholder": "​", + "style": "IPY_MODEL_fb891f2796ac4b15995bceb074537caf", + "value": "Meredig: 100%" + } + }, + "bad62dc89fd247aeb8dda6764a7e961e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_575c16d704bb40eea3a08abe7f80aaee", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_255989869984402fb3de634476dfd41c", + "value": 250 + } + }, + "a6fcce4e0d7a4373b622eadbf1915589": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b52119b221f641159557a5f69e3bb498", + "placeholder": "​", + "style": "IPY_MODEL_347d673c46764e5b870ad9da75edcc07", + "value": " 250/250 [00:19<00:00, 12.25it/s]" + } + }, + "5d66472d41d643d1956fd57bf9f5e832": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f2668e50ef9c458d9a135b7d77caba56": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb891f2796ac4b15995bceb074537caf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "575c16d704bb40eea3a08abe7f80aaee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "255989869984402fb3de634476dfd41c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b52119b221f641159557a5f69e3bb498": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "347d673c46764e5b870ad9da75edcc07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "85af84b4f079445690da446bf5b6de19": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff7ccd63f29744e79e111da7fb0a47c7", + "IPY_MODEL_26f58315465240279c04f731a7c82c20", + "IPY_MODEL_ed65a3ccae53477e931d46ac88635967" + ], + "layout": "IPY_MODEL_e71b072dc4474a79b4c89c500bc4f252" + } + }, + "ff7ccd63f29744e79e111da7fb0a47c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b35520b151a348e4b1328dccd8b6dbb1", + "placeholder": "​", + "style": "IPY_MODEL_3ed965bcf64b48768b0d443b20d148d8", + "value": "BandCenter: 100%" + } + }, + "26f58315465240279c04f731a7c82c20": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a84415c929a64f5bb64b693ee9bc584a", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_88a2ee78a10444c2a3716006d981d96a", + "value": 62 + } + }, + "ed65a3ccae53477e931d46ac88635967": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_034fcb295998479bb9aec8524420a29f", + "placeholder": "​", + "style": "IPY_MODEL_8368fc0179e34bd48950a4307bd436f2", + "value": " 62/62 [00:00<00:00,  8.13it/s]" + } + }, + "e71b072dc4474a79b4c89c500bc4f252": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b35520b151a348e4b1328dccd8b6dbb1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ed965bcf64b48768b0d443b20d148d8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a84415c929a64f5bb64b693ee9bc584a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "88a2ee78a10444c2a3716006d981d96a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "034fcb295998479bb9aec8524420a29f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8368fc0179e34bd48950a4307bd436f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7faf4fcc789d4c52b76ee687e5af58b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3542d0f2d06040c0a98610cf002543f4", + "IPY_MODEL_083b48ca7770470685a74526eeff3da9", + "IPY_MODEL_77262bbf47b643999db6f475c473981c" + ], + "layout": "IPY_MODEL_acebbd88b3da4fbf8414fe2682a5feae" + } + }, + "3542d0f2d06040c0a98610cf002543f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a71a9fc02f54114939d9f37fe680673", + "placeholder": "​", + "style": "IPY_MODEL_38af0d4ba59446178a672dc47b2b33b1", + "value": "ElementFraction: 100%" + } + }, + "083b48ca7770470685a74526eeff3da9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_42020b87b5924382864036e698a0cc9c", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7519e28a085143bbbefbbb196ea580d2", + "value": 62 + } + }, + "77262bbf47b643999db6f475c473981c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf88a39273564bd68defe2c14a2dd414", + "placeholder": "​", + "style": "IPY_MODEL_fa9a929d496148cfb48697dec59e23a6", + "value": " 62/62 [00:00<00:00,  6.48it/s]" + } + }, + "acebbd88b3da4fbf8414fe2682a5feae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a71a9fc02f54114939d9f37fe680673": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38af0d4ba59446178a672dc47b2b33b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "42020b87b5924382864036e698a0cc9c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7519e28a085143bbbefbbb196ea580d2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bf88a39273564bd68defe2c14a2dd414": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa9a929d496148cfb48697dec59e23a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3a649e16ea3e4d7f99e2dc8dd0de150e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80ef4f0cd4954af0928ed11cae09906c", + "IPY_MODEL_6e331fa67fa74e2a93776a9f44e04233", + "IPY_MODEL_946c6bdea2174169a09fc208ebfb00a2" + ], + "layout": "IPY_MODEL_77de107d10aa4677a0ae0e4a93d28cc8" + } + }, + "80ef4f0cd4954af0928ed11cae09906c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2759736a2ab042afa4223e05012578fd", + "placeholder": "​", + "style": "IPY_MODEL_2ee28c4995f74cc18894391281130907", + "value": "TMetalFraction: 100%" + } + }, + "6e331fa67fa74e2a93776a9f44e04233": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b0962cb69a646c599d555a34abc857d", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_16d33b41cefa4845841b67b831ffd0bf", + "value": 62 + } + }, + "946c6bdea2174169a09fc208ebfb00a2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91a37ec310e9493d9eb3db660f38342d", + "placeholder": "​", + "style": "IPY_MODEL_1bc741d02df14432b4d9747a2256cd24", + "value": " 62/62 [00:00<00:00,  6.47it/s]" + } + }, + "77de107d10aa4677a0ae0e4a93d28cc8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2759736a2ab042afa4223e05012578fd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ee28c4995f74cc18894391281130907": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b0962cb69a646c599d555a34abc857d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "16d33b41cefa4845841b67b831ffd0bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "91a37ec310e9493d9eb3db660f38342d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1bc741d02df14432b4d9747a2256cd24": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bb9b7a1f2ef643a29ae93e1e3d2af80c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_edab56aae29549d2a1811dac009dc459", + "IPY_MODEL_73abb6939d93455ab3c1cb7af216b6ce", + "IPY_MODEL_925468d7414141aea022c7919cea4a0d" + ], + "layout": "IPY_MODEL_c8f430aafe7f49caacd27442d84e3278" + } + }, + "edab56aae29549d2a1811dac009dc459": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c37ea381ce89425a8902ff167f533bca", + "placeholder": "​", + "style": "IPY_MODEL_84e3c7c0defe43d68892d1cfb72c6773", + "value": "Stoichiometry: 100%" + } + }, + "73abb6939d93455ab3c1cb7af216b6ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9bbcb09be5a439383417f730745d7e2", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1d05913de398404dbbc026357264ead8", + "value": 62 + } + }, + "925468d7414141aea022c7919cea4a0d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7013f02788ec452eb7765904ae3d1215", + "placeholder": "​", + "style": "IPY_MODEL_670900d1438841b78828d0b7a5f8f2bd", + "value": " 62/62 [00:00<00:00,  6.77it/s]" + } + }, + "c8f430aafe7f49caacd27442d84e3278": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c37ea381ce89425a8902ff167f533bca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84e3c7c0defe43d68892d1cfb72c6773": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d9bbcb09be5a439383417f730745d7e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d05913de398404dbbc026357264ead8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7013f02788ec452eb7765904ae3d1215": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "670900d1438841b78828d0b7a5f8f2bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a2908ecfd56e4b28b3c94db362fbe10c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1295c7b1b0ef43ebacaa93291d19b0be", + "IPY_MODEL_d2b86af3d9b94ab2b434d96fc4be8007", + "IPY_MODEL_1ce6cf397c6643799c4b143c5069759b" + ], + "layout": "IPY_MODEL_ab88bc7b34524daea842419d01150cdf" + } + }, + "1295c7b1b0ef43ebacaa93291d19b0be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27460383249c413f83f6bc2c84da723c", + "placeholder": "​", + "style": "IPY_MODEL_40e5ab878a884c4db0a455e6a4c5b3c8", + "value": "Meredig: 100%" + } + }, + "d2b86af3d9b94ab2b434d96fc4be8007": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e47bb43eddb4ab9b34f5daf1f96b4aa", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa60b4cbbbce43a3a107767b95e0464d", + "value": 62 + } + }, + "1ce6cf397c6643799c4b143c5069759b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bffdac1a0524d0d839c6b8d3a2e21dc", + "placeholder": "​", + "style": "IPY_MODEL_e79bad48e357400e97380eaebbc47db1", + "value": " 62/62 [00:02<00:00, 17.00it/s]" + } + }, + "ab88bc7b34524daea842419d01150cdf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "27460383249c413f83f6bc2c84da723c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40e5ab878a884c4db0a455e6a4c5b3c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e47bb43eddb4ab9b34f5daf1f96b4aa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aa60b4cbbbce43a3a107767b95e0464d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3bffdac1a0524d0d839c6b8d3a2e21dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e79bad48e357400e97380eaebbc47db1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a379838766cd4177823f295b33246248": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e76c870de61f442991855894f350cdb4", + "IPY_MODEL_5b74ff9bd62944e5b188b4e60e251035", + "IPY_MODEL_e33fd79a6dd849d6b01e6db60e4ae53f" + ], + "layout": "IPY_MODEL_d1bec49e29ae4ea4920ce96698a6d3a7" + } + }, + "e76c870de61f442991855894f350cdb4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4944b6c85ae5411490fe5a936e42cf23", + "placeholder": "​", + "style": "IPY_MODEL_92822b1efb1949c5b343195792b39713", + "value": "BandCenter: 100%" + } + }, + "5b74ff9bd62944e5b188b4e60e251035": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_701fcf04c1c84f5cbac71652958f4ff8", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ed0466979f23453ea5b88af31768b63f", + "value": 250 + } + }, + "e33fd79a6dd849d6b01e6db60e4ae53f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c82ca6b2835a4d1a88d9173530e5d2fd", + "placeholder": "​", + "style": "IPY_MODEL_bcee1254b6be4d0eb38b6aa8b593ba43", + "value": " 250/250 [00:00<00:00, 975.97it/s]" + } + }, + "d1bec49e29ae4ea4920ce96698a6d3a7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4944b6c85ae5411490fe5a936e42cf23": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92822b1efb1949c5b343195792b39713": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "701fcf04c1c84f5cbac71652958f4ff8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ed0466979f23453ea5b88af31768b63f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c82ca6b2835a4d1a88d9173530e5d2fd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcee1254b6be4d0eb38b6aa8b593ba43": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "39694a800cd44ea3bab7aca291aa6936": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_180a38f040a24f1a91361284a0e64271", + "IPY_MODEL_9c906db88f934080b3ecdf3d591d370f", + "IPY_MODEL_5080feea3a6249778800056ca22ef16a" + ], + "layout": "IPY_MODEL_ce82a81e030d4f4ab38107827c591355" + } + }, + "180a38f040a24f1a91361284a0e64271": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4452b391dd6347b7941c646b2b6f8278", + "placeholder": "​", + "style": "IPY_MODEL_648235db4e7f4b299c26874f9d860c17", + "value": "ElementFraction: 100%" + } + }, + "9c906db88f934080b3ecdf3d591d370f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c70e6d30ee94db3ad23965b8742585f", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_21ca04a6a1384aad8968123696a6f15e", + "value": 250 + } + }, + "5080feea3a6249778800056ca22ef16a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2e9b58335864e9c995bb84194d8e4e6", + "placeholder": "​", + "style": "IPY_MODEL_3bbc126dd86e4360bd18c2ee2981d401", + "value": " 250/250 [00:00<00:00, 943.06it/s]" + } + }, + "ce82a81e030d4f4ab38107827c591355": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4452b391dd6347b7941c646b2b6f8278": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "648235db4e7f4b299c26874f9d860c17": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2c70e6d30ee94db3ad23965b8742585f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21ca04a6a1384aad8968123696a6f15e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d2e9b58335864e9c995bb84194d8e4e6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3bbc126dd86e4360bd18c2ee2981d401": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f48564690aa843c798ff7019fca1dacc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8dd9fdfe7a1d4d139864c911d3d0bb93", + "IPY_MODEL_2a6cd1b9646c4cfca669ddbf32415a0c", + "IPY_MODEL_f664f316fd4f43e3b1f776c3e88cf33d" + ], + "layout": "IPY_MODEL_ee39c329f6ff43b4ab85d33728a50af9" + } + }, + "8dd9fdfe7a1d4d139864c911d3d0bb93": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3e5f4145d15419f8251ad4aa64b2bc5", + "placeholder": "​", + "style": "IPY_MODEL_6ce1a41c5579495cae987f533b355602", + "value": "TMetalFraction: 100%" + } + }, + "2a6cd1b9646c4cfca669ddbf32415a0c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_515e6d750c6f4632976c12700d67f613", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b9c70beac9249189fc7b4c1246de115", + "value": 250 + } + }, + "f664f316fd4f43e3b1f776c3e88cf33d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b08b42a9817448f963eb0938d090e06", + "placeholder": "​", + "style": "IPY_MODEL_979552ca0f61487cb6859d5ad3cd7a08", + "value": " 250/250 [00:00<00:00, 979.13it/s]" + } + }, + "ee39c329f6ff43b4ab85d33728a50af9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3e5f4145d15419f8251ad4aa64b2bc5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ce1a41c5579495cae987f533b355602": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "515e6d750c6f4632976c12700d67f613": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b9c70beac9249189fc7b4c1246de115": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2b08b42a9817448f963eb0938d090e06": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "979552ca0f61487cb6859d5ad3cd7a08": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b42bdc575ca4a1ca7fb780c8e9b4e70": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ae94169430946868a8ba6d7ac9078ef", + "IPY_MODEL_5db998ba6a0a4e449a70391f5a48502f", + "IPY_MODEL_1b907000065947ff8a2aca81d8916806" + ], + "layout": "IPY_MODEL_4bc98324710343818ce70c277a384208" + } + }, + "7ae94169430946868a8ba6d7ac9078ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d3a960cb6bd4c828732fb72a755552b", + "placeholder": "​", + "style": "IPY_MODEL_7083526d4b6f4e90945147d12ccb484c", + "value": "Stoichiometry: 100%" + } + }, + "5db998ba6a0a4e449a70391f5a48502f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a726c08eaf94a1dba0330a980b7ed86", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b40000482b8b46858c7c138aed45fb52", + "value": 250 + } + }, + "1b907000065947ff8a2aca81d8916806": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f6d232a6b076423eb74d964c5fb78fb4", + "placeholder": "​", + "style": "IPY_MODEL_46ecf90698e5452392dfa20e5f905160", + "value": " 250/250 [00:00<00:00, 951.33it/s]" + } + }, + "4bc98324710343818ce70c277a384208": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d3a960cb6bd4c828732fb72a755552b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7083526d4b6f4e90945147d12ccb484c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a726c08eaf94a1dba0330a980b7ed86": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b40000482b8b46858c7c138aed45fb52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f6d232a6b076423eb74d964c5fb78fb4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "46ecf90698e5452392dfa20e5f905160": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cd9988d01bba44f1b2b34a1cca33ff91": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b8cf1c3c4004db29438f6bcde78a613", + "IPY_MODEL_384b31c8947a4ae4b8df9b2ad604ab02", + "IPY_MODEL_1140d225f86d4c029dace234a5d8c7ca" + ], + "layout": "IPY_MODEL_dfc3de7bab9e4bb3ba955bcdb7216b0f" + } + }, + "6b8cf1c3c4004db29438f6bcde78a613": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2db4d21ef5f047d493828698c94729d9", + "placeholder": "​", + "style": "IPY_MODEL_002cc6ef5d7245a19889b71285c89d98", + "value": "Meredig: 100%" + } + }, + "384b31c8947a4ae4b8df9b2ad604ab02": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_31171ad2489e476db3fe24a144e1ff3a", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_506c3de481e8469780e0d05d7272a090", + "value": 250 + } + }, + "1140d225f86d4c029dace234a5d8c7ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9740429be4304a48a8a4c8b0a4ed0e0c", + "placeholder": "​", + "style": "IPY_MODEL_c77d2aac6b074785a8d5aed256dc985f", + "value": " 250/250 [00:20<00:00, 11.12it/s]" + } + }, + "dfc3de7bab9e4bb3ba955bcdb7216b0f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2db4d21ef5f047d493828698c94729d9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "002cc6ef5d7245a19889b71285c89d98": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31171ad2489e476db3fe24a144e1ff3a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "506c3de481e8469780e0d05d7272a090": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9740429be4304a48a8a4c8b0a4ed0e0c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c77d2aac6b074785a8d5aed256dc985f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a7eb53745c44c5687e84e34ec51fa0a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6105b0715af34a55b012203f3ff48987", + "IPY_MODEL_d6c49c0dd9c342b99b154b6b17e5a500", + "IPY_MODEL_5f969d9e71a24780b5a16383ca9bfccd" + ], + "layout": "IPY_MODEL_6df6aeee9db8477e8c35a424f76b2f5e" + } + }, + "6105b0715af34a55b012203f3ff48987": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9893fe9fddf54f5597a08b5866f3b02c", + "placeholder": "​", + "style": "IPY_MODEL_9bf5c1b3474745bcbf96d1072b20f482", + "value": "BandCenter: 100%" + } + }, + "d6c49c0dd9c342b99b154b6b17e5a500": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3423d51b07a4206ad794e5f26708a2f", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9322bc98ce17456e9ba0042d5868aad4", + "value": 62 + } + }, + "5f969d9e71a24780b5a16383ca9bfccd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_08c123aef14d417684b7e4e2539f618a", + "placeholder": "​", + "style": "IPY_MODEL_1a23cc8709e7409787ea340cec2e72a0", + "value": " 62/62 [00:00<00:00,  9.78it/s]" + } + }, + "6df6aeee9db8477e8c35a424f76b2f5e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9893fe9fddf54f5597a08b5866f3b02c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bf5c1b3474745bcbf96d1072b20f482": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3423d51b07a4206ad794e5f26708a2f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9322bc98ce17456e9ba0042d5868aad4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08c123aef14d417684b7e4e2539f618a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1a23cc8709e7409787ea340cec2e72a0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dd7c932427124a3aadc30d655191baac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7198794684a6443c944863591ad6e5fb", + "IPY_MODEL_531284f389aa4d3293e20e82a7c2382a", + "IPY_MODEL_f15ac19328484edf82e237ffe10d7825" + ], + "layout": "IPY_MODEL_ad755bf9c129409e974de59d8c7bca4c" + } + }, + "7198794684a6443c944863591ad6e5fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ef094666ec747168399af78e70579fd", + "placeholder": "​", + "style": "IPY_MODEL_be8a358eb5c0443b8b8e5205bfb77efe", + "value": "ElementFraction: 100%" + } + }, + "531284f389aa4d3293e20e82a7c2382a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4216554e7b384198ad528ce530249372", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3bc1c6f974564fa099e1b606f33ac7aa", + "value": 62 + } + }, + "f15ac19328484edf82e237ffe10d7825": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_573ceb2855e2423caa8f3cb752039efe", + "placeholder": "​", + "style": "IPY_MODEL_fef8b303920f4fe4bf41fa4ac4af9b93", + "value": " 62/62 [00:00<00:00,  8.54it/s]" + } + }, + "ad755bf9c129409e974de59d8c7bca4c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ef094666ec747168399af78e70579fd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be8a358eb5c0443b8b8e5205bfb77efe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4216554e7b384198ad528ce530249372": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3bc1c6f974564fa099e1b606f33ac7aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "573ceb2855e2423caa8f3cb752039efe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fef8b303920f4fe4bf41fa4ac4af9b93": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "345eec84935746d1bf384e5e0268bfa4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9c3a0a99a2c0449a9f220a3009057476", + "IPY_MODEL_7c80262ad19f4abf8fe55d6aacdf1415", + "IPY_MODEL_ce00c096aa56405fb5a8132fc2dde2a4" + ], + "layout": "IPY_MODEL_3e1d46da81e84649a46dd14c71fd51c3" + } + }, + "9c3a0a99a2c0449a9f220a3009057476": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_260ee2ed027146579d31a2ec2eb6fabe", + "placeholder": "​", + "style": "IPY_MODEL_9eccf4ebb6614d048aa3dea0de4dafc1", + "value": "TMetalFraction: 100%" + } + }, + "7c80262ad19f4abf8fe55d6aacdf1415": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0723cbae223b4068a21867eb4e8208a1", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d117ccba1ec42b6bc209b5219f80dbf", + "value": 62 + } + }, + "ce00c096aa56405fb5a8132fc2dde2a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bcb143743d5d4f08a23caea35a193350", + "placeholder": "​", + "style": "IPY_MODEL_81acb66d95e94e818b99b5b559eeed4d", + "value": " 62/62 [00:00<00:00,  6.75it/s]" + } + }, + "3e1d46da81e84649a46dd14c71fd51c3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "260ee2ed027146579d31a2ec2eb6fabe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9eccf4ebb6614d048aa3dea0de4dafc1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0723cbae223b4068a21867eb4e8208a1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d117ccba1ec42b6bc209b5219f80dbf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcb143743d5d4f08a23caea35a193350": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81acb66d95e94e818b99b5b559eeed4d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6d2189ea99be4b75b826aa0cf7ed25ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d0281eee993f4823a4fa2537811c0682", + "IPY_MODEL_312aafaeebe04e3e9edf169a6e30b9cf", + "IPY_MODEL_327591a55c744c7491e8ddec7595705a" + ], + "layout": "IPY_MODEL_1f5fe8c48f14493c96fe8145b7262c31" + } + }, + "d0281eee993f4823a4fa2537811c0682": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_38791bd579c44dc08695961119086e05", + "placeholder": "​", + "style": "IPY_MODEL_7a7fa2356dfc4da38354e0c2e5d35589", + "value": "Stoichiometry: 100%" + } + }, + "312aafaeebe04e3e9edf169a6e30b9cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a36e17bd31ef45c1985bcf342bab87ad", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_28fdd22b35ab4a47ad9d07d7bb2297a1", + "value": 62 + } + }, + "327591a55c744c7491e8ddec7595705a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d15f721635794f4ca23eb45f0a1c9a3a", + "placeholder": "​", + "style": "IPY_MODEL_a54bb51f98ae4a2caac6b22663548cb6", + "value": " 62/62 [00:00<00:00,  7.08it/s]" + } + }, + "1f5fe8c48f14493c96fe8145b7262c31": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38791bd579c44dc08695961119086e05": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a7fa2356dfc4da38354e0c2e5d35589": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a36e17bd31ef45c1985bcf342bab87ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "28fdd22b35ab4a47ad9d07d7bb2297a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d15f721635794f4ca23eb45f0a1c9a3a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a54bb51f98ae4a2caac6b22663548cb6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a3d84153d98d490c9ec4a9df76f5e327": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b11166e85914cfc826e10503bf4cc2d", + "IPY_MODEL_560b2f64078d4e9a9afa41d93cb15a86", + "IPY_MODEL_e769e37935d04401a4fdc2fca0d24c62" + ], + "layout": "IPY_MODEL_88a869de65d14eaab3c1b4320a96c8ba" + } + }, + "7b11166e85914cfc826e10503bf4cc2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9d3ac73d2724df5ba9115078938486f", + "placeholder": "​", + "style": "IPY_MODEL_715180fbf87f4927af1be2fda1137d93", + "value": "Meredig: 100%" + } + }, + "560b2f64078d4e9a9afa41d93cb15a86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8f6089d155448e2870d685b2959c39d", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_84602f41a7804f0e9ea8f9837f145a32", + "value": 62 + } + }, + "e769e37935d04401a4fdc2fca0d24c62": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_61b8ac066f2b4cdd911d7a2928575828", + "placeholder": "​", + "style": "IPY_MODEL_f8575e04aecc49f1a6ccaaf789fd19b1", + "value": " 62/62 [00:04<00:00, 15.40it/s]" + } + }, + "88a869de65d14eaab3c1b4320a96c8ba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9d3ac73d2724df5ba9115078938486f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "715180fbf87f4927af1be2fda1137d93": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a8f6089d155448e2870d685b2959c39d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84602f41a7804f0e9ea8f9837f145a32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61b8ac066f2b4cdd911d7a2928575828": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f8575e04aecc49f1a6ccaaf789fd19b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ce1e3e8f96004313937cdce517cc202c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f55d5486aac5423fb0100df37da67b4f", + "IPY_MODEL_1eece7ce60794a86a02f81242eccd140", + "IPY_MODEL_61443cb995024528873b782741ef059a" + ], + "layout": "IPY_MODEL_b6fd7a4d23cc48dd88fd8715295fe172" + } + }, + "f55d5486aac5423fb0100df37da67b4f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec71f5588d9f4126aea65ce353fcb270", + "placeholder": "​", + "style": "IPY_MODEL_a26db00da3164c1c9909338b8ab90c64", + "value": "BandCenter: 100%" + } + }, + "1eece7ce60794a86a02f81242eccd140": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9b1780530cae4e778e9dfd62f944180a", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_59ad2df672534babba19c2ee436c9673", + "value": 250 + } + }, + "61443cb995024528873b782741ef059a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d97eec0936ac43699e4da29ac988051d", + "placeholder": "​", + "style": "IPY_MODEL_370b0ae594894aba99fa73e7e0bb3ba9", + "value": " 250/250 [00:00<00:00, 959.18it/s]" + } + }, + "b6fd7a4d23cc48dd88fd8715295fe172": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec71f5588d9f4126aea65ce353fcb270": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a26db00da3164c1c9909338b8ab90c64": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9b1780530cae4e778e9dfd62f944180a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59ad2df672534babba19c2ee436c9673": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d97eec0936ac43699e4da29ac988051d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "370b0ae594894aba99fa73e7e0bb3ba9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b13ac64be8ec4d488709ffaf4cf12c54": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5250266ebe38421689a71943f4facaae", + "IPY_MODEL_be5b38767ef749ca847e45779eced2d5", + "IPY_MODEL_566222d6592449c2995c6bc1c03763ab" + ], + "layout": "IPY_MODEL_8a57b8c91eda451d92dbb9e5c51b7394" + } + }, + "5250266ebe38421689a71943f4facaae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_94bb4a85649d4025910d5f3d7fbccece", + "placeholder": "​", + "style": "IPY_MODEL_97564050e8d945c694f474991d085993", + "value": "ElementFraction: 100%" + } + }, + "be5b38767ef749ca847e45779eced2d5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a15c8e0dd67d48f6bef07df1a33e7dae", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e713133e02c14c2ab973240b69bda10b", + "value": 250 + } + }, + "566222d6592449c2995c6bc1c03763ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ecf8588a30a54a6d87d4ecdf688801df", + "placeholder": "​", + "style": "IPY_MODEL_d7fa96c8c5a34ea692d9fd6a077c240d", + "value": " 250/250 [00:00<00:00, 995.26it/s]" + } + }, + "8a57b8c91eda451d92dbb9e5c51b7394": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "94bb4a85649d4025910d5f3d7fbccece": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97564050e8d945c694f474991d085993": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a15c8e0dd67d48f6bef07df1a33e7dae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e713133e02c14c2ab973240b69bda10b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ecf8588a30a54a6d87d4ecdf688801df": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7fa96c8c5a34ea692d9fd6a077c240d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f24e5bb46da44f7ba8265ab54f692cdb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ca3e39a56f54f01a0c64593d78c4d67", + "IPY_MODEL_7b722ae022c740809468c7472a225c8b", + "IPY_MODEL_95c48bd7bf0943669b91727bac46bc59" + ], + "layout": "IPY_MODEL_bfabcbe0957843819d28ed978b634542" + } + }, + "1ca3e39a56f54f01a0c64593d78c4d67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74220daec776475c9b7196231f483d7a", + "placeholder": "​", + "style": "IPY_MODEL_48fc283d838f4e90a160aaaef2fa872e", + "value": "TMetalFraction: 100%" + } + }, + "7b722ae022c740809468c7472a225c8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a948535abdb4487b8e8aacc2b78b25ea", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a6beec75d9da4a9081c1f9911ebf3145", + "value": 250 + } + }, + "95c48bd7bf0943669b91727bac46bc59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4395d92860c34ef5930bb27f1079fe97", + "placeholder": "​", + "style": "IPY_MODEL_ab3bdb3cfe34462685c4a899f2c71bbe", + "value": " 250/250 [00:00<00:00, 972.18it/s]" + } + }, + "bfabcbe0957843819d28ed978b634542": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74220daec776475c9b7196231f483d7a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48fc283d838f4e90a160aaaef2fa872e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a948535abdb4487b8e8aacc2b78b25ea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a6beec75d9da4a9081c1f9911ebf3145": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4395d92860c34ef5930bb27f1079fe97": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab3bdb3cfe34462685c4a899f2c71bbe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3da7e59b18c40fea9d3b9aaf8e2ade3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bcf6f5e6e761441cbd1d486b28aaeea2", + "IPY_MODEL_adb8ea4598f546808eef6b609ef04419", + "IPY_MODEL_b5b1149a45f040e0a7e870b86eb7685d" + ], + "layout": "IPY_MODEL_0ea78a44a4404284ab74830913994f02" + } + }, + "bcf6f5e6e761441cbd1d486b28aaeea2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92db1c3a321a4346b0cc48df642a58d9", + "placeholder": "​", + "style": "IPY_MODEL_be93502b3d154a8c8a304a3a54f89547", + "value": "Stoichiometry: 100%" + } + }, + "adb8ea4598f546808eef6b609ef04419": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef70837d8c164e81be14d166f2e44dd6", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_00e7783811da4a9f870389f4af03dfff", + "value": 250 + } + }, + "b5b1149a45f040e0a7e870b86eb7685d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c987b91a17b41e1ace1a3092ca2b1a5", + "placeholder": "​", + "style": "IPY_MODEL_217597bce9bd4f12b5bcbe50520ebf8b", + "value": " 250/250 [00:00<00:00, 942.00it/s]" + } + }, + "0ea78a44a4404284ab74830913994f02": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92db1c3a321a4346b0cc48df642a58d9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be93502b3d154a8c8a304a3a54f89547": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ef70837d8c164e81be14d166f2e44dd6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "00e7783811da4a9f870389f4af03dfff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1c987b91a17b41e1ace1a3092ca2b1a5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "217597bce9bd4f12b5bcbe50520ebf8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a317a600d4d745769075b7f0f409f2b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e856378f57b49c68882e5de96dc9b85", + "IPY_MODEL_497202a5992a41f59baeb585fa5f9af5", + "IPY_MODEL_8925090f047b4ecfb3cf82494c8589c9" + ], + "layout": "IPY_MODEL_848fd76e6b764888a368360e22df8909" + } + }, + "4e856378f57b49c68882e5de96dc9b85": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32fc069695ea416693c151466b0702dc", + "placeholder": "​", + "style": "IPY_MODEL_173b8e2e71564a31ae8500edd8786036", + "value": "Meredig: 100%" + } + }, + "497202a5992a41f59baeb585fa5f9af5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62b06812de464dee82b2add0ba2f4840", + "max": 250, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a51e6fefae05425689eb356bf04ad3c3", + "value": 250 + } + }, + "8925090f047b4ecfb3cf82494c8589c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f6d90ac9a0c4100aa73d107e7993218", + "placeholder": "​", + "style": "IPY_MODEL_9a28ea356df34a24afba5a80d9b6c3b4", + "value": " 250/250 [00:21<00:00, 10.07it/s]" + } + }, + "848fd76e6b764888a368360e22df8909": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32fc069695ea416693c151466b0702dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "173b8e2e71564a31ae8500edd8786036": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "62b06812de464dee82b2add0ba2f4840": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a51e6fefae05425689eb356bf04ad3c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8f6d90ac9a0c4100aa73d107e7993218": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a28ea356df34a24afba5a80d9b6c3b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c6062aa576854fd9a1f4b001ac0bab72": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_357f38ad98314fdda8eaf0b924f0d4da", + "IPY_MODEL_798d9ec5e6ea4487ba87467f5107292a", + "IPY_MODEL_82751038f5304698b9cbdddd5caf4210" + ], + "layout": "IPY_MODEL_4501663cef33496fa9b10df6d9348bd5" + } + }, + "357f38ad98314fdda8eaf0b924f0d4da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8297225fbb74404fb4a0ad77eba67435", + "placeholder": "​", + "style": "IPY_MODEL_303b28756efd48b4a50513293942d930", + "value": "BandCenter: 100%" + } + }, + "798d9ec5e6ea4487ba87467f5107292a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_215c8772bb3946a29d48a4dba6b95631", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6347c02645b40f8868f5d8a73291e6c", + "value": 62 + } + }, + "82751038f5304698b9cbdddd5caf4210": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_162ee99cb10c4e508b726fcf4144595a", + "placeholder": "​", + "style": "IPY_MODEL_397a474f0dab480098d775e7ec36b315", + "value": " 62/62 [00:00<00:00,  9.47it/s]" + } + }, + "4501663cef33496fa9b10df6d9348bd5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8297225fbb74404fb4a0ad77eba67435": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "303b28756efd48b4a50513293942d930": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "215c8772bb3946a29d48a4dba6b95631": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6347c02645b40f8868f5d8a73291e6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "162ee99cb10c4e508b726fcf4144595a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "397a474f0dab480098d775e7ec36b315": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6c06e4696b0e477f80dfb55e3daaab47": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab98baac8e9f4589852528acb007b1a4", + "IPY_MODEL_589e2d12b5a648888b3a51e6fd6e4ce8", + "IPY_MODEL_18b80d342e7d4a308f87d30a30fa188f" + ], + "layout": "IPY_MODEL_8fbdc893fb454c15b0ee99a237e5ada5" + } + }, + "ab98baac8e9f4589852528acb007b1a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_09a82fe9c2fc43829f7ab016d462dc6b", + "placeholder": "​", + "style": "IPY_MODEL_60001a7ab5374801a966efa903d704fb", + "value": "ElementFraction: 100%" + } + }, + "589e2d12b5a648888b3a51e6fd6e4ce8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f43bc2cb4bef4eb394ab5e559060ede8", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c46071a47e0c470ca7cdea87296adcbf", + "value": 62 + } + }, + "18b80d342e7d4a308f87d30a30fa188f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1e1e7d6f4d67480b8dcf8472c0641dfe", + "placeholder": "​", + "style": "IPY_MODEL_362f11d2978f49f7aece3d69385774cd", + "value": " 62/62 [00:00<00:00, 94.45it/s]" + } + }, + "8fbdc893fb454c15b0ee99a237e5ada5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "09a82fe9c2fc43829f7ab016d462dc6b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "60001a7ab5374801a966efa903d704fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f43bc2cb4bef4eb394ab5e559060ede8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c46071a47e0c470ca7cdea87296adcbf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1e1e7d6f4d67480b8dcf8472c0641dfe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "362f11d2978f49f7aece3d69385774cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5bbc4748398e4d12b865bb8593392f51": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_93e27bdd23174e5a84396db64f93993f", + "IPY_MODEL_504798a073d6401ebc9ac4b535b7ba75", + "IPY_MODEL_4e52035e7d164bbdb8b345b58e0f1a7b" + ], + "layout": "IPY_MODEL_88455b33d4074bde8f49f9abc47e8255" + } + }, + "93e27bdd23174e5a84396db64f93993f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_884e49eba56d47fb938a3e0b7b710666", + "placeholder": "​", + "style": "IPY_MODEL_01136e3ea94844ca9ab34161aa4d3141", + "value": "TMetalFraction: 100%" + } + }, + "504798a073d6401ebc9ac4b535b7ba75": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e612a61d1284419c8a4f19a5427ac5b1", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_213eddd34dec4dd0aed3d213245c406c", + "value": 62 + } + }, + "4e52035e7d164bbdb8b345b58e0f1a7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_97996231ce924657bd64e935de2adc8c", + "placeholder": "​", + "style": "IPY_MODEL_4b0c1cd85bae486ca7dd78b11d9ba676", + "value": " 62/62 [00:00<00:00,  7.53it/s]" + } + }, + "88455b33d4074bde8f49f9abc47e8255": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "884e49eba56d47fb938a3e0b7b710666": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "01136e3ea94844ca9ab34161aa4d3141": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e612a61d1284419c8a4f19a5427ac5b1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "213eddd34dec4dd0aed3d213245c406c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "97996231ce924657bd64e935de2adc8c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b0c1cd85bae486ca7dd78b11d9ba676": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cb2c96aa5d6e406e997ec0f2914371d4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7050bebaaca843c486fed7f8071e631d", + "IPY_MODEL_b8eaa12acac04a02b4c4018b6b5a060b", + "IPY_MODEL_073dbb77b667409eb3a77fb08d293749" + ], + "layout": "IPY_MODEL_95a64b3bb8d343d39ac19de385e6b1fd" + } + }, + "7050bebaaca843c486fed7f8071e631d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dbe768fea0d441f291efed84ff58e926", + "placeholder": "​", + "style": "IPY_MODEL_44ee46d342fa440391065eb8b7e8078e", + "value": "Stoichiometry: 100%" + } + }, + "b8eaa12acac04a02b4c4018b6b5a060b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a9d216451914b999bb4a7ad50e393d5", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e57064ce37e45f2bc1fc91113fc4e55", + "value": 62 + } + }, + "073dbb77b667409eb3a77fb08d293749": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4c8e5e58d83a4b8eae9d70b4c3edcc2b", + "placeholder": "​", + "style": "IPY_MODEL_b3696cc227f347218a44775e2a9ac8e9", + "value": " 62/62 [00:00<00:00,  6.82it/s]" + } + }, + "95a64b3bb8d343d39ac19de385e6b1fd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbe768fea0d441f291efed84ff58e926": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44ee46d342fa440391065eb8b7e8078e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0a9d216451914b999bb4a7ad50e393d5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e57064ce37e45f2bc1fc91113fc4e55": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4c8e5e58d83a4b8eae9d70b4c3edcc2b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b3696cc227f347218a44775e2a9ac8e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e56d785fd6e48328301bd9f59eaeb84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9beb2c27834c47f58d0828a56fc0c4eb", + "IPY_MODEL_73316c6ca8624080838ac6a759cb9b50", + "IPY_MODEL_66bb8213fa8e454e9a124f6d2ba033a6" + ], + "layout": "IPY_MODEL_0748b98cd73146eda7459d0860147fcf" + } + }, + "9beb2c27834c47f58d0828a56fc0c4eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_41d31b0bd5134e198aac234022f700b2", + "placeholder": "​", + "style": "IPY_MODEL_d8e3374ff2cd45ada94f99a17102bd32", + "value": "Meredig: 100%" + } + }, + "73316c6ca8624080838ac6a759cb9b50": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_578bd888db2c42e2ac808e0b93bce3d8", + "max": 62, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4244b5a535e44e8a331b77bd38183a4", + "value": 62 + } + }, + "66bb8213fa8e454e9a124f6d2ba033a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e1c10f56a9144c1faa30063e207f3774", + "placeholder": "​", + "style": "IPY_MODEL_a38f7dd92d704a2aad67bb2947600b8f", + "value": " 62/62 [00:04<00:00, 11.38it/s]" + } + }, + "0748b98cd73146eda7459d0860147fcf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41d31b0bd5134e198aac234022f700b2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8e3374ff2cd45ada94f99a17102bd32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "578bd888db2c42e2ac808e0b93bce3d8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f4244b5a535e44e8a331b77bd38183a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e1c10f56a9144c1faa30063e207f3774": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a38f7dd92d704a2aad67bb2947600b8f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "##Install pystacknet" + ], + "metadata": { + "id": "aIbP-CUdeSbq" + } + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "os.chdir('/content/')\n", + "\n" + ], + "metadata": { + "id": "tNO3qcpbXW7e" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!git clone https://github.com/h2oai/pystacknet" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ltnsYDADJMe0", + "outputId": "fd594291-156e-42f1-b46c-d79c5417d9bc" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'pystacknet'...\n", + "remote: Enumerating objects: 42, done.\u001b[K\n", + "remote: Total 42 (delta 0), reused 0 (delta 0), pack-reused 42\u001b[K\n", + "Receiving objects: 100% (42/42), 1.57 MiB | 19.38 MiB/s, done.\n", + "Resolving deltas: 100% (10/10), done.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "\n", + "os.getcwd()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "JCQng-CZYL6a", + "outputId": "c0fae35e-7b73-45c3-8b32-d9e96e0b8b7a" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'/content'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "os.chdir('/content/pystacknet')" + ], + "metadata": { + "id": "o3bGmg0gZUl8" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!python ./setup.py install" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rffuTw_bZfAD", + "outputId": "634797a3-038e-4c24-fb5e-19970e3cbf0c" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "warning: pypandoc module not found, could not convert Markdown to RST\n", + "running install\n", + "/usr/local/lib/python3.10/dist-packages/setuptools/_distutils/cmd.py:66: SetuptoolsDeprecationWarning: setup.py install is deprecated.\n", + "!!\n", + "\n", + " ********************************************************************************\n", + " Please avoid running ``setup.py`` directly.\n", + " Instead, use pypa/build, pypa/installer, pypa/build or\n", + " other standards-based tools.\n", + "\n", + " See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details.\n", + " ********************************************************************************\n", + "\n", + "!!\n", + " self.initialize_options()\n", + "/usr/local/lib/python3.10/dist-packages/setuptools/_distutils/cmd.py:66: EasyInstallDeprecationWarning: easy_install command is deprecated.\n", + "!!\n", + "\n", + " ********************************************************************************\n", + " Please avoid running ``setup.py`` and ``easy_install``.\n", + " Instead, use pypa/build, pypa/installer, pypa/build or\n", + " other standards-based tools.\n", + "\n", + " See https://github.com/pypa/setuptools/issues/917 for details.\n", + " ********************************************************************************\n", + "\n", + "!!\n", + " self.initialize_options()\n", + "running bdist_egg\n", + "running egg_info\n", + "creating pystacknet.egg-info\n", + "writing pystacknet.egg-info/PKG-INFO\n", + "writing dependency_links to pystacknet.egg-info/dependency_links.txt\n", + "writing requirements to pystacknet.egg-info/requires.txt\n", + "writing top-level names to pystacknet.egg-info/top_level.txt\n", + "writing manifest file 'pystacknet.egg-info/SOURCES.txt'\n", + "reading manifest file 'pystacknet.egg-info/SOURCES.txt'\n", + "adding license file 'LICENSE.txt'\n", + "writing manifest file 'pystacknet.egg-info/SOURCES.txt'\n", + "installing library code to build/bdist.linux-x86_64/egg\n", + "running install_lib\n", + "running build_py\n", + "creating build\n", + "creating build/lib\n", + "creating build/lib/pystacknet\n", + "copying pystacknet/metrics.py -> build/lib/pystacknet\n", + "copying pystacknet/__init__.py -> build/lib/pystacknet\n", + "copying pystacknet/pystacknet.py -> build/lib/pystacknet\n", + "creating build/lib/pystacknet/test\n", + "copying pystacknet/test/test_amazon.py -> build/lib/pystacknet/test\n", + "copying pystacknet/test/__init__.py -> build/lib/pystacknet/test\n", + "copying pystacknet/test/test_pystacknet.py -> build/lib/pystacknet/test\n", + "creating build/bdist.linux-x86_64\n", + "creating build/bdist.linux-x86_64/egg\n", + "creating build/bdist.linux-x86_64/egg/pystacknet\n", + "copying build/lib/pystacknet/metrics.py -> build/bdist.linux-x86_64/egg/pystacknet\n", + "copying build/lib/pystacknet/__init__.py -> build/bdist.linux-x86_64/egg/pystacknet\n", + "creating build/bdist.linux-x86_64/egg/pystacknet/test\n", + "copying build/lib/pystacknet/test/test_amazon.py -> build/bdist.linux-x86_64/egg/pystacknet/test\n", + "copying build/lib/pystacknet/test/__init__.py -> build/bdist.linux-x86_64/egg/pystacknet/test\n", + "copying build/lib/pystacknet/test/test_pystacknet.py -> build/bdist.linux-x86_64/egg/pystacknet/test\n", + "copying build/lib/pystacknet/pystacknet.py -> build/bdist.linux-x86_64/egg/pystacknet\n", + "byte-compiling build/bdist.linux-x86_64/egg/pystacknet/metrics.py to metrics.cpython-310.pyc\n", + "byte-compiling build/bdist.linux-x86_64/egg/pystacknet/__init__.py to __init__.cpython-310.pyc\n", + "byte-compiling build/bdist.linux-x86_64/egg/pystacknet/test/test_amazon.py to test_amazon.cpython-310.pyc\n", + "byte-compiling build/bdist.linux-x86_64/egg/pystacknet/test/__init__.py to __init__.cpython-310.pyc\n", + "byte-compiling build/bdist.linux-x86_64/egg/pystacknet/test/test_pystacknet.py to test_pystacknet.cpython-310.pyc\n", + "byte-compiling build/bdist.linux-x86_64/egg/pystacknet/pystacknet.py to pystacknet.cpython-310.pyc\n", + "creating build/bdist.linux-x86_64/egg/EGG-INFO\n", + "copying pystacknet.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO\n", + "copying pystacknet.egg-info/SOURCES.txt -> build/bdist.linux-x86_64/egg/EGG-INFO\n", + "copying pystacknet.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO\n", + "copying pystacknet.egg-info/requires.txt -> build/bdist.linux-x86_64/egg/EGG-INFO\n", + "copying pystacknet.egg-info/top_level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO\n", + "zip_safe flag not set; analyzing archive contents...\n", + "creating dist\n", + "creating 'dist/pystacknet-0.0.1-py3.10.egg' and adding 'build/bdist.linux-x86_64/egg' to it\n", + "removing 'build/bdist.linux-x86_64/egg' (and everything under it)\n", + "Processing pystacknet-0.0.1-py3.10.egg\n", + "Copying pystacknet-0.0.1-py3.10.egg to /usr/local/lib/python3.10/dist-packages\n", + "Adding pystacknet 0.0.1 to easy-install.pth file\n", + "\n", + "Installed /usr/local/lib/python3.10/dist-packages/pystacknet-0.0.1-py3.10.egg\n", + "Processing dependencies for pystacknet==0.0.1\n", + "Searching for scikit-learn==1.2.2\n", + "Best match: scikit-learn 1.2.2\n", + "Adding scikit-learn 1.2.2 to easy-install.pth file\n", + "\n", + "Using /usr/local/lib/python3.10/dist-packages\n", + "Searching for scipy==1.11.4\n", + "Best match: scipy 1.11.4\n", + "Adding scipy 1.11.4 to easy-install.pth file\n", + "\n", + "Using /usr/local/lib/python3.10/dist-packages\n", + "Searching for numpy==1.25.2\n", + "Best match: numpy 1.25.2\n", + "Adding numpy 1.25.2 to easy-install.pth file\n", + "Installing f2py script to /usr/local/bin\n", + "Installing f2py3 script to /usr/local/bin\n", + "Installing f2py3.10 script to /usr/local/bin\n", + "\n", + "Using /usr/local/lib/python3.10/dist-packages\n", + "Searching for threadpoolctl==3.5.0\n", + "Best match: threadpoolctl 3.5.0\n", + "Adding threadpoolctl 3.5.0 to easy-install.pth file\n", + "\n", + "Using /usr/local/lib/python3.10/dist-packages\n", + "Searching for joblib==1.4.2\n", + "Best match: joblib 1.4.2\n", + "Adding joblib 1.4.2 to easy-install.pth file\n", + "\n", + "Using /usr/local/lib/python3.10/dist-packages\n", + "Finished processing dependencies for pystacknet==0.0.1\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "##Install matbench" + ], + "metadata": { + "id": "rIFdqplqCHRa" + } + }, + { + "cell_type": "code", + "source": [ + "os.chdir('/content/')" + ], + "metadata": { + "id": "hvpX0IbMB_5p" + }, + "execution_count": 6, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!git clone https://github.com/hackingmaterials/matbench" + ], + "metadata": { + "id": "YDdtrkq6B1lz", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "cfd47fc7-2bec-418d-899b-3e9c208aeffb" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'matbench'...\n", + "remote: Enumerating objects: 10388, done.\u001b[K\n", + "remote: Counting objects: 100% (1043/1043), done.\u001b[K\n", + "remote: Compressing objects: 100% (279/279), done.\u001b[K\n", + "remote: Total 10388 (delta 584), reused 963 (delta 523), pack-reused 9345\u001b[K\n", + "Receiving objects: 100% (10388/10388), 367.01 MiB | 32.27 MiB/s, done.\n", + "Resolving deltas: 100% (6749/6749), done.\n", + "Updating files: 100% (382/382), done.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install --user ./matbench" + ], + "metadata": { + "id": "CNXpC22ZB4Xc", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "506b14a5-8905-4b23-d139-dc1884c16ff7" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Processing ./matbench\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting matminer>=0.7.4 (from matbench==0.6)\n", + " Downloading matminer-0.9.2-py3-none-any.whl (1.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from matbench==0.6) (1.11.4)\n", + "Collecting monty>=2022.4.26 (from matbench==0.6)\n", + " Downloading monty-2024.5.24-py3-none-any.whl (67 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.9/67.9 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: scikit-learn>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matbench==0.6) (1.2.2)\n", + "Requirement already satisfied: numpy<2,>=1.23 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (1.25.2)\n", + "Requirement already satisfied: requests~=2.31 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (2.31.0)\n", + "Requirement already satisfied: pandas<3,>=1.5 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (2.0.3)\n", + "Requirement already satisfied: tqdm~=4.66 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (4.66.4)\n", + "Collecting pymongo~=4.5 (from matminer>=0.7.4->matbench==0.6)\n", + " Downloading pymongo-4.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (670 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m670.0/670.0 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting scikit-learn>=1.0.1 (from matbench==0.6)\n", + " Downloading scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.3/13.3 MB\u001b[0m \u001b[31m46.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: sympy~=1.11 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (1.12)\n", + "Collecting pymatgen>=2023 (from matminer>=0.7.4->matbench==0.6)\n", + " Downloading pymatgen-2024.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.8/4.8 MB\u001b[0m \u001b[31m75.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.1->matbench==0.6) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.1->matbench==0.6) (3.5.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.5->matminer>=0.7.4->matbench==0.6) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.5->matminer>=0.7.4->matbench==0.6) (2023.4)\n", + "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.5->matminer>=0.7.4->matbench==0.6) (2024.1)\n", + "Requirement already satisfied: matplotlib>=1.5 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (3.7.1)\n", + "Requirement already satisfied: networkx>=2.2 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (3.3)\n", + "Collecting palettable>=3.1.1 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", + " Downloading palettable-3.3.3-py2.py3-none-any.whl (332 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m332.3/332.3 kB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: plotly>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (5.15.0)\n", + "Collecting pybtex (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", + " Downloading pybtex-0.24.0-py2.py3-none-any.whl (561 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m561.4/561.4 kB\u001b[0m \u001b[31m48.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ruamel.yaml>=0.17.0 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", + " Downloading ruamel.yaml-0.18.6-py3-none-any.whl (117 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.8/117.8 kB\u001b[0m \u001b[31m16.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting spglib>=2.0.2 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", + " Downloading spglib-2.4.0-cp310-cp310-manylinux_2_17_x86_64.whl (809 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m809.2/809.2 kB\u001b[0m \u001b[31m61.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (0.9.0)\n", + "Collecting uncertainties>=3.1.4 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", + " Downloading uncertainties-3.1.7-py2.py3-none-any.whl (98 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.4/98.4 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting dnspython<3.0.0,>=1.16.0 (from pymongo~=4.5->matminer>=0.7.4->matbench==0.6)\n", + " Downloading dnspython-2.6.1-py3-none-any.whl (307 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m307.7/307.7 kB\u001b[0m \u001b[31m28.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (3.7)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (2024.2.2)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy~=1.11->matminer>=0.7.4->matbench==0.6) (1.3.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (1.2.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (4.51.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (24.0)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (3.1.2)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=4.5.0->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (8.3.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas<3,>=1.5->matminer>=0.7.4->matbench==0.6) (1.16.0)\n", + "Collecting ruamel.yaml.clib>=0.2.7 (from ruamel.yaml>=0.17.0->pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", + " Downloading ruamel.yaml.clib-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (526 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m526.7/526.7 kB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from uncertainties>=3.1.4->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (0.18.3)\n", + "Requirement already satisfied: PyYAML>=3.01 in /usr/local/lib/python3.10/dist-packages (from pybtex->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (6.0.1)\n", + "Collecting latexcodec>=1.0.4 (from pybtex->pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", + " Downloading latexcodec-3.0.0-py3-none-any.whl (18 kB)\n", + "Building wheels for collected packages: matbench\n", + " Building wheel for matbench (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for matbench: filename=matbench-0.6-py3-none-any.whl size=5449480 sha256=8eb4d6b440ead1d42a0e22ad53f321117f04ca698d73a126513b36775ec3c5b9\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-_27kz6xs/wheels/0d/71/69/39ae3b7c60edd18e46ed290a09bc2fe0c344372520cd165c70\n", + "Successfully built matbench\n", + "Installing collected packages: uncertainties, spglib, ruamel.yaml.clib, palettable, monty, latexcodec, dnspython, scikit-learn, ruamel.yaml, pymongo, pybtex, pymatgen, matminer, matbench\n", + "\u001b[33m WARNING: The scripts pybtex, pybtex-convert and pybtex-format are installed in '/root/.local/bin' which is not on PATH.\n", + " Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33m WARNING: The scripts feff_plot_cross_section, feff_plot_dos, get_environment and pmg are installed in '/root/.local/bin' which is not on PATH.\n", + " Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\u001b[33m\n", + "\u001b[0mSuccessfully installed dnspython-2.6.1 latexcodec-3.0.0 matbench-0.6 matminer-0.9.2 monty-2024.5.24 palettable-3.3.3 pybtex-0.24.0 pymatgen-2024.5.1 pymongo-4.7.2 ruamel.yaml-0.18.6 ruamel.yaml.clib-0.2.8 scikit-learn-1.5.0 spglib-2.4.0 uncertainties-3.1.7\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "os.chdir('/content/matbench/')" + ], + "metadata": { + "id": "7LzdrI_tCTMw" + }, + "execution_count": 9, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!pip install -e . -r requirements-dev.txt" + ], + "metadata": { + "id": "ugOitkNhCe6O", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "efef4a6d-1539-4b9b-c843-dfc247ba3395" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Obtaining file:///content/matbench\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Checking if build backend supports build_editable ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build editable ... \u001b[?25l\u001b[?25hdone\n", + " Preparing editable metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: pytest in /usr/local/lib/python3.10/dist-packages (from -r requirements-dev.txt (line 1)) (7.4.4)\n", + "Collecting coverage==6.4.3 (from -r requirements-dev.txt (line 2))\n", + " Downloading coverage-6.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting wheel==0.37.1 (from -r requirements-dev.txt (line 3))\n", + " Downloading wheel-0.37.1-py2.py3-none-any.whl (35 kB)\n", + "Collecting monty==2022.4.26 (from -r requirements-dev.txt (line 4))\n", + " Downloading monty-2022.4.26-py3-none-any.whl (65 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.0/66.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting isort==5.10.1 (from -r requirements-dev.txt (line 5))\n", + " Downloading isort-5.10.1-py3-none-any.whl (103 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.4/103.4 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting black==22.3.0 (from -r requirements-dev.txt (line 6))\n", + " Downloading black-22.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting flake8==4.0.1 (from -r requirements-dev.txt (line 7))\n", + " Downloading flake8-4.0.1-py2.py3-none-any.whl (64 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.1/64.1 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from black==22.3.0->-r requirements-dev.txt (line 6)) (8.1.7)\n", + "Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.10/dist-packages (from black==22.3.0->-r requirements-dev.txt (line 6)) (4.2.2)\n", + "Collecting pathspec>=0.9.0 (from black==22.3.0->-r requirements-dev.txt (line 6))\n", + " Downloading pathspec-0.12.1-py3-none-any.whl (31 kB)\n", + "Collecting mypy-extensions>=0.4.3 (from black==22.3.0->-r requirements-dev.txt (line 6))\n", + " Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n", + "Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from black==22.3.0->-r requirements-dev.txt (line 6)) (2.0.1)\n", + "Collecting mccabe<0.7.0,>=0.6.0 (from flake8==4.0.1->-r requirements-dev.txt (line 7))\n", + " Downloading mccabe-0.6.1-py2.py3-none-any.whl (8.6 kB)\n", + "Collecting pycodestyle<2.9.0,>=2.8.0 (from flake8==4.0.1->-r requirements-dev.txt (line 7))\n", + " Downloading pycodestyle-2.8.0-py2.py3-none-any.whl (42 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.1/42.1 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pyflakes<2.5.0,>=2.4.0 (from flake8==4.0.1->-r requirements-dev.txt (line 7))\n", + " Downloading pyflakes-2.4.0-py2.py3-none-any.whl (69 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.7/69.7 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: matminer>=0.7.4 in /root/.local/lib/python3.10/site-packages (from matbench==0.6) (0.9.2)\n", + "Requirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from matbench==0.6) (1.11.4)\n", + "Requirement already satisfied: scikit-learn>=1.0.1 in /root/.local/lib/python3.10/site-packages (from matbench==0.6) (1.5.0)\n", + "Requirement already satisfied: iniconfig in /usr/local/lib/python3.10/dist-packages (from pytest->-r requirements-dev.txt (line 1)) (2.0.0)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from pytest->-r requirements-dev.txt (line 1)) (24.0)\n", + "Requirement already satisfied: pluggy<2.0,>=0.12 in /usr/local/lib/python3.10/dist-packages (from pytest->-r requirements-dev.txt (line 1)) (1.5.0)\n", + "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /usr/local/lib/python3.10/dist-packages (from pytest->-r requirements-dev.txt (line 1)) (1.2.1)\n", + "Requirement already satisfied: numpy<2,>=1.23 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (1.25.2)\n", + "Requirement already satisfied: requests~=2.31 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (2.31.0)\n", + "Requirement already satisfied: pandas<3,>=1.5 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (2.0.3)\n", + "Requirement already satisfied: tqdm~=4.66 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (4.66.4)\n", + "Requirement already satisfied: pymongo~=4.5 in /root/.local/lib/python3.10/site-packages (from matminer>=0.7.4->matbench==0.6) (4.7.2)\n", + "Requirement already satisfied: sympy~=1.11 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (1.12)\n", + "INFO: pip is looking at multiple versions of matminer to determine which version is compatible with other requirements. This could take a while.\n", + "Collecting matminer>=0.7.4 (from matbench==0.6)\n", + " Downloading matminer-0.9.1-py3-none-any.whl (1.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pandas~=1.5 (from matminer>=0.7.4->matbench==0.6)\n", + " Downloading pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.1/12.1 MB\u001b[0m \u001b[31m44.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting matminer>=0.7.4 (from matbench==0.6)\n", + " Downloading matminer-0.9.0-py3-none-any.whl (1.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m58.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (0.18.3)\n", + "Requirement already satisfied: pymatgen in /root/.local/lib/python3.10/site-packages (from matminer>=0.7.4->matbench==0.6) (2024.5.1)\n", + "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.1->matbench==0.6) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.1->matbench==0.6) (3.5.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas~=1.5->matminer>=0.7.4->matbench==0.6) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas~=1.5->matminer>=0.7.4->matbench==0.6) (2023.4)\n", + "Requirement already satisfied: matplotlib>=1.5 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (3.7.1)\n", + "INFO: pip is looking at multiple versions of pymatgen to determine which version is compatible with other requirements. This could take a while.\n", + "Collecting pymatgen (from matminer>=0.7.4->matbench==0.6)\n", + " Downloading pymatgen-2024.4.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m12.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Downloading pymatgen-2024.4.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m14.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Downloading pymatgen-2024.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m38.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Downloading pymatgen-2024.2.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Downloading pymatgen-2024.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Downloading pymatgen-2024.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Downloading pymatgen-2024.1.27.tar.gz (7.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m97.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: networkx>=2.2 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (3.3)\n", + "Requirement already satisfied: palettable>=3.1.1 in /root/.local/lib/python3.10/site-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (3.3.3)\n", + "Requirement already satisfied: plotly>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (5.15.0)\n", + "Requirement already satisfied: pybtex in /root/.local/lib/python3.10/site-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (0.24.0)\n", + "Requirement already satisfied: ruamel.yaml>=0.17.0 in /root/.local/lib/python3.10/site-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (0.18.6)\n", + "Requirement already satisfied: spglib>=2.0.2 in /root/.local/lib/python3.10/site-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (2.4.0)\n", + "Requirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (0.9.0)\n", + "Requirement already satisfied: uncertainties>=3.1.4 in /root/.local/lib/python3.10/site-packages (from pymatgen->matminer>=0.7.4->matbench==0.6) (3.1.7)\n", + "Requirement already satisfied: dnspython<3.0.0,>=1.16.0 in /root/.local/lib/python3.10/site-packages (from pymongo~=4.5->matminer>=0.7.4->matbench==0.6) (2.6.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (3.7)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (2024.2.2)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy~=1.11->matminer>=0.7.4->matbench==0.6) (1.3.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen->matminer>=0.7.4->matbench==0.6) (1.2.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen->matminer>=0.7.4->matbench==0.6) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen->matminer>=0.7.4->matbench==0.6) (4.51.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen->matminer>=0.7.4->matbench==0.6) (1.4.5)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen->matminer>=0.7.4->matbench==0.6) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen->matminer>=0.7.4->matbench==0.6) (3.1.2)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=4.5.0->pymatgen->matminer>=0.7.4->matbench==0.6) (8.3.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas~=1.5->matminer>=0.7.4->matbench==0.6) (1.16.0)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /root/.local/lib/python3.10/site-packages (from ruamel.yaml>=0.17.0->pymatgen->matminer>=0.7.4->matbench==0.6) (0.2.8)\n", + "Requirement already satisfied: PyYAML>=3.01 in /usr/local/lib/python3.10/dist-packages (from pybtex->pymatgen->matminer>=0.7.4->matbench==0.6) (6.0.1)\n", + "Requirement already satisfied: latexcodec>=1.0.4 in /root/.local/lib/python3.10/site-packages (from pybtex->pymatgen->matminer>=0.7.4->matbench==0.6) (3.0.0)\n", + "Building wheels for collected packages: matbench, pymatgen\n", + " Building editable for matbench (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for matbench: filename=matbench-0.6-0.editable-py3-none-any.whl size=3622 sha256=9faa20e2edea9128712a28871e4f9de0b8a9dd24c7a49a3aeb03a74cdb88ac3e\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-id9pupbj/wheels/0d/71/69/39ae3b7c60edd18e46ed290a09bc2fe0c344372520cd165c70\n", + " Building wheel for pymatgen (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for pymatgen: filename=pymatgen-2024.1.27-cp310-cp310-linux_x86_64.whl size=8767375 sha256=52f748f354052fc925f62a0dc53b0197421299982ff51b46efbf7880fb6d99db\n", + " Stored in directory: /root/.cache/pip/wheels/ee/58/93/14b5660717b7cf0223df12fcdf754c2ee6aa4daba441b337f1\n", + "Successfully built matbench pymatgen\n", + "Installing collected packages: mccabe, wheel, pyflakes, pycodestyle, pathspec, mypy-extensions, monty, isort, coverage, pandas, flake8, black, pymatgen, matminer, matbench\n", + " Attempting uninstall: wheel\n", + " Found existing installation: wheel 0.43.0\n", + " Uninstalling wheel-0.43.0:\n", + " Successfully uninstalled wheel-0.43.0\n", + " Attempting uninstall: monty\n", + " Found existing installation: monty 2024.5.24\n", + " Uninstalling monty-2024.5.24:\n", + " Successfully uninstalled monty-2024.5.24\n", + " Attempting uninstall: pandas\n", + " Found existing installation: pandas 2.0.3\n", + " Uninstalling pandas-2.0.3:\n", + " Successfully uninstalled pandas-2.0.3\n", + " Attempting uninstall: pymatgen\n", + " Found existing installation: pymatgen 2024.5.1\n", + " Uninstalling pymatgen-2024.5.1:\n", + " Successfully uninstalled pymatgen-2024.5.1\n", + " Attempting uninstall: matminer\n", + " Found existing installation: matminer 0.9.2\n", + " Uninstalling matminer-0.9.2:\n", + " Successfully uninstalled matminer-0.9.2\n", + " Attempting uninstall: matbench\n", + " Found existing installation: matbench 0.6\n", + " Uninstalling matbench-0.6:\n", + " Successfully uninstalled matbench-0.6\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "cudf-cu12 24.4.1 requires pandas<2.2.2dev0,>=2.0, but you have pandas 1.5.3 which is incompatible.\n", + "google-colab 1.0.0 requires pandas==2.0.3, but you have pandas 1.5.3 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed black-22.3.0 coverage-6.4.3 flake8-4.0.1 isort-5.10.1 matbench-0.6 matminer-0.9.0 mccabe-0.6.1 monty-2022.4.26 mypy-extensions-1.0.0 pandas-1.5.3 pathspec-0.12.1 pycodestyle-2.8.0 pyflakes-2.4.0 pymatgen-2024.1.27 wheel-0.37.1\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Install matminer" + ], + "metadata": { + "id": "XaEWgaaVxLPU" + } + }, + { + "cell_type": "code", + "source": [ + "!pip uninstall matminer" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AbCvuaICLFaw", + "outputId": "961ab1c0-b9da-44ca-cc72-586ef399cd0f" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found existing installation: matminer 0.9.0\n", + "Uninstalling matminer-0.9.0:\n", + " Would remove:\n", + " /usr/local/lib/python3.10/dist-packages/matminer-0.9.0.dist-info/*\n", + " /usr/local/lib/python3.10/dist-packages/matminer/*\n", + "Proceed (Y/n)? y\n", + " Successfully uninstalled matminer-0.9.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install matminer" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "h3DfACJ1LPK9", + "outputId": "b4cffa60-aa35-4013-e766-c90adee1a715" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting matminer\n", + " Using cached matminer-0.9.2-py3-none-any.whl (1.4 MB)\n", + "Requirement already satisfied: numpy<2,>=1.23 in /usr/local/lib/python3.10/dist-packages (from matminer) (1.25.2)\n", + "Requirement already satisfied: requests~=2.31 in /usr/local/lib/python3.10/dist-packages (from matminer) (2.31.0)\n", + "Requirement already satisfied: pandas<3,>=1.5 in /usr/local/lib/python3.10/dist-packages (from matminer) (1.5.3)\n", + "Requirement already satisfied: tqdm~=4.66 in /usr/local/lib/python3.10/dist-packages (from matminer) (4.66.4)\n", + "Requirement already satisfied: pymongo~=4.5 in /root/.local/lib/python3.10/site-packages (from matminer) (4.7.2)\n", + "Requirement already satisfied: scikit-learn~=1.3 in /root/.local/lib/python3.10/site-packages (from matminer) (1.5.0)\n", + "Requirement already satisfied: sympy~=1.11 in /usr/local/lib/python3.10/dist-packages (from matminer) (1.12)\n", + "Collecting monty>=2023 (from matminer)\n", + " Using cached monty-2024.5.24-py3-none-any.whl (67 kB)\n", + "Requirement already satisfied: pymatgen>=2023 in /usr/local/lib/python3.10/dist-packages (from matminer) (2024.1.27)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.5->matminer) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.5->matminer) (2023.4)\n", + "Requirement already satisfied: matplotlib>=1.5 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer) (3.7.1)\n", + "Requirement already satisfied: networkx>=2.2 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer) (3.3)\n", + "Requirement already satisfied: palettable>=3.1.1 in /root/.local/lib/python3.10/site-packages (from pymatgen>=2023->matminer) (3.3.3)\n", + "Requirement already satisfied: plotly>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer) (5.15.0)\n", + "Requirement already satisfied: pybtex in /root/.local/lib/python3.10/site-packages (from pymatgen>=2023->matminer) (0.24.0)\n", + "Requirement already satisfied: ruamel.yaml>=0.17.0 in /root/.local/lib/python3.10/site-packages (from pymatgen>=2023->matminer) (0.18.6)\n", + "Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer) (1.11.4)\n", + "Requirement already satisfied: spglib>=2.0.2 in /root/.local/lib/python3.10/site-packages (from pymatgen>=2023->matminer) (2.4.0)\n", + "Requirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer) (0.9.0)\n", + "Requirement already satisfied: uncertainties>=3.1.4 in /root/.local/lib/python3.10/site-packages (from pymatgen>=2023->matminer) (3.1.7)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer) (1.4.2)\n", + "Requirement already satisfied: dnspython<3.0.0,>=1.16.0 in /root/.local/lib/python3.10/site-packages (from pymongo~=4.5->matminer) (2.6.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer) (3.7)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer) (2024.2.2)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn~=1.3->matminer) (3.5.0)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy~=1.11->matminer) (1.3.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer) (1.2.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer) (4.51.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer) (24.0)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.5->pymatgen>=2023->matminer) (3.1.2)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=4.5.0->pymatgen>=2023->matminer) (8.3.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas<3,>=1.5->matminer) (1.16.0)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /root/.local/lib/python3.10/site-packages (from ruamel.yaml>=0.17.0->pymatgen>=2023->matminer) (0.2.8)\n", + "Requirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from uncertainties>=3.1.4->pymatgen>=2023->matminer) (0.18.3)\n", + "Requirement already satisfied: PyYAML>=3.01 in /usr/local/lib/python3.10/dist-packages (from pybtex->pymatgen>=2023->matminer) (6.0.1)\n", + "Requirement already satisfied: latexcodec>=1.0.4 in /root/.local/lib/python3.10/site-packages (from pybtex->pymatgen>=2023->matminer) (3.0.0)\n", + "Installing collected packages: monty, matminer\n", + " Attempting uninstall: monty\n", + " Found existing installation: monty 2022.4.26\n", + " Uninstalling monty-2022.4.26:\n", + " Successfully uninstalled monty-2022.4.26\n", + "Successfully installed matminer-0.9.2 monty-2024.5.24\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install --target \"/usr/local/lib/python3.10/dist-packages\" scikit-learn==1.5" + ], + "metadata": { + "id": "9qJvARKYLaCT", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 658 + }, + "outputId": "a028548b-c35e-41f5-df46-ab31aaed9b2e" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting scikit-learn==1.5\n", + " Using cached scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB)\n", + "Collecting numpy>=1.19.5 (from scikit-learn==1.5)\n", + " Downloading numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting scipy>=1.6.0 (from scikit-learn==1.5)\n", + " Downloading scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.6/38.6 MB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting joblib>=1.2.0 (from scikit-learn==1.5)\n", + " Downloading joblib-1.4.2-py3-none-any.whl (301 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m301.8/301.8 kB\u001b[0m \u001b[31m35.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting threadpoolctl>=3.1.0 (from scikit-learn==1.5)\n", + " Downloading threadpoolctl-3.5.0-py3-none-any.whl (18 kB)\n", + "Installing collected packages: threadpoolctl, numpy, joblib, scipy, scikit-learn\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "cudf-cu12 24.4.1 requires pandas<2.2.2dev0,>=2.0, but you have pandas 1.5.3 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed joblib-1.4.2 numpy-1.26.4 scikit-learn-1.5.0 scipy-1.13.1 threadpoolctl-3.5.0\n", + "\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/numpy.libs already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/joblib already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/__pycache__ already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/scikit_learn.libs already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/threadpoolctl-3.5.0.dist-info already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/sklearn already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/threadpoolctl.py already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/joblib-1.4.2.dist-info already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/scipy already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/numpy already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/scipy.libs already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/bin already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "joblib" + ] + }, + "id": "abc79fed5601455dba6602de390012fd" + } + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#All imports" + ], + "metadata": { + "id": "dIA-MlfeDWUP" + } + }, + { + "cell_type": "code", + "source": [ + "# train autoencoder for regression with no compression in the bottleneck layer\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "from sklearn.datasets import make_regression\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.layers import Input\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.layers import ReLU, Activation\n", + "from tensorflow.keras.layers import BatchNormalization\n", + "from tensorflow.keras.utils import plot_model\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, Nadam, SGD\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "import xgboost as xgb\n", + "warnings.filterwarnings('ignore')" + ], + "metadata": { + "id": "mmcr8nDFBpIV" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from pystacknet.pystacknet import StackNetRegressor\n", + "from sklearn.metrics import r2_score\n", + "from sklearn.metrics import mean_absolute_error" + ], + "metadata": { + "id": "tUYFfnGjDHwn" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from matbench.bench import MatbenchBenchmark" + ], + "metadata": { + "id": "WNgvKuttDPL-" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# import matminer\n", + "from matminer.datasets import load_dataset\n", + "from matminer.featurizers.composition.element import ElementFraction\n", + "from matminer.featurizers.composition.element import TMetalFraction\n", + "from matminer.featurizers.composition.element import Stoichiometry\n", + "\n", + "from matminer.featurizers.composition.composite import Meredig\n", + "from matminer.featurizers.composition.element import BandCenter\n", + "\n", + "from matminer.featurizers.conversions import StrToComposition\n", + "\n", + "from matminer.datasets import get_all_dataset_info\n" + ], + "metadata": { + "id": "94r1T6YADSzO" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!pip freeze > requirements.txt" + ], + "metadata": { + "id": "j5rI-xiUzexB" + }, + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "#Load data, featurize\n", + "\n", + "#matbench_steels\n", + "\n", + "Data description\n", + "\n", + "https://ml.materialsproject.org/projects/matbench_steels\n", + "\n", + "Matbench Leaderboard\n", + "\n", + "https://matbench.materialsproject.org/Leaderboards%20Per-Task/matbench_v0.1_matbench_steels/\n", + "\n" + ], + "metadata": { + "id": "127niMTDmOSX" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "\n", + "df_steels = load_dataset(\"matbench_steels\")\n", + "\n" + ], + "metadata": { + "id": "Ra1oGv2lbNhf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "3386b7f8-7319-4ef8-b3f9-1f9e36455309" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Fetching matbench_steels.json.gz from https://ml.materialsproject.org/projects/matbench_steels.json.gz to /usr/local/lib/python3.10/dist-packages/matminer/datasets/matbench_steels.json.gz\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Fetching https://ml.materialsproject.org/projects/matbench_steels.json.gz in MB: 0.010239999999999999MB [00:00, 3.64MB/s] \n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "\n", + "\n", + "info = get_all_dataset_info(\"matbench_steels\")\n", + "\n", + "print(info)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jtSDRvkJbQhv", + "outputId": "995fbec2-87c7-43c2-cedf-4d56069b44c3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Dataset: matbench_steels\n", + "Description: Matbench v0.1 test dataset for predicting steel yield strengths from chemical composition alone. Retrieved from Citrine informatics. Deduplicated. For benchmarking w/ nested cross validation, the order of the dataset must be identical to the retrieved data; refer to the Automatminer/Matbench publication for more details.\n", + "Columns:\n", + "\tcomposition: Chemical formula.\n", + "\tyield strength: Target variable. Experimentally measured steel yield strengths, in MPa.\n", + "Num Entries: 312\n", + "Reference: https://citrination.com/datasets/153092/\n", + "Bibtex citations: [\"@Article{Dunn2020,\\nauthor={Dunn, Alexander\\nand Wang, Qi\\nand Ganose, Alex\\nand Dopp, Daniel\\nand Jain, Anubhav},\\ntitle={Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm},\\njournal={npj Computational Materials},\\nyear={2020},\\nmonth={Sep},\\nday={15},\\nvolume={6},\\nnumber={1},\\npages={138},\\nabstract={We present a benchmark test suite and an automated machine learning procedure for evaluating supervised machine learning (ML) models for predicting properties of inorganic bulk materials. The test suite, Matbench, is a set of 13{\\\\thinspace}ML tasks that range in size from 312 to 132k samples and contain data from 10 density functional theory-derived and experimental sources. Tasks include predicting optical, thermal, electronic, thermodynamic, tensile, and elastic properties given a material's composition and/or crystal structure. The reference algorithm, Automatminer, is a highly-extensible, fully automated ML pipeline for predicting materials properties from materials primitives (such as composition and crystal structure) without user intervention or hyperparameter tuning. We test Automatminer on the Matbench test suite and compare its predictive power with state-of-the-art crystal graph neural networks and a traditional descriptor-based Random Forest model. We find Automatminer achieves the best performance on 8 of 13 tasks in the benchmark. We also show our test suite is capable of exposing predictive advantages of each algorithm---namely, that crystal graph methods appear to outperform traditional machine learning methods given {\\\\textasciitilde}104 or greater data points. We encourage evaluating materials ML algorithms on the Matbench benchmark and comparing them against the latest version of Automatminer.},\\nissn={2057-3960},\\ndoi={10.1038/s41524-020-00406-3},\\nurl={https://doi.org/10.1038/s41524-020-00406-3}\\n}\\n\", '@misc{Citrine Informatics,\\ntitle = {Mechanical properties of some steels},\\nhowpublished = {\\\\url{https://citrination.com/datasets/153092/},\\n}']\n", + "File type: json.gz\n", + "Figshare URL: https://ml.materialsproject.org/projects/matbench_steels.json.gz\n", + "SHA256 Hash Digest: 473bc4957b2ea5e6465aef84bc29bb48ac34db27d69ea4ec5f508745c6fae252\n", + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels.head()" + ], + "metadata": { + "id": "3izZ1m4RAukF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "outputId": "96c7f4a6-763e-4e79-b193-d063fbdafc58" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " composition yield strength\n", + "0 Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N... 2411.5\n", + "1 Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0.... 1123.1\n", + "2 Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0.... 1736.3\n", + "3 Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N... 2487.3\n", + "4 Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N... 2249.6" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
compositionyield strength
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df_steels", + "summary": "{\n \"name\": \"df_steels\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels.info()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dSWjjt_Kr4cY", + "outputId": "6f0b79a6-627d-4157-e8c1-2959ab23637e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Int64Index: 312 entries, 0 to 311\n", + "Data columns (total 2 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 composition 312 non-null object \n", + " 1 yield strength 312 non-null float64\n", + "dtypes: float64(1), object(1)\n", + "memory usage: 7.3+ KB\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels = df_steels.rename(columns={\"composition\": \"comp\"})" + ], + "metadata": { + "id": "LcXNyf94bg4r" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "\n", + "stc = StrToComposition()\n", + "df_steels = stc.featurize_dataframe(df_steels, \"comp\", pbar=False)" + ], + "metadata": { + "id": "K6SDhmODbluy" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "\n", + "ef = ElementFraction()\n", + "tm = TMetalFraction()\n", + "st = Stoichiometry()\n", + "meredig = Meredig()\n", + "bc = BandCenter()" + ], + "metadata": { + "id": "ZB4sR5T_bp1-" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df_steels_bc = bc.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + "df_steels_bc.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 342, + "referenced_widgets": [ + "11b4244294aa4d42b38911fd5fc49918", + "a21458c70aad44719ae8b24fd3865d6b", + "b7e488a326c14d1499c2e615a031038e", + "7d1320e4db5943999bf84fe33bb882ec", + "736855b37c144b609c98a37ba3705663", + "d894dd29dc57497e9ac29c1643d97107", + "6304c23c072841d18553007521cfde34", + "44392292a4ab4bf581af0a518fcf618a", + "c7f1f1f06a134869b958fef80be83633", + "9bc3591f2bff4182a090fa8c82210c74", + "4f94db1c516148ae80e1489f56dce60a" + ] + }, + "id": "g9quj-ozbscO", + "outputId": "8acd97de-fa93-4011-f6ee-8915e8d89214" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "BandCenter: 0%| | 0/312 [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
compyield strengthcompositionband center
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.120851
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)4.045671
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.066023
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.113411
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.119559
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df_steels_bc", + "summary": "{\n \"name\": \"df_steels_bc\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"band center\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03576132884772068,\n \"min\": 3.9737310841836684,\n \"max\": 4.183584674157245,\n \"num_unique_values\": 312,\n \"samples\": [\n 4.025966262189159,\n 4.028123275178089,\n 4.056867709895318\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_ef = ef.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + "df_steels_ef.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 495, + "referenced_widgets": [ + "740e0dad714c4165a8fd2f20b365cb7b", + "7d6d5015c811413eab609042a095a666", + "2736c06011b94a1f864ef08d3610ec1a", + "7ebf753a4bab43fdad4fbcd3b0949740", + "d2d8a5f3236d41b4b5765a9ce601eaa8", + "cd30ce5fa89a4af393e18a7ae0f020c2", + "34db3f81395f405e894d7799cc8f8ee0", + "0fd44e88d8b84f3f97fca5b3ebcf329d", + "dca8e99c636948d782ae9c3408c5379a", + "4e3eb70559f94d15946e5f69e2337b1d", + "8caf3b91fd8d4064a1c774820c2874c2" + ] + }, + "id": "O3Ix7UEbbu5B", + "outputId": "b88ac822-8b13-49f7-e3d4-954dabe81f88" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "ElementFraction: 0%| | 0/312 [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
compyield strengthcompositionHHeLiBeBCN...PuAmCmBkCfEsFmMdNoLr
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0009530.00000...0000000000
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)000000.0085420.00163...0000000000
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0000000.00000...0000000000
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004780.00000...0000000000
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004740.00000...0000000000
\n", + "

5 rows × 106 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df_steels_ef" + } + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Видаляємо стовпці, де кількість нулів перевищує 80%\n", + "df_steels_ef = df_steels_ef.loc[:, (df_steels_ef == 0).mean() <= 0.6]\n", + "df_steels_ef\n" + ], + "metadata": { + "id": "yPOx0rSwqRqz", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 825 + }, + "outputId": "ef3e168a-3bf1-4bfe-8fbe-9137ee1399ce" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " comp yield strength \\\n", + "0 Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N... 2411.5 \n", + "1 Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0.... 1123.1 \n", + "2 Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0.... 1736.3 \n", + "3 Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N... 2487.3 \n", + "4 Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N... 2249.6 \n", + ".. ... ... \n", + "307 Fe0.823C0.0176Mn0.00183Si0.000198Cr0.0779Ni0.0... 1722.5 \n", + "308 Fe0.823Mn0.000618Si0.00101Cr0.0561Ni0.0984Mo0.... 1019.0 \n", + "309 Fe0.825C0.0174Mn0.00175Si0.000201Cr0.0565Ni0.0... 1860.3 \n", + "310 Fe0.858C0.0191Mn0.00194Si0.000199Cr0.0753Ni0.0... 1812.1 \n", + "311 Fe0.860C0.0125Mn0.00274Si0.000198Cr0.00439Ni0.... 1139.7 \n", + "\n", + " composition C Al \\\n", + "0 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000953 0.003180 \n", + "1 (Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al) 0.008542 0.000845 \n", + "2 (Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000000 0.008123 \n", + "3 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000478 0.002772 \n", + "4 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000474 0.002740 \n", + ".. ... ... ... \n", + "307 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.017600 0.000620 \n", + "308 (Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000000 0.000629 \n", + "309 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.017401 0.000628 \n", + "310 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.019106 0.000623 \n", + "311 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.012505 0.000619 \n", + "\n", + " Si Ti V Cr Mn Fe Co \\\n", + "0 0.001020 0.018499 0.000112 0.000110 0.000521 0.619964 0.145992 \n", + "1 0.000203 0.000000 0.005151 0.147026 0.000104 0.623112 0.188034 \n", + "2 0.000200 0.006692 0.000110 0.093630 0.000102 0.625199 0.132042 \n", + "3 0.001021 0.017611 0.000113 0.000111 0.000523 0.634395 0.146091 \n", + "4 0.001010 0.018400 0.000112 0.000109 0.000518 0.635985 0.143997 \n", + ".. ... ... ... ... ... ... ... \n", + "307 0.000198 0.000000 0.010500 0.077900 0.001830 0.822998 0.046300 \n", + "308 0.001010 0.001060 0.000111 0.056101 0.000618 0.823012 0.000096 \n", + "309 0.000201 0.000000 0.011601 0.056505 0.001750 0.825070 0.046804 \n", + "310 0.000199 0.000000 0.010103 0.075322 0.001941 0.858251 0.000190 \n", + "311 0.000198 0.000000 0.000765 0.004392 0.002741 0.860334 0.036914 \n", + "\n", + " Ni Nb Mo \n", + "0 0.191989 0.000062 0.017599 \n", + "1 0.000097 0.000061 0.017903 \n", + "2 0.129041 0.000060 0.004802 \n", + "3 0.173108 0.000062 0.023715 \n", + "4 0.187995 0.000061 0.008600 \n", + ".. ... ... ... \n", + "307 0.000095 0.000060 0.021900 \n", + "308 0.098401 0.000061 0.018900 \n", + "309 0.000096 0.005540 0.034403 \n", + "310 0.000095 0.000060 0.034110 \n", + "311 0.078631 0.000060 0.002841 \n", + "\n", + "[312 rows x 15 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
compyield strengthcompositionCAlSiTiVCrMnFeCoNiNbMo
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.1459920.1919890.0000620.017599
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)0.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.1880340.0000970.0000610.017903
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.1320420.1290410.0000600.004802
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.1460910.1731080.0000620.023715
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.1439970.1879950.0000610.008600
................................................
307Fe0.823C0.0176Mn0.00183Si0.000198Cr0.0779Ni0.0...1722.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.0463000.0000950.0000600.021900
308Fe0.823Mn0.000618Si0.00101Cr0.0561Ni0.0984Mo0....1019.0(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.0000960.0984010.0000610.018900
309Fe0.825C0.0174Mn0.00175Si0.000201Cr0.0565Ni0.0...1860.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.0468040.0000960.0055400.034403
310Fe0.858C0.0191Mn0.00194Si0.000199Cr0.0753Ni0.0...1812.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.0001900.0000950.0000600.034110
311Fe0.860C0.0125Mn0.00274Si0.000198Cr0.00439Ni0....1139.7(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.0369140.0786310.0000600.002841
\n", + "

312 rows × 15 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df_steels_ef", + "summary": "{\n \"name\": \"df_steels_ef\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005088563568682925,\n \"min\": 0.0,\n \"max\": 0.020105653709823198,\n \"num_unique_values\": 286,\n \"samples\": [\n 0.00047699823510653,\n 0.00046767024570975,\n 0.0018905108160224894\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Al\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.007022409097348201,\n \"min\": 0.00020785917540866065,\n \"max\": 0.03761387952154345,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.00496659291725876,\n 0.0008360611996798165,\n 0.00061102260783649\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Si\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011228752706333433,\n \"min\": 0.00019683316421001556,\n \"max\": 0.08997806496916724,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0008036057510185505,\n 0.00020101471427708505,\n 0.02940108784025009\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ti\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.006606511803469801,\n \"min\": 0.0,\n \"max\": 0.029509422358559086,\n \"num_unique_values\": 195,\n \"samples\": [\n 0.0023498634729322222,\n 0.002420134801508444,\n 0.024088386988632776\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"V\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.004991944168276904,\n \"min\": 0.0,\n \"max\": 0.0474201013809754,\n \"num_unique_values\": 309,\n \"samples\": [\n 0.00011094557010330734,\n 0.005310388720454336,\n 0.00010800399614785747\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cr\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.058074181251770926,\n \"min\": 0.00010208857204510633,\n \"max\": 0.1859655777715545,\n \"num_unique_values\": 310,\n \"samples\": [\n 0.04957567817228868,\n 0.1580115664466639,\n 0.13400495818345282\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.003994275428386101,\n \"min\": 9.904104260805677e-05,\n \"max\": 0.03000857645114974,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0007186474315700719,\n 0.00010300754015193911,\n 0.00010000370013690507\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146692352022514,\n \"min\": 0.6199642900568927,\n \"max\": 0.860333809518093,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735131699655,\n 0.6480474370723937,\n 0.6770250499268474\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Co\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05968062978906907,\n \"min\": 9.027832547518227e-05,\n \"max\": 0.18984015458983536,\n \"num_unique_values\": 311,\n \"samples\": [\n 9.575302356663823e-05,\n 0.1490109075984362,\n 0.12900477317660755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ni\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06121709210362406,\n \"min\": 9.489972479079811e-05,\n \"max\": 0.2028409524092159,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.09803274953381981,\n 9.610703503496455e-05,\n 0.008810325982061338\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Nb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0009819534237412472,\n \"min\": 0.0,\n \"max\": 0.0152009576603326,\n \"num_unique_values\": 310,\n \"samples\": [\n 6.077018614667645e-05,\n 6.070444356526897e-05,\n 0.00047401753864893\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mo\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010889034334196392,\n \"min\": 0.00011109638722555688,\n \"max\": 0.057567370814222495,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.011292253514089334,\n 0.028802108314328605,\n 0.011300418115470272\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_tm = tm.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + "df_steels_tm.head()" + ], + "metadata": { + "id": "3M7Nhm9oqVr-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 342, + "referenced_widgets": [ + "f6b45047bef14d799468426862568e62", + "5bdf3fa39d084bd0aa5c22d9fc39ce91", + "d2720c54cef0492ab71223dba0b078fa", + "6d42f7727ee3429ea0ca193d90affb35", + "cedbadd4e63f4f6b8b4fef1ae5229fb9", + "743a0e9275c24189ac5a164d729b9d65", + "2326785aa4dd450d89b3fcbefb630c92", + "77592d0a57b34ecc985646f281f12998", + "6fbbc3a8541548888afe89042c27644d", + "223c7b02f0c34780b79c81f787e654ad", + "074c46c79f144415ad43fa95bb68433b" + ] + }, + "outputId": "bfc33db7-117f-4470-d6e1-a6db4d24571c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "TMetalFraction: 0%| | 0/312 [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
compyield strengthcompositiontransition metal fraction
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.994847
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)0.988780
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.991677
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.995729
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.995776
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df_steels_tm", + "summary": "{\n \"name\": \"df_steels_tm\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"transition metal fraction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011952777170137955,\n \"min\": 0.8939169623565406,\n \"max\": 0.9987510327998004,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.9921144095150726,\n 0.989442227171029,\n 0.960827550619373\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_st = st.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + "df_steels_st.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 466, + "referenced_widgets": [ + "e3aec42386234935a45ec6797720fbf4", + "5002f942143b45cab246352ea1084751", + "5124a80ff3fe4e30bc12559ebf9d4a14", + "323272527f4d43bab7ee6659871704b5", + "c68db0ef6165441782726e6e3990967e", + "f9e4755717fd46619686fce16b8d8641", + "4876beee10984f038614abcafceade50", + "53068bb95cc2494ab9931acd33e84406", + "3378757992b044f199653305f3fb69d0", + "8da8c8921a3a485c945d6a3711b1b30b", + "c812c7809c7d4131af62ed000aea3648" + ] + }, + "id": "gsTpmAj9b7ZK", + "outputId": "a1a7b8ff-2b38-49c8-8d20-92ac8e0ebf34" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Stoichiometry: 0%| | 0/312 [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
compyield strengthcomposition0-norm2-norm3-norm5-norm7-norm10-norm
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)120.6657280.6286870.6204070.6199920.619965
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)130.6676210.6314420.6235140.6231360.623112
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)110.6586810.6296630.6253070.6252020.625199
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)120.6742760.6412160.6346690.6344090.634395
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)120.6789520.6438290.6363470.6360050.635985
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df_steels_st", + "summary": "{\n \"name\": \"df_steels_st\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 10,\n \"max\": 13,\n \"num_unique_values\": 4,\n \"samples\": [\n 13,\n 10,\n 12\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.04427563902277603,\n \"min\": 0.6586807276305723,\n \"max\": 0.8648190235908033,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7815878887528689,\n 0.6841464463613443,\n 0.7029343890609197\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0502036084544961,\n \"min\": 0.6286870284058237,\n \"max\": 0.8605762694650622,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7687571292960343,\n 0.6537736176672051,\n 0.6803406503478145\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"5-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05142045677636951,\n \"min\": 0.6204065864012965,\n \"max\": 0.8603349319303369,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674879845946792,\n 0.6482423499881135,\n 0.6771002024176017\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"7-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146484306447001,\n \"min\": 0.6199920325968773,\n \"max\": 0.8603338160979437,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674737095769911,\n 0.6480553263549956,\n 0.6770270831463305\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"10-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.051466897588403095,\n \"min\": 0.619964825439261,\n \"max\": 0.8603338095215936,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735135375647,\n 0.6480475119780384,\n 0.6770250604470499\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_meredig = meredig.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + "df_steels_meredig.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 513, + "referenced_widgets": [ + "a54a162a17c94dfcaaa8718536295d23", + "f260e33e9e844b30a62e1fa0ac3d8531", + "7e2afbe8ab6f4f7d9d980a8500883128", + "c2e8680e8f7f4a81958b650eea8719c1", + "106265f8ccd24b83b1da14e3e30c4395", + "40081259d2fb47798b6a3dc7946d208b", + "ae6694ce16c24c98a973cae14aaae874", + "90896d92141246c0806e16dc171e7b87", + "2fc201f12dbb401089b5d4efa8c7a272", + "6cd502e772be46b5877654c685f8e6eb", + "bde9b13a52464851848834ffc6c93b05" + ] + }, + "id": "KcFtL7GHb9bj", + "outputId": "4b48674c-ab04-4ca1-8122-63868ba4df4c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Meredig: 0%| | 0/312 [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
compyield strengthcompositionH fractionHe fractionLi fractionBe fractionB fractionC fractionN fraction...range Electronegativitymean Electronegativityavg s valence electronsavg p valence electronsavg d valence electronsavg f valence electronsfrac s valence electronsfrac p valence electronsfrac d valence electronsfrac f valence electrons
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0009530.00000...1.011.8529581.9822290.0071266.4063680.0000000.2361000.0008490.7630510.000000
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)000000.0085420.00163...1.491.8310651.8350090.0232255.9257160.1020780.2326910.0029450.7514200.012944
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0000000.00000...0.621.8288151.9015080.0085236.2144350.0000000.2340470.0010490.7649040.000000
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004780.00000...1.011.8534761.9761120.0057706.3714270.0000000.2365660.0006910.7627430.000000
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004740.00000...1.011.8493511.9912300.0057086.4113610.0000000.2368170.0006790.7625040.000000
\n", + "

5 rows × 123 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df_steels_meredig" + } + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_st.columns" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "anLmvoVFcAKV", + "outputId": "17ec37e3-3ad3-4b66-e27a-262cbaa75e68" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['comp', 'yield strength', 'composition', '0-norm', '2-norm', '3-norm',\n", + " '5-norm', '7-norm', '10-norm'],\n", + " dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_tm.columns" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qVpVgxO3cCMr", + "outputId": "5ff0afe3-c48a-481f-95f7-5e76c2bd1f67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['comp', 'yield strength', 'composition', 'transition metal fraction'], dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_bc.columns" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RAsnJRD3cEPc", + "outputId": "4adcf3a7-2c53-49cb-eebf-f98520380bc7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['comp', 'yield strength', 'composition', 'band center'], dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_steels_ef.columns" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xPb0axf5cGft", + "outputId": "e7568ca2-d7b9-448c-c9cc-c9b01c31c7dc" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['comp', 'yield strength', 'composition', 'C', 'Al', 'Si', 'Ti', 'V',\n", + " 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Nb', 'Mo'],\n", + " dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "data_steel = df_steels_ef.drop(['comp', 'composition'], axis=1)\n", + "data_steel" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 461 + }, + "id": "4zwuY5BrcKL9", + "outputId": "d439181b-0bcb-44ac-95e0-b711caca4f36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " yield strength C Al Si Ti V \\\n", + "0 2411.5 0.000953 0.003180 0.001020 0.018499 0.000112 \n", + "1 1123.1 0.008542 0.000845 0.000203 0.000000 0.005151 \n", + "2 1736.3 0.000000 0.008123 0.000200 0.006692 0.000110 \n", + "3 2487.3 0.000478 0.002772 0.001021 0.017611 0.000113 \n", + "4 2249.6 0.000474 0.002740 0.001010 0.018400 0.000112 \n", + ".. ... ... ... ... ... ... \n", + "307 1722.5 0.017600 0.000620 0.000198 0.000000 0.010500 \n", + "308 1019.0 0.000000 0.000629 0.001010 0.001060 0.000111 \n", + "309 1860.3 0.017401 0.000628 0.000201 0.000000 0.011601 \n", + "310 1812.1 0.019106 0.000623 0.000199 0.000000 0.010103 \n", + "311 1139.7 0.012505 0.000619 0.000198 0.000000 0.000765 \n", + "\n", + " Cr Mn Fe Co Ni Nb Mo \n", + "0 0.000110 0.000521 0.619964 0.145992 0.191989 0.000062 0.017599 \n", + "1 0.147026 0.000104 0.623112 0.188034 0.000097 0.000061 0.017903 \n", + "2 0.093630 0.000102 0.625199 0.132042 0.129041 0.000060 0.004802 \n", + "3 0.000111 0.000523 0.634395 0.146091 0.173108 0.000062 0.023715 \n", + "4 0.000109 0.000518 0.635985 0.143997 0.187995 0.000061 0.008600 \n", + ".. ... ... ... ... ... ... ... \n", + "307 0.077900 0.001830 0.822998 0.046300 0.000095 0.000060 0.021900 \n", + "308 0.056101 0.000618 0.823012 0.000096 0.098401 0.000061 0.018900 \n", + "309 0.056505 0.001750 0.825070 0.046804 0.000096 0.005540 0.034403 \n", + "310 0.075322 0.001941 0.858251 0.000190 0.000095 0.000060 0.034110 \n", + "311 0.004392 0.002741 0.860334 0.036914 0.078631 0.000060 0.002841 \n", + "\n", + "[312 rows x 13 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yield strengthCAlSiTiVCrMnFeCoNiNbMo
02411.50.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.1459920.1919890.0000620.017599
11123.10.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.1880340.0000970.0000610.017903
21736.30.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.1320420.1290410.0000600.004802
32487.30.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.1460910.1731080.0000620.023715
42249.60.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.1439970.1879950.0000610.008600
..........................................
3071722.50.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.0463000.0000950.0000600.021900
3081019.00.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.0000960.0984010.0000610.018900
3091860.30.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.0468040.0000960.0055400.034403
3101812.10.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.0001900.0000950.0000600.034110
3111139.70.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.0369140.0786310.0000600.002841
\n", + "

312 rows × 13 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "data_steel", + "summary": "{\n \"name\": \"data_steel\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005088563568682925,\n \"min\": 0.0,\n \"max\": 0.020105653709823198,\n \"num_unique_values\": 286,\n \"samples\": [\n 0.00047699823510653,\n 0.00046767024570975,\n 0.0018905108160224894\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Al\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.007022409097348201,\n \"min\": 0.00020785917540866065,\n \"max\": 0.03761387952154345,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.00496659291725876,\n 0.0008360611996798165,\n 0.00061102260783649\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Si\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011228752706333433,\n \"min\": 0.00019683316421001556,\n \"max\": 0.08997806496916724,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0008036057510185505,\n 0.00020101471427708505,\n 0.02940108784025009\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ti\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.006606511803469801,\n \"min\": 0.0,\n \"max\": 0.029509422358559086,\n \"num_unique_values\": 195,\n \"samples\": [\n 0.0023498634729322222,\n 0.002420134801508444,\n 0.024088386988632776\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"V\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.004991944168276904,\n \"min\": 0.0,\n \"max\": 0.0474201013809754,\n \"num_unique_values\": 309,\n \"samples\": [\n 0.00011094557010330734,\n 0.005310388720454336,\n 0.00010800399614785747\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cr\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.058074181251770926,\n \"min\": 0.00010208857204510633,\n \"max\": 0.1859655777715545,\n \"num_unique_values\": 310,\n \"samples\": [\n 0.04957567817228868,\n 0.1580115664466639,\n 0.13400495818345282\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.003994275428386101,\n \"min\": 9.904104260805677e-05,\n \"max\": 0.03000857645114974,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0007186474315700719,\n 0.00010300754015193911,\n 0.00010000370013690507\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146692352022514,\n \"min\": 0.6199642900568927,\n \"max\": 0.860333809518093,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735131699655,\n 0.6480474370723937,\n 0.6770250499268474\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Co\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05968062978906907,\n \"min\": 9.027832547518227e-05,\n \"max\": 0.18984015458983536,\n \"num_unique_values\": 311,\n \"samples\": [\n 9.575302356663823e-05,\n 0.1490109075984362,\n 0.12900477317660755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ni\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06121709210362406,\n \"min\": 9.489972479079811e-05,\n \"max\": 0.2028409524092159,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.09803274953381981,\n 9.610703503496455e-05,\n 0.008810325982061338\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Nb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0009819534237412472,\n \"min\": 0.0,\n \"max\": 0.0152009576603326,\n \"num_unique_values\": 310,\n \"samples\": [\n 6.077018614667645e-05,\n 6.070444356526897e-05,\n 0.00047401753864893\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mo\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010889034334196392,\n \"min\": 0.00011109638722555688,\n \"max\": 0.057567370814222495,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.011292253514089334,\n 0.028802108314328605,\n 0.011300418115470272\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df = pd.concat([data_steel,\n", + " df_steels_st['0-norm'], df_steels_st['2-norm'],\n", + " df_steels_st['3-norm'], df_steels_st['5-norm'],\n", + " df_steels_st['7-norm'], df_steels_st['10-norm'],\n", + " df_steels_tm['transition metal fraction'],\n", + " df_steels_bc['band center']\n", + " ], axis=1)\n", + "df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 478 + }, + "id": "J1_tJwtRcPOu", + "outputId": "08b80bfd-bae7-4dd1-cab7-569aa335d3de" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " yield strength C Al Si Ti V \\\n", + "0 2411.5 0.000953 0.003180 0.001020 0.018499 0.000112 \n", + "1 1123.1 0.008542 0.000845 0.000203 0.000000 0.005151 \n", + "2 1736.3 0.000000 0.008123 0.000200 0.006692 0.000110 \n", + "3 2487.3 0.000478 0.002772 0.001021 0.017611 0.000113 \n", + "4 2249.6 0.000474 0.002740 0.001010 0.018400 0.000112 \n", + ".. ... ... ... ... ... ... \n", + "307 1722.5 0.017600 0.000620 0.000198 0.000000 0.010500 \n", + "308 1019.0 0.000000 0.000629 0.001010 0.001060 0.000111 \n", + "309 1860.3 0.017401 0.000628 0.000201 0.000000 0.011601 \n", + "310 1812.1 0.019106 0.000623 0.000199 0.000000 0.010103 \n", + "311 1139.7 0.012505 0.000619 0.000198 0.000000 0.000765 \n", + "\n", + " Cr Mn Fe Co ... Nb Mo 0-norm \\\n", + "0 0.000110 0.000521 0.619964 0.145992 ... 0.000062 0.017599 12 \n", + "1 0.147026 0.000104 0.623112 0.188034 ... 0.000061 0.017903 13 \n", + "2 0.093630 0.000102 0.625199 0.132042 ... 0.000060 0.004802 11 \n", + "3 0.000111 0.000523 0.634395 0.146091 ... 0.000062 0.023715 12 \n", + "4 0.000109 0.000518 0.635985 0.143997 ... 0.000061 0.008600 12 \n", + ".. ... ... ... ... ... ... ... ... \n", + "307 0.077900 0.001830 0.822998 0.046300 ... 0.000060 0.021900 11 \n", + "308 0.056101 0.000618 0.823012 0.000096 ... 0.000061 0.018900 11 \n", + "309 0.056505 0.001750 0.825070 0.046804 ... 0.005540 0.034403 11 \n", + "310 0.075322 0.001941 0.858251 0.000190 ... 0.000060 0.034110 11 \n", + "311 0.004392 0.002741 0.860334 0.036914 ... 0.000060 0.002841 11 \n", + "\n", + " 2-norm 3-norm 5-norm 7-norm 10-norm \\\n", + "0 0.665728 0.628687 0.620407 0.619992 0.619965 \n", + "1 0.667621 0.631442 0.623514 0.623136 0.623112 \n", + "2 0.658681 0.629663 0.625307 0.625202 0.625199 \n", + "3 0.674276 0.641216 0.634669 0.634409 0.634395 \n", + "4 0.678952 0.643829 0.636347 0.636005 0.635985 \n", + ".. ... ... ... ... ... \n", + "307 0.828517 0.823287 0.822999 0.822998 0.822998 \n", + "308 0.830987 0.823571 0.823017 0.823012 0.823012 \n", + "309 0.829324 0.825232 0.825070 0.825070 0.825070 \n", + "310 0.862498 0.858466 0.858252 0.858251 0.858251 \n", + "311 0.864819 0.860576 0.860335 0.860334 0.860334 \n", + "\n", + " transition metal fraction band center \n", + "0 0.994847 4.120851 \n", + "1 0.988780 4.045671 \n", + "2 0.991677 4.066023 \n", + "3 0.995729 4.113411 \n", + "4 0.995776 4.119559 \n", + ".. ... ... \n", + "307 0.981582 4.043178 \n", + "308 0.998361 4.046132 \n", + "309 0.981769 4.046924 \n", + "310 0.980072 4.034904 \n", + "311 0.986678 4.089606 \n", + "\n", + "[312 rows x 21 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yield strengthCAlSiTiVCrMnFeCo...NbMo0-norm2-norm3-norm5-norm7-norm10-normtransition metal fractionband center
02411.50.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.145992...0.0000620.017599120.6657280.6286870.6204070.6199920.6199650.9948474.120851
11123.10.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.188034...0.0000610.017903130.6676210.6314420.6235140.6231360.6231120.9887804.045671
21736.30.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.132042...0.0000600.004802110.6586810.6296630.6253070.6252020.6251990.9916774.066023
32487.30.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.146091...0.0000620.023715120.6742760.6412160.6346690.6344090.6343950.9957294.113411
42249.60.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.143997...0.0000610.008600120.6789520.6438290.6363470.6360050.6359850.9957764.119559
..................................................................
3071722.50.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.046300...0.0000600.021900110.8285170.8232870.8229990.8229980.8229980.9815824.043178
3081019.00.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.000096...0.0000610.018900110.8309870.8235710.8230170.8230120.8230120.9983614.046132
3091860.30.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.046804...0.0055400.034403110.8293240.8252320.8250700.8250700.8250700.9817694.046924
3101812.10.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.000190...0.0000600.034110110.8624980.8584660.8582520.8582510.8582510.9800724.034904
3111139.70.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.036914...0.0000600.002841110.8648190.8605760.8603350.8603340.8603340.9866784.089606
\n", + "

312 rows × 21 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df" + } + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.info()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OxCxxRLzqsmr", + "outputId": "1802f545-22df-4515-f819-f62bf1b40db2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Int64Index: 312 entries, 0 to 311\n", + "Data columns (total 21 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 yield strength 312 non-null float64\n", + " 1 C 312 non-null float64\n", + " 2 Al 312 non-null float64\n", + " 3 Si 312 non-null float64\n", + " 4 Ti 312 non-null float64\n", + " 5 V 312 non-null float64\n", + " 6 Cr 312 non-null float64\n", + " 7 Mn 312 non-null float64\n", + " 8 Fe 312 non-null float64\n", + " 9 Co 312 non-null float64\n", + " 10 Ni 312 non-null float64\n", + " 11 Nb 312 non-null float64\n", + " 12 Mo 312 non-null float64\n", + " 13 0-norm 312 non-null int64 \n", + " 14 2-norm 312 non-null float64\n", + " 15 3-norm 312 non-null float64\n", + " 16 5-norm 312 non-null float64\n", + " 17 7-norm 312 non-null float64\n", + " 18 10-norm 312 non-null float64\n", + " 19 transition metal fraction 312 non-null float64\n", + " 20 band center 312 non-null float64\n", + "dtypes: float64(20), int64(1)\n", + "memory usage: 53.6 KB\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "corr = df.corr()\n", + "plt.figure(figsize=(15, 15))\n", + "sns.heatmap(corr, annot=True, cmap=\"coolwarm\", fmt=\".1f\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 932 + }, + "id": "twAWYH6ysBj_", + "outputId": "50f7e58b-f952-440f-a71f-bbf61adbd0e3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 38 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAVOCAYAAAAKGBUDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hTVwMG8DdBCJswRED2FgVRnB3uWbd+tmrr3lZttc627t2qtc666t6iOHBrXa1aR92KeysIJGzCSL4/0EAkQSgkIfb9PU+eNtdzbl4u9557OTn3XIFCoVCAiIiIiIiIiIiISA2hvgMQERERERERERFR6cUORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERERacPLkSbRq1QouLi4QCASIiIh4b53jx4+jatWqEIlE8PX1xerVq/OVWbRoETw9PWFqaoqaNWvi77//LvnwebADkYiIiIiIiIiISAtSUlJQuXJlLFq0qFDlHz58iBYtWqB+/fq4fPkyvv32W/Tp0wcHDx5UltmyZQuGDx+OCRMm4NKlS6hcuTKaNm2KmJgYbf0YECgUCoXW1k5EREREREREREQQCATYuXMn2rZtq7HM6NGjERkZievXryuXderUCVKpFAcOHAAA1KxZE9WrV8fChQsBAHK5HG5ubhgyZAjGjBmjlewcgUhERERERERERFQIMpkMiYmJKi+ZTFZi6z9z5gwaNWqksqxp06Y4c+YMACAjIwMXL15UKSMUCtGoUSNlGW0oo7U1E5VCkcYB+o5QZFWvbdF3hCJ5IXTXd4QikaRb6DtCkXx0aaa+IxRZelhDfUcokuVRH+k7QpEEe2frO0KRlTEyrJsfqgm1O59MSSuTkaLvCEXyXFxJ3xGKzBgZ+o5QJInZ1vqOUCTx6Zb6jlBkhnZPlwICfUegUsbP8om+IxSJc9QxfUcoEtPP+uk7gk4Y4t/b/8b5Hzpj0qRJKssmTJiAiRMnlsj6X716hXLlyqksK1euHBITE5GWlgaJRILs7Gy1ZW7fvl0iGdRhByIREREREREREVEhjB07FsOHD1dZJhKJ9JRGd9iBSEREREREREREVAgikUirHYZOTk6Ijo5WWRYdHQ1ra2uYmZnByMgIRkZGass4OTlpLRfnQCQiIiIiIiIiIioFateujaNHj6osO3z4MGrXrg0AMDExQVhYmEoZuVyOo0ePKstoA0cgEhERERERERFRsQiMOb+qOsnJybh3757y/cOHD3H58mXY2dnB3d0dY8eOxfPnz7F27VoAwIABA7Bw4UKMGjUKvXr1wrFjx7B161ZERkYq1zF8+HB0794d1apVQ40aNTBv3jykpKSgZ8+eWvs52IFIRERERERERESkBRcuXED9+vWV79/On9i9e3esXr0aL1++xJMnuQ8y8vLyQmRkJIYNG4Zff/0Vrq6uWLFiBZo2baos88UXX+D169cYP348Xr16hdDQUBw4cCDfg1VKEjsQiYiIiIiIiIiItKBevXpQKBQa/3316tVq6/zzzz8Frnfw4MEYPHhwceMVGudAJCIiIiIiIiIiIo3YgUhEREREREREREQa8RZmIiIiIiIiIiIqFmEZPkTlQ8YRiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiIpFYMwxah8y/naJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGvEhKkREREREREREVCzCMgJ9RyAt4ghEIiIiIiIiIiIi0ogdiERERERERERERKQROxB1aOLEiQgNDS10+UePHkEgEODy5csayxw/fhwCgQBSqbTY+Uqz/8rPSURERERERERU2nAORB0aMWIEhgwZou8YKjw9PfHtt9/i22+/1XcUpXr16iE0NBTz5s3TdxQAgN0n1eD9XW/YVK0EUxdHXOgwCNG7jxZcp04NBM0eA8sgP6Q/fYl7M5bg2dqdOkqcY2fkQWyO2IN4iRS+nh4Y2q8nKvj7qi378MlTrNq4FVH3HyI65jW+7t0NHVu30GlehUKB7RuW449Du5GSkgT/CiHoNWgUnF3cCqx3KHI79u7YgARJPNy9fNG9/3D4+lfUWebILYvx59FwpKUkwTswFJ36/ghHZw+Nde7evIAju1fj6YNbSJC8Rr+R81C5RgOd5N1y8Q7WnLuFuOQ0+DvaYnSTMFRycVBbdvfVB5gQeVZlmYmREOdGddJFVADA9v3HsGH3AcRLE+Dr4Ybhvbugop+32rK7Dp/A/hNn8ODpcwBAgLcHBnRpr7G8NigUCvxzdAGizm9DRnoSHD2q4KPWE2Dj4Fmo+ldOLMfFQ3MR9FFX1GrxvXbDvqFQKHBg+yKcObYd6SlJ8Ayogo69xqFsAfvwkYjluHr+CGJePISxiSk8/UPRqvMwOLp46STvvq2L8NebY84rMBRf9BlX4DF37+YFHN29Gk8e3kSi5DX6jJiHyjUaaj0rYHj78NZDJ7F+7zHEJSTCz708Rnb/Hyr6qt+2x/6+gtW7DuFpdCyysrPh5lQWX31WH599WkNneQFg354I7AzfAqkkHp5ePug7cAj8AypoLP/nqePYuG4VYqJfwdnFFd169UW16rV0lnfvnt0ID98OiUQCLy9vDBg4CAEBAWrLPn78COvXrcO9e3cRExODvv36o23bdjrLCrw9N6/AsTfn5oAKIeg1aGQhzs3h2JPn3Nyj/3D4+gfpLLMhnZsVCgUity5WtmvegaH4ok/Bee+9yfvk4S0kSl6j7wjd5jWkdtgQMxta3t179mJ7eDgkEgm8vbwwaOAAje3ao8ePsW7dety9dw8xMTHo368v2rVtq5Ocb20+/Q/WHLuA2KQU+LuUxZj2DRDs4fzeevsv3caYdZGoX8kH83q31X5QAyUw5hyIHzKOQNQhS0tL2Nvb6ztGkWVnZ0Mul+s7ht4YWZgj8WoUrg+dVKjyZp6uqL57KeKOn8Ppam3wcMEaBC+dCofGn2g5aa5jp/7C4t/XoscXHbB87kz4eHlg5MTpkEgT1JaXyWRwLlcO/bp2hp2tWGc589oTvh4H925Dr0GjMGX2SpiammHm+G+RkSHTWOfMqSNYv2I+2nfujWnzVsPdyw8zxw9DgjReJ5kP71qF4/s3olO/cRg5YwNMRGZYOHUAMgvInCFLg6tHAD7vrZsOorcO3nyMOUcvof8nlbCxV3P4lxNj0JY/EJ+SrrGOpcgYh4e0U772fd1GZ3mP/Pk35q/Zgt4dW2P1TxPg5+mGYVN/QXxCotryl25EofEnNbBw4kgsm/49yjnY4dspcxETJ9FZ5munVuDmmfX4qM1EtBq4BcbG5ji4ui+yMjXvD2+9fnYNUee3wNZJ/QW3thzb8ztOHtiAjr3H49spGyESmeG3mf0L3Ifv37qAT5p0xjeTN2LA98uQnZWJ32b0gyw9Vet5j+z6HSf2b8QXfcfhu+kbIBKZYfG0gvPKZGko7+mPz3v/oPV8eRnaPnzozCXMW78Tfdo3w7ppI+HnXh5DZi5GfEKS2vI2lubo2bYJfp80DJtmjkarOjUxeelGnLlySyd5AeD0iT/w+/Il6NSlG+YuWApPbx9MGjcaUqn6bXb75nXMmTUVjZo0x9wFy1Cz9seYOWU8Hj96qJO8J0+cwPLly9Gly1eYv2AhvLy9MW7cDxrvrpDJZHBydkKPnr1ga2urk4zv2hO+Hgf2bkPvQSMxZfYKiExNMXP8sPeem9etmI8OnXth+rxV8PDy5bm5AEd2rcKJ/RvRqe84jJiek3fRtILz5rRrAfhCL3kNpx1+y9AyG1LeEydOYvny5fiqSxcsXDAf3t5e+GHcuPe2a7169tBLu3bgn9uYHXEC/ZvWxubvuiLApSwGLg1HXFLB1zDP4xMwd/cJVPUur6OkRKUTOxBLyNq1a2Fvbw+ZTLVhb9u2Lbp27QpA/S3MK1asQIUKFWBqaorAwEAsXry4wM/Zt28f/P39YWZmhvr16+PRo0cFllcoFJg4cSLc3d0hEong4uKCoUOHAsgZ6ff48WMMGzYMAoEAAkHOtwWrV6+GWCzG7t27ERQUBJFIhCdPnkAmk2HEiBEoX748LCwsULNmTRw/flz5WW/rHTx4EBUqVIClpSWaNWuGly9fKstkZWVh6NChEIvFsLe3x+jRo9G9e3e0ffPNU48ePXDixAn8+uuvykx5f8aLFy+iWrVqMDc3x0cffYSoqKgCf/6S8PrgSdyZMA/Ru44UqrxHv05Ie/gMt0bNQvLtB3i8eANehR+E1zc9tBs0j227ItGiSUM0b1Qfnu6uGD6wD0xFJth35A+15QP9fDGw51doWOdjGBsb6yznWwqFAgd2b0Hbz3ugWq06cPfyxcBh4yGNj8WFsyc11tsXsQn1m7ZGvUYt4eruhd6DRkEkEuHE4b06yfxH5Ho069AXlavXR3kPf3QfPA0Jkte4cv6YxnoVq3yKVp2HILSm7r55B4D1f99G+8o+aBPiAx8HG/zQrAZMy5RBxNX7BdZzsDRTvuwtzHSUFti05xBaN6qDlg0+gZebC0b16wqRyAR7j51WW37St/3QoVkD+Hu5w7O8M8YO6AG5QoEL13TTmaFQKHDjz7WoXG8APIIaws4pAHU6zkRaUgye3Cq47ciUpeDE1pH4uO1kiMysdZIXyMl8Yv86NGnXD8HVGsDFIwBdBk1HoiQG1y5oHmXdf+xS1KjbFs5uvijvEYguA6dBEvsSzx7e1Hre4/vWo2n7fgip3gDlPQLQdfB0JEhe4+p7jrmWnYbqdLQLYHj78MZ9f6Bt/Y/Qul4teLs6Y2zvz2EqMsHuE2fVlg8L8kP96pXhVd4JruXKonPzevB1d8HlqAc6yQsAu3ZuQ5Nmn6Fhk+Zwc/fEwMHDIBKJcPTQfrXl9+zagaphNdDuf53g5u6BL7v1grePH/btidBJ3p07d6BZs2Zo3KQJ3N09MHjwEJiKRDh06KDa8v7+Aejduy/q1q2nt3Pz/t1b0e7NudnDyxeDho2H5D3n5siIzWjwzrnZRCTCcZ6b81EoFPhj33o0bd8XIW/ydits3k5DdN6uGVo7DBheZkPLu2PnTjRr1gxNmjSGh7s7hgweDJHIFAcPHVJbPsDfH31790a9unX10q6tO34R7WsHo23NSvBxssePHRvD1MQYEeeuaayTLZfj+3X7MLDZR3C1F+suLFEpxA7EEtKxY0dkZ2dj9+7dymUxMTGIjIxEr1691NbZsGEDxo8fj2nTpuHWrVuYPn06xo0bhzVr1qgt//TpU7Rv3x6tWrXC5cuX0adPH4wZM6bAXOHh4fjll1+wdOlS3L17FxEREQgODgYA7NixA66urpg8eTJevnyp0tGXmpqKWbNmYcWKFbhx4wYcHR0xePBgnDlzBps3b8bVq1fRsWNHNGvWDHfv3lWpN3v2bKxbtw4nT57EkydPMGLECOW/z5o1Cxs2bMCqVavw559/IjExEREREcp///XXX1G7dm307dtXmcnNLfc2mR9++AFz5szBhQsXUKZMGY3bVp/EtUIRe+yMyrLXh0/DtlaoTj4/MzMLUfcfIKxysHKZUChEWOVg3Iy6W0BN/YmJfgGpJA6VQqsrl5lbWMLHPwh3b19XWycrMxMP70WhUuXcOkKhEJVCq+NulPo6JSku5jkSpbEICM699c3MwgqevsF4GHVF659fFJnZ2bj1Kh41vZyUy4QCAWp6OuHq81iN9dIystB8UQSaLYzAt9tP4P5rqQ7SvtmHHzxG9ZDc2xCFQiGqBwfhelTBHZ5vpWfIkJWdDWtLC23FVJEkeYa05Fi4+NRWLjMxtUJZ1xDEPCl4fzizZwrcAuqivO9H2o6pIi7mGZKksfCvlJvZzNwKHj4heHS38PtwWmoyAMDc0qbEM+YVF/Ms55gLyXPMmb855u6UsmPOwPbhzKws3H74FDUq5Y6AFQqFqFEpANfuvn90nkKhwN/Xo/D4ZQyqVvDRZlSlzMxM3L93ByGhYcplQqEQlUPDEHVbfWd21O2bCKlSVWVZlbDqiLp9Q6tZgZy89+7dRWhoFeUyoVCI0NAquH1bd6M2iyL33FxNuazw5+bcOjw3a/Y2b6Cadu1RKWvXAMNqh98ytMyGlDczMxN3791DlTwDZIRCIaqEhuLW7dv6C6ZBZlY2bj2LRi1/d+UyoVCAWn7uuPr4pcZ6Sw+ega2VOdrXCtZYhui/gnMglhAzMzN06dIFq1atQseOHQEA69evh7u7O+rVq6e2zoQJEzBnzhy0b98eAODl5YWbN29i6dKl6N69e77yS5YsgY+PD+bMmQMACAgIwLVr1zBr1iyNuZ48eQInJyc0atQIxsbGcHd3R40aOfMT2dnZwcjICFZWVnByclKpl5mZicWLF6Ny5crK9axatQpPnjyBi4sLgJw5HQ8cOIBVq1Zh+vTpynq//fYbfHxy/oAYPHgwJk+erFzvggULMHbsWLRrlzOHz8KFC7Fv3z7lv9vY2MDExATm5ub5MgHAtGnTULduXQDAmDFj0KJFC6Snp8PU1DRfWZlMlm9EaKZCDmOBdvvNReUcIItW7ZSRRcfC2MYKQlMR5Onvv52xOBISEyGXy2EnVv1j3lZsgyfPXmj1s/+tBEkcAMBGbKey3EZsp/y3dyUlSiGXZ8PGNn+dF88eaydoHonSnN+xtVh1WgIrsT0Speoz64skVYZshQJ25qrHib2FKR7Fqb+d0sPOChNa1IS/oy2SZBlYd+4Weqw7jO19WqCctblW80qTkpAtl8PORnU0np3YGo+fa77Ay2vx+u0oaytG9RDdzLmVlpSzP5hZqu4PppYOSEt+rbHeg6uRiHtxE60GbtNqPnWSEnIyW9qoZra0sUeSVHPHcl5yuRwRa2fCK6AKnN38SjxjXm+PK6t38lrZ2CuPx9LC0PZhaVLKm7xWKsvtbKzw6EW0xnrJqWn47OtxyMjKgpFQiNE9O6JmcKC24wIAkhITIJfLIX7nFjgbsS2ePX2ito5UEg+xOH95iUT7t4knvjk3i9+ZJkQsFuPp06da//x/I0GSc8uxunOzVKL+duREnpuL5G1e9e1aacxrOO3wW4aW2ZDyGlq7JklJQ7ZcAXsr1S/m7K3M8TBGfZt26cEz7Dx3HVtHdNVFRKJSjx2IJahv376oXr06nj9/jvLly2P16tXo0aOH8tbgvFJSUnD//n307t0bffv2VS7PysqCjY36URy3bt1CzZo1VZbVrl1bbdm3OnbsiHnz5sHb2xvNmjXDZ599hlatWqFMmYJ/9SYmJggJCVG+v3btGrKzs+Hv769STiaTqczraG5uruw8BABnZ2fExMQAABISEhAdHa3swAQAIyMjhIWFFXqOxbyZnJ1zJruNiYmBu7t7vrIzZszApEmq8xZ2FtjhSyP1D40g3Tl9/CBWLsrt+B41frYe0xTO36cisWlpbmf4oLGL9JhG+yq7lkVl17K578uXRYdle7H9n7v4um5lPSZ7v7U79+Hwn39j8cRREJlo5/aY+5f34M9dE5XvG3dbUuR1JEtf4uzeGWjWayXKGItKMJ16F0/vxdYVuW1i31EFT5lRGOGrpuLl03sYOnFtsdf1rvOn9mLzstxjbsAHfszlpYt9uCSYm4qwYcZopKbLcP7GHfyyPgLlHR0QFqTdzmTSjtPHD2LFop+U73luLnnnT0ViU552bWCpz2t47bChZTa0vP8lKekZ+GHDfkz4oglsLbX75fmHRFiGD1H5kLEDsQRVqVIFlStXxtq1a9GkSRPcuHEDkZGRassmJ+fc8rV8+fJ8nYJGRkYllsnNzQ1RUVE4cuQIDh8+jEGDBuHnn3/GiRMnCpx3wszMTKXjMzk5GUZGRrh48WK+fJaWlsr/f3edAoEACoWihH4a1fW/zaep83Hs2LEYPny4yrJjdmFqy5YkWXQsROVUOylF5RyQmZCk9dGHAGBjbQ2hUIj4dx6YIpEm6O0BKe8Kq/GJytMYszIzAQAJ0njY2uVuuwRpPDy8/fPVBwArazGEQiPlCIm8dcS2Jf+wopBq9eDpm3vrQlZWBoCcb4ptbHM72pKkcXD11O2DMN7H1lwEI4EA8amqD0yJS0mHvWX+0bvqGBsJEeBki6eSZG1EVCG2soKRUJjvYRPx0kTYiwu+TXbDrgNYt3Mf5o8fAV/Pgp8SWhzuFRqgrFvuFxrZb/aHtOQ4mFs7KpenJ8fCzln9E2HjXtxAekocdi3qoFymkGfj1aMLuHV2I7pPugKhsOTOBxXD6mOEb27mrMyczMkJqvtwckIcXAqxD4evmoabl05g8IQ1ENvnHzFeXMHV6sPTL3/epHfyJiXEobynbka9FZYh7MN5ia0s3uRVfWBKfEIS7MVWGmrl3Krm5pTzuwjwdMWj56+wetdhnXQgWlnbQCgUQvrO6MEEqQS2dnZq64ht7fI9YCVBKtHJRP7Wb87NUolUZblUKoWtnX4ekPKunHNzReX7zDfHnLpzs6e3+t+xdYHnZvW/l+IwtHNzcLV68PTLk7eAdq105DW8dtjQMhta3rwMoV3Ly9bCDEZCAeKSUlSWxyWlwsE6/3QhT+OkeBGfiKErdiqXyd/8XVv1u7nYNbYX3BzEWs1MVNpwDsQS1qdPH6xevRqrVq1Co0aNVObvy6tcuXJwcXHBgwcP4Ovrq/Ly8vJSW6dChQr4+++/VZadPat+cvO8zMzM0KpVK8yfPx/Hjx/HmTNncO1azkSxJiYmyM7Ofu86qlSpguzsbMTExOTLq+5WY3VsbGxQrlw5nD9/XrksOzsbly5dUilX2EzvIxKJYG1trfLS9u3LACA9exn2DWqpLHNo+BEkZy9r/bMBwNi4DAJ8vHHpau5kwHK5HBevXkdQQOkYFWJmbgEnFzflq7y7F8S29rhx5YKyTGpqCu7fuQm/wEpq11HG2BhevgG4cTW3jlwux40rF+AXoL5OcZiaWcDR2V35cnb1gbXYAVHXzynLpKUm49G9a/AKKF0j9IyNjFDByQ7nHuXeiihXKPD341cIKV+4EbnZcjnuxSTAoZAdjsVhbFwGAd4eKg+PkMvluHDtFioFaJ5fbX3EfqwK34tffhyGCr6e2s0osoC1vYfyJXb0hZmlA148yG2TM9KT8frZVTi6q98fXHxqo93QXWg7eIfy5VC+Enwqt0TbwTtKtPMQyNmHyzq5K19Orj6wEjvgzvXczOmpyXh8/yo8/TTvwwqFAuGrpuHa+aMY9OPvsHd0LdGcBeW1Fjsg6pqaY86/lB1zBrAP52VcpgwCvdxw/sYd5TK5XI7zN6IQ7Kf+mkQduUKBjKwsbUTMx9jYGD6+/rh6JfcaQi6X4+rlSwgIVH/bd0BgEK5eVr3muPzPBQQEVlRbviQZGxvD19cPl69cVi6Ty+W4fPkyAgPVf8mgaznnZlfly/XNufn6vzg3X796UbmM5+ZcRWnXPEtBu2aI7bChZTa0vHkZGxvDz9dXbbtWIbB0dXYCgHEZI1RwLYdzd3KnuZDLFTh39wlCPJzzlfdytMP2Ud2xZUQ35ateRR9U93XHlhHd4FTAF2xEHyqOQCxhXbp0wYgRI7B8+XKsXVvwLV2TJk3C0KFDYWNjg2bNmkEmk+HChQuQSCT5Rs4BwIABAzBnzhyMHDkSffr0wcWLF7F69eoCP2P16tXIzs5GzZo1YW5ujvXr18PMzAweHh4AAE9PT5w8eRKdOnWCSCSCg4P6zgR/f398+eWX6NatG+bMmYMqVarg9evXOHr0KEJCQtCiRYtCbZ8hQ4ZgxowZ8PX1RWBgIBYsWACJRKIy2tHT0xPnzp3Do0ePYGlpCTsNIwl0xcjCHBa+ubdIm3u5wrpyIDLiE5D+9CUCpg6HaflyuNJzNADg8bLN8Bj0JQJnjMTT1eFwqF8Lzh2b43zr/jrL3LFNC8z4dTECfH1Qwc8H2/fsQ3q6DM0b1QMATP9lIRzs7dCvWxcAORP+P3r6DACQlZmF2DgJ7j54BDMzU7g6l/zIoncJBAI0a/0Fdm5ZDScXN5Qt54xt65dDbOeAarXqKMtN+2EwqtWui6Ytc+YZ/axtZ/z2yxR4+wbCx78i9u/ajPT0dNRt1FInmeu3+AoHwpfB0ckd9o7lsXfLItjYlkXl6g2U5X6d1AeVazREveadAQDpaal4/Sr3wiUu5jmePrwNC0sb2JXNf/FSUr6qEYjxe88gyMkOlVzssfF8FNIys9AmxBsA8OOev+BoZY6h9UIBAEtPX0OIiwPcbK2QJMvAmrO38DIxBe1CfbWWMa/OrZpgysKVCPTxREVfL2yOPIJ0mQwt638MAJg0fwXK2tti0Jc5o/fW7dyH5Vt2YdK3feFc1gFxkpwRuGamIpibab/TUyAQoOLH3XDlj99gY+8BS1tXXDoyH2ZWjnCv0EhZbv/KnvAIaoSg2l/CWGQB23KqI2zLmJhBZC7Ot1xbmes274rDEctQ1skDdo7lsX/bQljbOiK4Wu5THBdP7Y3g6g3xadOc9iL896m4+Nc+9P5uPkRmFso5mUzNLWFior1tLRAIUO+zr3Bwx1I4Or855jYvhI1tWYTkOeYWTO6DkBoNULdZTl5Zev5j7tmj2zC3tIGdg/aOOUPbh7t8Vh+TfluPCt5uqOjjgU37jyMtPQOt6ubcJTFh8TqUtbPB4E6tAQCrdh1CkLc7yjs6IDMrC39evol9p89jTK/PtZ71rTbtOuLXuTPh6xcAP/9A7NkVjnRZOho2bgYAmDd7BuztHdC1Z85UMa3atMcPo4chYsdWVKteC6dOHMP9u3cwaMh3Osnbrl17zJ07G35+fvD3D8CuXTuRLktH48ZNAABzZv8Me3t79OiZ84C4zMxMPHmSs+9mZWUhLi4W9+/fh5mZmXI+am0SCARo3vpzRGxZAycXNziWc8G29ctg+865eeoPQ1C9dl00bfk/AECLtp2w5Jep8PYNhK9/EPbv2gIZz82a8372FQ7sWIayb9q1yM35886fnJO3brOcvPpq1wytHTbEzIaWt327dpg9dy78/PwQ4O+Pnbt2IV2WjiaNGwMAfp49B/b29ujVsweA/O1abFycTtu1rvXCMG7jAVR0c0IlDyesP3EJaRmZaFsz5wuOHzbsh6ONJb5p+SlExmXg56z6t7HVm/Pxu8uJ/ivYgVjCbGxs0KFDB0RGRqJt27YFlu3Tpw/Mzc3x888/Y+TIkbCwsEBwcDC+/fZbteXd3d0RHh6OYcOGYcGCBahRowamT59e4JOIxWIxZs6cieHDhyM7OxvBwcHYs2ePct7CyZMno3///vDx8YFMJivwduNVq1Zh6tSp+O677/D8+XM4ODigVq1aaNmy8BeEo0ePxqtXr9CtWzcYGRmhX79+aNq0qcpt0SNGjED37t0RFBSEtLQ0PHz4/idAapNNWCXUPrpO+T5o9vcAgKdrd+Bq77EQOZeFmVvuiTnt0TOcb90fQXPGwnNIN6Q/e4Vr/X9E7OHTOsvc4NOPIE1MxKqNWxEvkcLXyxM/TRgLO7EYABAdGweBMHc0Zmx8PPoOG618vyViD7ZE7EHlSkH4ddoEnWRu1eEryNLTsGLhTKSmJMM/KARjJv0CE5PcueGiXz1HUmLurdm1P22ExAQJtm9YAakkDh7efhgz6Zd8k7drS+M2PZGRnoaNSycjLTUJPoFV8PUPS2CcJ3Ns9DOkJOXeMvfkwQ38OrG38n34mp8BADXrtka3wVO1lrVpkAckqelYcuoq4lLSEeBoi0Wf14e9hRkA4FViKoR5OvKT0jMwef85xKWkw9rUBBWc7LC6a2P4OGj3SbtvNfq4BiSJSVixOQJx0kT4ebrhlx+GKR8OFB0bD6EwN++OQ8eRmZWF72erzkXYu2Nr9PmijU4yB3/aB1kZafgzYgIy0hPh6FEVTXssU5nfMCn+CdJTtf/AhsJq0KoXMmRp2LpiItJSk+AVUBX9x/z2zj78VGUf/vPIFgDAoik9VdbVecBU1KjbVqt5G7XJybtp6SSkpSbBO7AKBn2vJm+iVPn+yf0bmD8p9zy5c23OMVejbmt0/Xqa9rIa2D7cpHZVSBOTsXT7PsRJE+Hv4Yr5YwbC/s2DYF7FSSDIkzddloFZv29DTLwUIhNjeLg4YvKgbmhSu6qmjyhxn9Stj4REKTatWwWJRAIvbx9MmDxLeavs69cxKue6wKBKGD7qB2xY+zvWr14Jl/LlMWbcZHh4Fn6UZXHUqVsXCYkJWL9uHSQSCby9vTF58lTlLdQ5eXO3cXx8HIYO+Vr5fkd4OHaEhyM4OBgzZ/2sk8w55+Z0rFg4C6kpyQgICsGYSXPVnJulyvc552Yptm9YDqkk/s25ea5WbmFWx5DOzQDQqE1PyGRp2JQn76Dv8+dNTszN+/j+DcyflJt3x9rcvF2/1nZew2mHDTWzIeWtW7cOEhITsG7demW7NnXyZGW7FvP6tUq7Fhcfj6+HDFW+Dw/fgfDwHQgODsbPs2ZqLedbzaoEQpKchsUH/kRsYioCypfF4v4dlA9WeSVJVLkepqITGHP7fcgEipKcoI4AAA0bNkTFihUxf/58fUcp9eRyOSpUqIDPP/8cU6ZM0frnRRrrfz6Zoqp6bYu+IxTJC2H+B9qUZpL0/HOelGYfXdL+xVVJSw9r+P5CpcjyqI/0HaFIgr2LP+WDrpUxMqxLj2rCv99fqBQpk5Hy/kKlyHNxyd/aqm3GyNB3hCJJzLZ+f6FSJD7d8v2FShlD+4tKAf6RT6r8LNU/wb60co46pu8IRWL6WT99R9CJPwqYBudDUv/uFX1H0AuOQCxBEokEx48fx/Hjx7F4cfGfbvkhevz4MQ4dOoS6detCJpNh4cKFePjwIbp06aLvaEREREREREREpAY7EEtQlSpVIJFIMGvWLAQEGN5IN10QCoVYvXo1RowYAYVCgUqVKuHIkSOoUKF0TCBORERERERERESq2IFYgh49eqTvCKWem5sb/vzzT33HICIiIiIiIiKiQmIHIhERERERERERFYuwDOdX/ZAJ31+EiIiIiIiIiIiI/qvYgUhEREREREREREQasQORiIiIiIiIiIiINOIciEREREREREREVCwCI86B+CHjCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERFYuQD1H5oHEEIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBHnQCQiIiIiIiIiomIRCDkH4oeMIxCJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGvEhKkREREREREREVCwCI45R+5CxA5H+U6pe26LvCEV2KfgLfUcokqsbbuo7QpG0qBKn7whF8qv5j/qOUGTfSML1HaFI+vue1HeEInlh6a/vCEWWLhfpO0KRmN++ou8IRdL7TFt9RyiS6b2T9R2hyEyy0vQdoUiOPPbSd4QiqeYp0XeEIhMIFPqOUCQCGFZe0r7rUk99RyiSVP9W+o5QJBX1HYCoBLB7mIiIiIiIiIiIiDRiByIRERERERERERFpxFuYiYiIiIiIiIioWIRGAn1HIC3iCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERFYtAyIeofMg4ApGIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIcyASEREREREREVGxCI04B+KHjCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBrxISpERERERERERFQsAj5E5YPGEYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFGnAORiIiIiIiIiIiKRSDkGLUPGTsQyaC8evUK06ZNQ2RkJJ4/fw5HR0eEhobi22+/RcOGDbX2uTsjD2JzxB7ES6Tw9fTA0H49UcHfV23Zh0+eYtXGrYi6/xDRMa/xde9u6Ni6hdayvcvuk2rw/q43bKpWgqmLIy50GITo3UcLrlOnBoJmj4FlkB/Sn77EvRlL8GztTh0lzvVpRQFCvQUQGQPP4oCDF+WQJBeubq1AAeqHCHH+jhxHLiu0G/QNhUKBLRtW4ujBPUhJSUZghWD0HfQdnMu7FVjvwN4d2L1jE6SSeHh4+aBX/2/hFxCkk8yGtI23/HEOaw6eRlxCMvzdnDC6cwtU8nJVW/bopRtYue8knsbEIys7G+6O9uja5GO0rB2q9ZxvbTv4BzbsOYw4aQL8PFzxXc9OqOjrpbZsxNFT2HfyLB48fQEACPRyx8DObTWW14Z9e3ciInwLpJJ4eHr5oM+AofAPqKCx/J+njmPT+t8RE/0Kzi6u6NazH8Kq19JZXiDnmNu+YQWOHdqNlJQkBFQIQa9BI+HsUvAxdygyHHt2bECCJB7uXr7o0X84fP21f8xt/vMK1py4hNikVPg7O2BM27oIdnd6b739l+9gzIYDqF/RG/N6tNR6znd1aGSF+tUtYGEmxJ3HMvweIUV0XLbG8vNGlUNZ2/yXlIfPJGP17gRtRsXuvZHYFr4T8RIJvL288PWAfggM8Fdb9tHjJ1i7fgPu3ruP6JgYDOjbG+3bttFqvncZ0vUEkHPMndk3H9fObIMsLREuXlXR8POJsHX01FjnyqmNuPrnJiTGPQcA2Dv7oWazQfAKqquzzOEbl+OPQ7uQkpIM/wrB6DVwFJxc3AusdyhyOyJ3rle2E937fQcf/4o6ybt9w3L88aZd868Qgl6DRhWiXduOvXnate79h8NXZ3kNpx02xMyGmPfg9oU498d2pKUkwcu/Ctr3Go+yzh4a6xzdtRzXzh/G6xcPUcbEFJ5+oWjReTgcXbR/HbR/705EhG9+c/3jiz4DhsKvgOufv04dx6b1K5XXP1179tf59Q9RacHuYTIYjx49QlhYGI4dO4aff/4Z165dw4EDB1C/fn18/fXXWvvcY6f+wuLf16LHFx2wfO5M+Hh5YOTE6ZBI1f9RJJPJ4FyuHPp17Qw7W7HWcmliZGGOxKtRuD50UqHKm3m6ovrupYg7fg6nq7XBwwVrELx0Khwaf6LlpKpqBQpQzU+AAxflWHNUjsws4Is6QhgVopVytgWqeAsQLdVNx+Fbu8I3Yv+ecPT7egRmzFkKkakZpo7/DhkZMo11/jx5FGtWLETHzj0w69cV8PDyxbTx3yFBKtF6XkPaxgfPX8OcrfvRv1V9bBw3EP6uThg0bw3iE9X3dtpYmKPPZ3WxZmxfbJ0wGG0+roqJq3fir+t3dZL38F/n8eva7ejdoQXWzPwBvh6u+Gb6fMQnJKotf+nGHTT5qDoWjx+OFVNGw9HeFkOn/YqYeO3vBwBw+uQxrFq+BF906Y4585fB08sHk8eNglTDfnj75nXM/WkKGjb5DHPmL0fN2p9g5tRxePzooU7yvrUnfD0O7N2G3oNGYsrsFRCZmmLm+GEFHnNnTh3BuhXz0aFzL0yftwoeXr6YOX4YEqTxWs164PIdzN5zCv0b18TmbzshwMUBA1fsQlxyaoH1nscnYu7eU6jq5aLVfJq0rGOJph9ZYlWEFOMXx0CWocCYXg4wLuAr53GLXmPQtJfK1/QVsQCAc9fStJr1+MlTWLp8Jb7q0gmL5/8Cby9PfD9uAiRSqdryMpkMTk5O6NWjG+xsbbWaTR1Du54AgAtHluPyyXVo9PlEdB6+FcYmZtixpDeyMjUfc5ZiJ3zSagS6jNyBLiPD4eZfC7uXf43Yl7ppj/fuWIeDe7ei58DRmPzzCohEZpg54dv3tBOHsWHlr2jfqQ+m/rIG7p5+mDnhW623E0BOu3Zw7zb0GjQKU2avhKmpGWaOf1/eI1i/Yj7ad+6NafNWw93LTyft2tu8htIOG2pmQ8v7x56VOH1wAzr0moChUzbBxNQMy2f2Q2YBeR/cOo+PG3fGkMmb0H/scmRnZ2HZzL6QpRd8jiyunOufxfi8Sw/Mnr/8zfXPyPdc/0xGwyYtMGf+CtSo/QlmTf0Rjx890GpOotKKHYhkMAYNGgSBQIC///4bHTp0gL+/PypWrIjhw4fj7NmzWvvcbbsi0aJJQzRvVB+e7q4YPrAPTEUm2HfkD7XlA/18MbDnV2hY52MYGxtrLZcmrw+exJ0J8xC960ihynv064S0h89wa9QsJN9+gMeLN+BV+EF4fdNDu0HfUd1PgD9vKXD3BfA6Adj7txxWZoB/eUGB9YzLAK1rCbH/ghzpGToKi5xvWyN3bUWHL7qheq1P4eHli8HDf4AkPg7nz5zSWG9vxBY0bNoK9Ru3gJu7F/p9PQImIlMcOxyp9cyGtI3XH/4L7T+thjYfV4WPiyN++KoVTE2MEfHnJbXlqwV4oUHVIHg7O8LN0Q5dGtWGn2s5/HPvsU7yboo8gjYNP0Gr+h/D29UFY/p8CVMTE+z54y+15ScP7Y3/Na0Hf083eJZ3wg8DukGuUODCtds6ybt75zY0btYCDRs3h5u7JwYMHg6RqSmOHtqvtvze3eGoElYD7Tp0gpu7B7p07QVvHz/s26u7kcoKhQL7d29Fu897oFqtOvDw8sWgYeMhiY/FhbMnNdaLjNiMBk1bo16jlnB190LvQaNgIhLh+OG9Ws277uQ/aF+zEtpWD4JPOXv82L4BTI3LIOLvmxrrZMvl+H7jQQxsUguudjZazadJs48tEfFHEi7eSsfTV1lYslUCsZURwoLMNNZJSpEjITn3VaWCKV7FZeHWQ+02GOE7d6F5syZo2rgRPNzd8c3gQRCZinDwkPrzX4C/H/r17on6devo5fxsaNcTCoUCl06sRY0mA+ET0ghlyweiWdefkJIQg/tXNV9j+AQ3gFfFurB19IStoxc+bjkMxiJzvHp0WSeZD+zegraf90S1WnXg7uWHgcMmQBofi4sFtBP7d21C/SZtUPdNO9Fr0GiIRKY4cUS77URu3h5v8vpi4LDxkL6nXdsXsQn132nXRCIRTmi5XTO0dtgQMxti3lMH1qFR2/6oVK0BXNwD0GngDCRKY3D9guY7oPqOWYbqddvBydUXLh6B6DRgGqSxL/HsoeZzZEnY8871T/831z/HDu1TW/7t9U/bDp3g6u6BLl17w8vHD/t1eP1DVJqwA5EMQnx8PA4cOICvv/4aFhYW+f5dLBZr5XMzM7MQdf8BwioHK5cJhUKEVQ7GzSjdfJOubeJaoYg9dkZl2evDp2FbK1R3GSwASzMBHkXnjm6TZQIv4oDy9gXXbVpVgHsvFXgUo+WQ74iJfgmpJB7BodWUyywsLOEbUAFRt2+orZOZmYkH9+4gJDRMuUwoFCIktBruaKhTUgxpG2dmZeHW4xeoWcFbuUwoFKJmBR9cvf/0vfUVCgXO3bqPR69iEebvqcWkOTKzsnD7wRPUCM69/UUoFKJ6cCCu3S3cN9TpsgxkZ2XD2jJ/+1bSMjMzcf/eHVTOtx9W1bjvRt2+qVIeAEKrVtf6fptXTPQLSCVxqJTnmDO3sISPfxDu3r6utk5WZiYe3otCpcq5dYRCISqFVsfdKPV1SkJmVjZuPY9BLb/c282EQgFq+bnh6uOXGustPfw3bC3N0L6G9m9DVKesrRFsrY1w417uqJE0mQL3n2bAz92kUOswMgI+CTXDiQsp2ooJIGc/vnvvHqqEhiqXCYVCVAmtjFu3ddMRXxSGeD2REPcMqYmv4R7wkXKZyMwKTh6V8eLRP4Vah1yejaiLkciSpcLZs4q2oiq9ftNOVKxcXbksp52oiLtR19TWUbYTobl1hEIhKlWujru31dcpKbnt2rt5C9OuvZNXy+2aat7S3w4bamZDyxsf8wxJ0lj4Vcq9pdfM3AruPiF4fPdKodeTnpoEADC31N6XZznXP1FqrsPDEHVbfcflnds3VMoDQJWqNTSWJ/rQcQ5EMgj37t2DQqFAYGBgoevIZDLIZKpD52UZGRCZFO6PIABISEyEXC6HnVj1ZGYrtsGTZy8KvZ7STFTOAbLoWJVlsuhYGNtYQWgqgjxd8+0HJcXCNOe/Kemqy1NkCuW/qVPBTYByYgFWH5FrL5wGUkkcAEAsVr0NTiy2g1TD7SJJiQmQy7NhI7ZTWW4jtsXzZ9odKWdI21iSnIpsuRx21pYqy+2tLfHoVayGWkBSajqajvoZmVlZEAqEGPtlS9QKUj+3WEmSJibn5LWxUlluZ2ONxy9eFWodizbsgIOdDaoHa56Dp6Tk7Idy2OTbd23x/OkTtXWkkng1+7otJBLd3HINAAmSnOMq//FjB6lE/TGXmCjNOeZs89d5ocVjTpKShmy5AvaW5irL7S3N8TBG/Ta79PAFdp6/ga3Dumgt1/uIrYwAAAnJqvMdJiRnQ2xVuO+cqwWZwdxUiJMXtXsbWuKb87PtO18g2orFePr0uVY/+98wxOuJ1MTXAABzK9Vvmcyt7JGaqLktBoDYF1HYPLcTsrJkMBGZo1WfRbB31kF7/ObcrL6diFNbJ+ltO/FOHWuxLV48f6SVnG8lFJA34X15ddyuAYbVDr9laJkNLW9SQk5bYGXjoLLc0sZe+W/vI5fLsWvdLHj6V4Gzm1+JZ3zr7fWP+J1t+/7rn/zX7Zp+FwQIhAXf2USGjR2IZBAUiqLPuzZjxgxMmqQ6D+Dwr/tjxOABJRWL/qWK7gI0C8s9uWw9XfTOKSszoHEVATadkCNbB31bp/44hKWLZivfj50wS/sfWgyGuI2Ly8LUBJvHD0JaegbO3X6AOVsPwLWsHaoF6O7BJP/GmogDOPzXeSye8B1EJrq/TbG0On38IFYs+kn5ftT42QWUNmwp6Rn4YdMhTPhfQ9haaL5VuKR9FGqG3m3Fyvc/r1HfYVEU9aqZ48qddEiTDKDRIBW3zu/G0S0TlO/b9l/6r9dl6+iFr0ZHQJaWhLuXD+Lg+tHoOHR9iXci/nn8AFYuzj0fjxw/p0TXX9JOHz+IlYty85b2ds0Q22FDy2xoeS+d3ovtKycq3/cetaTY69y5aipePb2LryesK/a6iEi72IFIBsHPzw8CgQC3i3Bb0tixYzF8+HCVZfGPinZbk421NYRCIeLfmeBcIk3Q24TmJU0WHQtROdVvDUXlHJCZkKS10Yd3XyjwIj63U/jtQzwsTFVHyFmIND+0w8kWsDAVoFfj3FExQqEA7mWBMF8BfgqX41/0O2tUreYn8M3zpOSszEwAgFQqga1d7vaTSuPh6aX+21MraxsIhUb5JrROkEogtn3PfcRFZIjb+C1bS3MYCYX5HpgSl5gM+3dGJeYlFArh7pizHQPcnfHw5Wv8vu+k1jsQxdaWOXkTklSWxyck5htt9K71ew5h7a4DWPjjt/DzUP+E6ZKWsx8K8z24RyqVQPzO6IW3xLZ2+SYYl0olsNXigyjCanyi8kTRzMyc+fQSpPEqx1yCNB6e3uqPOWtrcc4xJ3n3mIvX+LOWBFsLMxgJBfkemBKXnAoHK/N85Z/GJeCFJBFDV+1RLpO/Obiqjl6AXSO7ws1BXOI5L91Mx/2nuXMTlDHK+dLBxtJIpQPQxtIIj19mvnd9DmIjVPIVYd567Y/MsH5zfn73gSkSqbRUnp8N4XrCJ7gBnD0rK99nZeUcc6lJcbC0cVQuT02KQ1nXgu8IMSpjAnHZnCewlnOvhFdPruGfE2vRqNPkEs1ctcanKk9KzsrK2U/VtRMeGtoJq7ftxDvn5kSpBDbikj0357Rr+a8l1OdV/zRxqwLbNW3kNax22NAyG1reoLD6GO6bOxXD22MuKSEW1rZllcuTE+Lg4vH+O8d2rJqKm/+cwKDxayC2dyrRrO96e/3z7p1C77/+UXfdrr1rCKLSjHMgkkGws7ND06ZNsWjRIqSk5J9XSarmiYsikQjW1tYqr6LcvgwAxsZlEODjjUtXc+fAkcvluHj1OoICtDfEXpekZy/DvkEtlWUODT+C5OxlrX1mRhYgSc59xSYCyWkKeDrmjpgzKQO42APPNQyIeRwDLD+QjZWH5MrXy3gFbjxWYOWhku/YMjM3h7OLq/Ll6u4Jsa0drl++qCyTmpqCe1G3EBCofv4yY2NjePv649qV3DpyuRzXrlyEv4Y6/5YhbuO3jMuUQQUPF5y7lTt/oFwux9+3HiDEx62AmqoUCgUysrK0EVGFcZkyCPR2x/lrt5TL5HI5zl+/jWA/b4311u06iN/DIzFv7FBU8PHUes63jI2N4ePrj6uXcx9II5fLce3yJY37bkBgEK5eUX2AzZV/Sn6/zcvM3AJOLq7Kl6u7F8S29rh+5YKyTGpqCu7fuQm/wEpq11HG2BhevgG4flX1mLtx5QL8AtTXKQnGZYxQobwjzt3LnbNTLlfg3L2nCPFwzlfey9EW27/7EluGdVG+6gV5o7qPK7YM6wInsVW+OiUhPUOB6Lhs5et5TBYkidmo6CNSljETCeDjZoK7T97/QJQ6YeZISJbjn6j095YtLmNjY/j5+uLy5dw5tuRyOS5fvooKRZjuRFcM4XrCxNQS4rIeype9ky/Mrcvi6Z3ceZJlacl49fgKXIo6n6FCjuyskn+oTk474aZ8lXfLaSduXDmvLJPTTtyAX0Cw2nW8bSfy1pHL5bh+9Tz8AtXXKbG87m/zFr1du3E1t4622jVDbIcNLbOh5TU1s4CDk4fyVa68D6zEDrh745yyTHpqMp7cvwoPv8oa16NQKLBj1VRcv3AUA374HfaO2v8SNef6JyDf9c/VyxcREBikto5/YEVcy3f9c0FjeaIPHUcgksFYtGgRPv74Y9SoUQOTJ09GSEgIsrKycPjwYSxZsgS3bt16/0r+hY5tWmDGr4sR4OuDCn4+2L5nH9LTZWjeqB4AYPovC+Fgb4d+3XLmrcrMzMKjp88AAFmZWYiNk+Dug0cwMzOFq7N2v1kDACMLc1j4uivfm3u5wrpyIDLiE5D+9CUCpg6HaflyuNJzNADg8bLN8Bj0JQJnjMTT1eFwqF8Lzh2b43zr/lrPmtf5uwp8FCRAfLICCSlAnUpCJKUBd57n9lJ1rivEnecKXLynQEZWTqdYXhlZQFpG/uXaIBAI0KLN5wjfsgZO5V3hWM4ZW9avgK2dParX/lRZbtL336BG7Tpo3qoDAKBl2y+w6Jfp8PELhK9/BUTu2gZZehrqN/pM65kNaRt/1fgjjP99B4I8y6OSV3lsPHIGaRkZaPNxVQDAjyu3w9HWGkPbNwEArNx3AhU9y8O1rB0ysrJw+tpdRJ69jLFfttJu0Dc6t2iEyYtXo4KPJ4J8PLF531GkyzLQsl7OwwcmLlyFsnZifN2lHQBg7a4DWLZ1DyYP7Q0XR3vEvRmVZGYqgrlpAZNSlpDW7Tpi/tyZ8PHzh59/BezdtR3p6elo2LgZAODXOdNhZ18WXXv0BQC0bN0BP475Frt2bEVY9Vo4ffIY7t+LwsAh32k961sCgQDNW3+OiC1r4OTiBsdyLti2fhls7RxQrVYdZbmpPwxB9dp10bTl/wAALdp2wpJfpsLbNxC+/kHYv2sLZOnpqNuopVbzdq1TBeO2HEZF13Ko5FYO609dRlpGFtpWz/mj44dNh+BoY4FvPvsYIuMy8HNSHTlkZZrTiffucm078Gcy2jawwqu4LLyOz8L/GltDmpSNizfTlGXG9rbHhZvpOHwm9ws9gQCoG2aOU5dSIdfR3csd2rXBz3Pnwc/PF4H+/tixazfS09PRtHFDAMBPc36Bvb0devfoDiBnAv0nT3I6dTOzshAbF4/79x/A1MwU5V1ctJ7X0K4nBAIBqtbthnMHl0Bc1gM29q74K/JXWNg4wiekkbLc9oXd4RvSGKF1vgIAnN49B55BdWBl64xMWQpuX9iLp/f+RvuBK3WSuVnrLxCxdTWcXNxQtpwLtm9YBrGdA8LytBPTfxyMarXqoknLjgCA5m06Y+m8KfDyrQAf/yAc2P2mnWjYQid5d255m9cZ29Yvh/iddm3aD4NRrXZdNH2T97O2nfHbL1Pg7RsIH/+K2L9rM9J10K4ZWjtsiJkNMe+nzbri6M6lKOvkDruyrjiwbQGsxY6oVK2hstxv03qhUrWG+KTplwCAHaum4J+/9qHndwsgMjNHojRnzlUzcysYm2jvOqhVu45YMHcGfP0C4OdfAXt2bYcsPR0NGjcHkHP9Y2/vgK969AOQc/0zbsw32LVji8r1zwAdXv8YGqER50D8kLEDkQyGt7c3Ll26hGnTpuG7777Dy5cvUbZsWYSFhWHJkuLPv6FJg08/gjQxEas2bkW8RApfL0/8NGEs7N5M3B4dGweBMHcwb2x8PPoOG618vyViD7ZE7EHlSkH4ddqEd1df4mzCKqH20dw5RIJmfw8AeLp2B672HguRc1mYueWOgEl79AznW/dH0Jyx8BzSDenPXuFa/x8Re/i01rPmdfa2AsZGQPMwIUxNgKexwNaTqnPviS0BM5Hmdehamw5dkJ6ehqULfkZqSjICg4Lxw+TZMDHJDRn96gWSEnNvWfu4TkMkJkixZf1KSCXx8PT2xQ+TZ+vkVghD2sZNqwdDkpSCJbuOIi4xGQFuzlj0TTflLcyv4hMgFOQed+myTEzfsAcxkkSIjI3h6eyAqb3/h6bVS3b0iCaNP6oOaWIylm3djThpIvw9XTFv7FDYi60BANFx8RDmmVR6x+GTyMzKwti5qnOM9flfS/TtqP1Oz0/qNEBiQgI2r18NiSQeXt4+GD95lnI/fP06BoI82zcwqBKGjfwRG9f9jvVrVsC5fHmM+XEKPDx1O79kqw5fQZaejhULZyE1JRkBQSEYM2nuO8fccyQlSpXva3/aCIkJUmzfsBxSSc5tjGMmzdX6Mdcs1B+SlDQsPngWsUkpCHApi8V92sD+zS3Mr6RJEApK30X23pPJEJkI0LudGOamQtx5LMOsVXHIzDOYt5x9GViZq97EUslXBAfbMjih5Yen5FWvzqdISEjA2vUbIZFI4O3tjWmTJypvrY95/RqCPNs4Lj4eA4d+q3y/fcdObN+xEyHBlTB75nSt5zW06wkAqNaoLzIz0nBk83jI0hLh4h2G9gNXoIxx7jGXEPsUacm5UxykJsfh4PrRSEmIgYmZFRxcAtB+4Ep4BH6sk8wt23eFLD0dKxfNRGpKMvyDQjB64rx32oln77QTjZGUIMX2jcuRIImDh7cfRk/8BTYlfEuwOjntWhpWLMzNO2bSL2ratdxriZx2TYLtG1ZA+ibvmEm/5HuIhvbyGkY7bKiZDS1v/Va9kSFLw/YVE5GWmgQv/6roO2YpjPPkjYt+ipSk3LxnjmwBACyZ0kNlXV/0n4rqddtpLWvO9Y8Um9avglQSDy9vX4yb/JNyO8W+jlY5N+dc/4zDxnUrseHN9c/oH6fCw1PzHSZEHzKB4t88nYLIQL28fVnfEYrsUvAX+o5QJFc33NR3hCJpUaX4Dw3Qpch/dDsaqSR84xSu7whFkmHt+P5CpcgLS/XzZJVm6fJS0EtdBEG3N+s7QpH0PtNW3xGKZHrv5PcXKmVMstLeX6gU2fU4VN8RiqSap+6e8F5SBALD+pNKAMPKS9r3PKngeZtLG2+b1/qOUCQVffNPYfIhutzk0/cX+gCEHjql7wh6wTkQiYiIiIiIiIiISCN2IBIREREREREREZFGnAORiIiIiIiIiIiKRSAsffM7U8nhCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjzoFIRERERERERETFIhByjNqHjL9dIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUZ8iAoRERERERERERWLQCjQdwTSIo5AJCIiIiIiIiIiIo3YgUhEREREREREREQasQORiIiIiIiIiIiINOIciEREREREREREVCxCI86B+CHjCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERFYtAyIeofMg4ApGIiIiIiIiIiIg04ghE+k95IXTXd4Qiu7rhpr4jFEnIl0H6jlAkT87d0HeEImkSmqDvCEV2LLm9viMUSQXrJ/qOUCTpWSJ9RygyO2GcviMUya8ZA/UdoUgWdjql7whFcjuzir4jFJm1cYq+IxRJa8+r+o5QJGnGlvqOUGRG8ix9RyAqlnsZtvqOUCT7r5bTd4Qiqeir7wRExccRiERERERERERERKQRRyASEREREREREVGxCIQco/Yh42+XiIiIiIiIiIiINGIHIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBEfokJERERERERERMUiEAr0HYG0iCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijTgHIhERERERERERFQvnQPywcQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCM+RIWIiIiIiIiIiIqFD1H5sHEEIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBHnQCQiIiIiIiIiomIRCDlG7UPG3y4ZpOPHj0MgEEAqleo7ChERERERERHRB40jEKlUO3PmDD755BM0a9YMkZGRes2iUCiwfcNy/HFoN1JSkuBfIQS9Bo2Cs4tbgfUORW7H3h0bkCCJh7uXL7r3Hw5f/4o6yfxpRQFCvQUQGQPP4oCDF+WQJBeubq1AAeqHCHH+jhxHLiu0mtPuk2rw/q43bKpWgqmLIy50GITo3UcLrlOnBoJmj4FlkB/Sn77EvRlL8GztTq3mfJdCocDB7Qtx9th2pKUkwSugCjr0Go+yzh4a6xyNWI5r5w8j5sVDGJuYwsM/FC07D4eji5dO8hrSPmxo23fPnj0I374dEokEXt7eGDhwIAICAtSWffz4MdatW4d7d+8iJiYG/fr1Q9t27bSe8V05+8QKHHuzTwRUCEGvQSMLsU+EY0+efaJH/+Hw9Q/Set7deyOxPXwH4iUSeHt5YdCA/ggM8Fdb9tHjx1i7fgPu3buP6JgY9O/bB+3bttF6xrwUCgX+OboAUee3ISM9CY4eVfBR6wmwcfAsVP0rJ5bj4qG5CPqoK2q1+F67YQFsP/AH1u85hHhpAnw9XPFdr86o6Kv+2Ik4cgr7T57Bg6cvAAAB3u4Y2LmdxvLaolAosHPTUpw4HIHUlGT4BYag24AxcHJx11gn6sYl7Nu5Do/v34ZUEoshY35GWK16Osm7f+9ORIRvhlQSD08vX/QZMBR+ARU0lv/r1HFsWr8SMdGv4Oziiq49+yOsei2dZAWAnZEHsGXnbsRLpPDx8sDQfr1Qwd9PbdmHT55i1YYtuHP/AaJjXuPr3j3wvzYtdJYVMMx22NDaNebVPkPLrFAocGznAlw4sQ3pqUlw96uC1t0mwN7JU2OdE3uX4dbFw3j98gGMjU3h5lsFTT7/DmWddXM9fPHIAtw+vw0ZaUko51EFn7Qt/Ln58vHlOH9wLip91BW1W2n/3ExUmnAEIpVqK1euxJAhQ3Dy5Em8ePFCr1n2hK/Hwb3b0GvQKEyZvRKmpmaYOf5bZGTINNY5c+oI1q+Yj/ade2PavNVw9/LDzPHDkCCN13reWoECVPMT4MBFOdYclSMzC/iijhBGhTjqnW2BKt4CREu123H4lpGFORKvRuH60EmFKm/m6Yrqu5ci7vg5nK7WBg8XrEHw0qlwaPyJlpOq+mPPSpw6sAH/6z0B30zZBBORGZbN7IfMAvaJ+7fO46MmnTF08ib0/3455FlZWDajL2TpqVrPa2j7sCFt3xMnTmD5smXo8uWXWLBgAby9vDDuxx81jpKWpafD2ckJPXv2hK2trVazFWRP+Hoc2LsNvQeNxJTZKyAyNcXM8cPeu0+sWzEfHTr3wvR5q+Dh5auTfeL4yVNYtnwFvuzSGYvmz4O3lxd+GDde8zaWyeDs5IRePbrDTk/b+NqpFbh5Zj0+ajMRrQZugbGxOQ6u7ousTM3b963Xz64h6vwW2Dqp7/woaYf/Oo9f125Dn/+1xJpZP8LPww3fTvsV8QmJastfuhmFxh/XwKIJ32H51NEoZ2+Hb6bOQ0y8RCd539q3cy0O792C7gPGYvxPqyAyNcOcSUMK3Idl6Wlw9/JH1/6jdJgUOH3yGFYtX4zPu/TA7PnL4enlg8njRkIqVb/Nbt+8jrk/TUbDJi0wZ/4K1Kj9CWZN/RGPHz3QSd5jp/7EkpVr0L1TRyz7ZRZ8PD0wasI0SKQJasvLZDK4ODmiX7cvYWcr1knGvAyxHTa0do15tc8QM5/atwJnD69H6+4T0X/8FpiIzLFmTt8Cr9ce3T6PGg26oN+4zeg+ciXk2ZlYM7s3MmTavx6+cnIFbvy1Hp+0nYg2g7bA2MQc+38v5Ln56TXc+nsL7HR0biYqbdiBSKVWcnIytmzZgoEDB6JFixZYvXq13rIoFAoc2L0FbT/vgWq16sDdyxcDh42HND4WF86e1FhvX8Qm1G/aGvUatYSruxd6DxoFkUiEE4f3aj1zdT8B/rylwN0XwOsEYO/fcliZAf7lBQXWMy4DtK4lxP4LcqRnaD0mAOD1wZO4M2EeoncdKVR5j36dkPbwGW6NmoXk2w/wePEGvAo/CK9vemg3aB4KhQIn969Do3b9UalaA7h4BKDzoBlIlMTg+gXNoyf7jV2GGnXbwcnNFy4egeg0cBoksS/x7OFNrec1pH3Y0Lbvzp070ax5czRp0gTuHh4YPGQIRCIRDh06pLa8f0AAevfpg7r16sHY2Fir2TRRKBTYv3sr2r3ZJzy8fDFo2HhI3rNPREZsRoN39gkTkQjHtbxP7NgZgWbNmqJp40bwcHfH0MGDIDIV4eChw2rLB/j7o2/vXqhXt45etrFCocCNP9eicr0B8AhqCDunANTpOBNpSTF4cqvgti5TloITW0fi47aTITKz1kneTXsPo03DT9Cy/sfwcnXB6L5fwtTEBHv/+FNt+clD++B/TevB39MNnuWd8f2AbpArFLhw7bZO8gI52/jQnk1o/XkvVK1ZF26efuj7zSRI4mNx6dwJjfVCwj5Ghy8HIqxWfZ1lBYA9O7ehcbMWaNi4OdzcPdF/8HCITE1x7NA+teX37g5HlbAaaNuhE1zdPdCla294+fhh/17djLbftmsvWjRpiOaN6sPT3Q3DB/WDqcgE+48cU1s+0M8XA3p2Q4M6H+vlmDPEdtjQ2jXm1T5Dy6xQKHDm0FrUbT0AFao2hJNbADr0nYkkSQxuXdJ8rus+YjmqftoO5cr7wdk9EO37zEBC3Eu8eHRD63mv/7kWVeoPgGdQQ9g7B6De5zORmhSDxzfff24+tmUk6rTX3bmZqLRhByKVWlu3bkVgYCACAgLw1Vdf4ffff4dCoZsRce+KiX4BqSQOlUKrK5eZW1jCxz8Id29fV1snKzMTD+9FoVLl3DpCoRCVQqvjbpT6OiVFbAFYmgnwKDp3e8kygRdxQHn7gus2rSrAvZcKPIrRasRiEdcKReyxMyrLXh8+DdtaoTrLEB/zDEnSWPhXyr2VzMzcCu4+IXh890qh15OemgQAMLe0KfGMeRnaPmxI2zczMxP37t5FaGiocplQKERoaChu37qltc8trtx9oppyWeH3idw6utgnMjMzcffePVQNrazyuVVCQ3HzdpTWPrc4kiTPkJYcCxef2splJqZWKOsagpgnBe/DZ/ZMgVtAXZT3/UjbMQEAmVlZiHrwBNWDc2+lFQqFqB5cAdfuFG60W7osA9lZ2bC2tNBWzHxeRz9HgiQOQSE1lMty9uGKuB91VWc5CiMzMxP370UhJDRMuUwoFCIkNAxRt9V/wXHn9g2V8gBQpWoNjeVLUmZmJu7ce4Cw0BDlMqFQiKqVQ3Dj9h2tf35RGWI7bGjtGvNqnyFmlrx+huSEWPgE5Z7rTM2t4OoTgqf3i3C9lpZzvWZmod3r4STJM6QlxaK87zvnZrcQRL/n3PznrilwD9TdudlQCY0E/4nXfxU7EKnUWrlyJb766isAQLNmzZCQkIATJzSPKHiXTCZDYmKiyqugW5oKkiCJAwDYiO1UltuI7ZT/9q6kRCnk8mzY2OavI9VQp6RYmOb8NyVddXmKTKH8N3UquAlQTizA8av66agtLFE5B8iiY1WWyaJjYWxjBaGpSCcZEhNyPt/KxkFluZWNPRKlseqq5COXyxGxdhY8A6rA2U39nFIlxdD2YUPavomJiZDL5flugRPb2iJeotvbOYsiQZJzy7G6fUIqUX87cmKB+4T2bmF+u43FYtVtbCsWQ1JKt3FaUs5+amap+q2NqaUD0pJfa6z34Gok4l7cRFiT4VrNl5c0MRnZcjnsxKojKmzFVojTcLvquxZtCIeDnY1KJ6S2JUjftmuq29jaxl5ju6YvSYkJb/Zh1WNHLLbVeOxIJfH5ytsUUL4kJSQm5bRrYtU/5m3FNogvhQ+wM8R22NDaNebVPkPMnPzmes3SRrUdtrB2QHKC5nNdXnK5HPs2zoC7X1WUc1U/12NJ0XRuNrN0QFqS5rz3r0Qi9sVNVG+qu3MzUWnEh6hQqRQVFYW///4bO3fm3KZTpkwZfPHFF1i5ciXq1atXqHXMmDEDkyapzqnXd/Ao9B8y+r11Tx8/iJWLZinfjxo/u/Dh9aCiuwDNwnK/Cdl6Wl7kdViZAY2rCLDphBzZRa/+wbt4ei+2r5iofN9n1JJir3PHqql49fQuBk9cV+x1vcvQ9mFD276G6PTxg1ix6Cfl+9K+Txia+5f34M9dE5XvG3cr+j6cLH2Js3tnoFmvlShjrJsvQ0rC2oj9OPLneSyaOAIiE+3dQvfXif1Ys2SG8v2wH3/R2mcREVF+V/7ag91rJirffzWs+Ndre9dNRsyzu+jzw4Zir+td9/7Zg1MRE5Xvm3X/d+fmM3tnoLmBnZuJtIEdiFQqrVy5EllZWXBxcVEuUygUEIlEWLhwYaHWMXbsWAwfrvot0Y0nKYWqG1bjE5UnimZlZgIAEqTxsLXLHRGVII2Hh7f6b8qsrMUQCo2Uo3zy1hHbvuc+4iK6+0KBF/G5owbfPijFwlR1FKKFSPODUZxsAQtTAXo1zh2YLBQK4F4WCPMV4KdwOfR0B3k+suhYiMqpjkwTlXNAZkIS5On/bpTp+1QMqw8P32Dl+7f7RFJCLKxtyyqXJyXEobxn4HvXt2PVVNy8dAJfT1gDsb1Tiec1tH3Y0LZvXtbW1hAKhflGB0glEr1NaK5Ozj6R+/TszMycSU7V7ROe3upHbFoXuE/Yqa1TEt5u43cfNiGRSvX6EJq83Cs0QFm33Ns9s7Nytm9achzMrR2Vy9OTY2HnrH6UXtyLG0hPicOuRR2UyxTybLx6dAG3zm5E90lXIBQalXh2sbUljIRCxEtVH5gikSbBXlzw7WQbdh/C2ogDWDBuGPw8XEs8W15VatSBj38l5fss5T4cB3GefTgxIQ7uXtodxVJUVtY2b/Zh1WNHKpVoPHbEtnb5yicUUL4k2Vhb5bRr74xAlUgTYCcWa/3zi8pQ2uG8DKFdy4t5tc8QMgdWaQBXn9xzXdabc11yQhysxLnnupTEWDi5v39E+t51UxB15QT6jF0HG7uSv15zD2qA9nnPzdnqz81pybGw13Bujn1+A2nJcdi5UPXc/PLRBdw4uxG9pmjn3ExUGvEWZip1srKysHbtWsyZMweXL19Wvq5cuQIXFxds2rSpUOsRiUSwtrZWeZmYFO5bIzNzCzi5uClf5d29ILa1x40rF5RlUlNTcP/OTfgFVlK7jjLGxvDyDcCNq7l15HI5bly5AL8A9XX+rYwsQJKc+4pNBJLTFPB0zB2VaFIGcLEHnmu4q+txDLD8QDZWHpIrXy/jFbjxWIGVh0pP5yEASM9ehn2DWirLHBp+BMnZy1r7TFMzCzg4eShf5Vx9YCV2wN3r55Rl0lOT8eT+VXj4Vda4HoVCgR2rpuLa+aMY+OPvsHfUzh/chrYPG9r2zcvY2Bi+fn64cvmycplcLsfly5cRWEF3t3O+T84+4ap8ub7ZJ67/i33i+tWLymXa2ifyMjY2hp+vL/65nDuvXc42voKgwNLxJERjkQWs7T2UL7GjL8wsHfDiwVllmYz0ZLx+dhWO7ur3YRef2mg3dBfaDt6hfDmUrwSfyi3RdvAOrf2BYlymDAK83XH+eu4DUORyOc5fv4Vgf2+N9dbtOoDfw/di3vffoIKPp1ay5WVmZoFyzm7Kl4ubN2xs7XHz6nllmbTUZNy/cwM+ASEFrEn3jI2N4eMbgKuXLymXyeVyXL18EQGBQWrr+AdWxLUrl1SWXfnngsbyJcnY2Bj+vt64dOWacplcLselq9dQMbB0dc4ChtMO52UI7VpezKt9hpBZZGYB+3Ieypejiy8sbRzw4GbuuS49LRnP7l+Fm0/B12t7103BzYtH0GvUKtiW1c71monIAjYOHsqXraMvzKwc8Pz+O+fmp1dRTtO52bc2OnyzC+2H7FC+HMpXgm/llmg/RHvnZqLSiCMQqdTZu3cvJBIJevfuDRsb1ZEPHTp0wMqVK/Hzzz/rNJNAIECz1l9g55bVcHJxQ9lyzti2fjnEdg6oVquOsty0HwajWu26aNqyIwDgs7ad8dsvU+DtGwgf/4rYv2sz0tPTUbdRS61nPn9XgY+CBIhPViAhBahTSYikNODO89yewM51hbjzXIGL9xTIyMrpeMwrIwtIy8i/vKQZWZjDwtdd+d7cyxXWlQOREZ+A9KcvETB1OEzLl8OVnjm3nz9ethkeg75E4IyReLo6HA71a8G5Y3Ocb91fu0HzEAgEqNO8K45ELIWDkzvsHV2xf9sCWNs6olK1hspyS6b2QnD1hvik6ZcAgB2/T8Glv/ah13cLIDIzR6I0Z74VM3MrGJsUMEFlCeQ1pH3Y0LZvu3btMHfOHPj5+cE/IAC7IiIgk8nQuHFjAMDs2bNhb2+Pnj17AsiZKP3JkycAcr40iYuLw/3792FmZqYy8lqbBAIBmrf+HBFb1sDJxQ2O5Vywbf0y2L6zT0z9YQiq166Lpi3/BwBo0bYTlvwyFd6+gfD1D8L+XVsg08E+0b5dW8ye+wv8/XwR4O+Pnbt2IT09HU0aNwIA/DRnLhzs7dGrR3cAb7fx05z/V27jBzA1M0V5HWxjgUCAih93w5U/foONvQcsbV1x6ch8mFk5wr1CI2W5/St7wiOoEYJqfwljkQVsy6l2zpQxMYPIXJxveUnr3LIxpixahQreHgjy9cKWfUeQLstAi3ofAwAmLfwdZe3EGNSlPQBgbcQBLN+6G5OG9oazo71yrkQzUxHMTbV3rOUlEAjQpFVn7Nn2O5xc3ODgWB47Nv4GWzsHVK1ZV1lu1ricJy43avE5ACA9LRXRL58q/z025gUeP4iCpZUN7Mtqb8Ryq3YdsWDuDPj6BcDPvwL27NoOWXo6GjRuDgD4dc502Ns74Kse/QAALVt3wLgx32DXji0Iq14Lp08ew/17URgw5DutZcyrY5uWmDlvEfx9fVDB3xfbd0ciPV2GZg1znl49/ZcFKGtnh77dc9rfzMxMPH76DEBOuxYbH4d7Dx7CzNQU5V2ctZ7XENthQ2vXmFf7DC2zQCBA7SbdcHzPb7Bz8oCtgyuO7pgPK1tHVKiae65bNasnKoQ1Qq1GOe3F3nWTcfVMJLp8sxAmphZIenO9ZqqD6+FKH3fDP8dyzs1Wdq64cHg+zK0c4RGUmzdyRU94BjVCxY++hInIAnZOqudgYxMzmJqL8y0nQCD87z5g5L+AHYhU6qxcuRKNGjXK13kI5HQg/vTTT7h6VfdPV2zV4SvI0tOwYuFMpKYkwz8oBGMm/aIyqjH61XMkJebe7lP700ZITJBg+4YVkEri4OHthzGTfsn3AAJtOHtbAWMjoHmYEKYmwNNYYOtJ1fkNxZaAWSmYysMmrBJqH82dpy5o9vcAgKdrd+Bq77EQOZeFmVvuHx9pj57hfOv+CJozFp5DuiH92Stc6/8jYg+f1mnu+q16I0OWhu0rJiItNQleAVXRb8xSGOfZJ+KinyIlSap8/9eRLQCAxVN6qKzriwFTUaNuO63mNbR92JC2b926dZGYkIB169dDEh8Pbx8fTJ4yRXnL0euYGAgFuRdU8fHxGDJ4sPJ9eHg4wsPDERwcjFk//ZRv/dqSs0+kY8XCWUhNSUZAUAjGTJqrZp+QKt/n7BNSbN+wHFJJ/Jt9Yq7Wb6usV+dTJCQkYO36DZBIJPD29sa0yZNyt/Hr1yrbOC4+HoOGfqN8v33HTmzfsRMhwZXw88wZ+davDcGf9kFWRhr+jJiAjPREOHpURdMey1TmUEqKf4L0VP1Pjt/4o+qQJiZh+dbdiJMmws/TFb98PxT2bx6s8io2HoI823fH4RPIzMrC93OXqqyn9/9aou/nrXWW+7N23SBLT8OqxdNz2rUKlfHd+Pkq+3DMO/vww3u3MGvcAOX7Tb/nzKX4cf0W6PvNRK1l/aROAyQmSLFp/SpIJfHw8vbFuMk/KY+d2NfRKvtwYFAlDBs5DhvXrcSGNSvgXL48Rv84FR6emkeFlqQGn36MhIRErN64BfESKXy8PTFr4g+wsxUDAGJex75zzEnQ99tRyvdbdu7Blp17ULlSEOZNn/Tu6kucIbbDhtauMa/2GWLmTz/rg0xZGnavmoD01ES4+1dFt++WqVyvxcc8QWpS7rnu72ObAQC/z+yusq52vaej6qfavR6uXCfn3HxqZ865uZxHVTTrqXpuTowrHedmotJGoFCUphsTibTr4h3tP7mwpB26XPD8U6VNyJfav7WqJCnO3dB3hCJxttTycFAteJls/f5CpUgF8RN9RyiShCzDaiMAwE5Yup6Q+z5bLvvqO0KR9PM7pe8IRXLbpIq+IxSZtXHh5lQuLWyzC/c01NIizdhS3xGKzEiepe8IRMXy92vDOtc9eanvBEUzov1/Y/a4Bz20f6ddaeC9eq++I+jFf2MvJiIiIiIiIiIion+FtzATEREREREREVGxCIQco/Yh42+XiIiIiIiIiIiINGIHIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBEfokJERERERERERMUiEAr0HYG0iCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERExSIQCv4Tr39j0aJF8PT0hKmpKWrWrIm///5bY9l69epBIBDke7Vo0UJZpkePHvn+vVmzZv8qW2HxISpERERERERERERasGXLFgwfPhy//fYbatasiXnz5qFp06aIioqCo6NjvvI7duxARkaG8n1cXBwqV66Mjh07qpRr1qwZVq1apXwvEom090OAHYhERERERERERESFIpPJIJPJVJaJRCKNHXhz585F37590bNnTwDAb7/9hsjISPz+++8YM2ZMvvJ2dnYq7zdv3gxzc/N8HYgikQhOTk7F+VGKhLcwExERERERERERFcKMGTNgY2Oj8poxY4bashkZGbh48SIaNWqkXCYUCtGoUSOcOXOmUJ+3cuVKdOrUCRYWFirLjx8/DkdHRwQEBGDgwIGIi4v79z9UIXAEIhERERERERERUSGMHTsWw4cPV1mmafRhbGwssrOzUa5cOZXl5cqVw+3bt9/7WX///TeuX7+OlStXqixv1qwZ2rdvDy8vL9y/fx/ff/89mjdvjjNnzsDIyKiIP1HhsAORiIiIiIiIiIiKRSD8b9zkWtDtyiVt5cqVCA4ORo0aNVSWd+rUSfn/wcHBCAkJgY+PD44fP46GDRtqJct/47dLRERERERERESkQw4ODjAyMkJ0dLTK8ujo6PfOX5iSkoLNmzejd+/e7/0cb29vODg44N69e8XKWxB2IBIREREREREREZUwExMThIWF4ejRo8plcrkcR48eRe3atQusu23bNshkMnz11Vfv/Zxnz54hLi4Ozs7Oxc6sCTsQiYiIiIiIiIiItGD48OFYvnw51qxZg1u3bmHgwIFISUlRPpW5W7duGDt2bL56K1euRNu2bWFvb6+yPDk5GSNHjsTZs2fx6NEjHD16FG3atIGvry+aNm2qtZ+DcyASEREREREREVGxCIQCfUcolb744gu8fv0a48ePx6tXrxAaGooDBw4oH6zy5MkTCN+ZPzIqKgqnT5/GoUOH8q3PyMgIV69exZo1ayCVSuHi4oImTZpgypQpWp2bkR2IREREREREREREWjJ48GAMHjxY7b8dP34837KAgAAoFAq15c3MzHDw4MGSjFcovIWZiIiIiIiIiIiINOIIRPpPkaRb6DtCkbWoEqfvCEXy5NwNfUcoEkHNivqOUCTR567rO0KRWZpk6jtCkWQotDfsXxtMhTJ9RyiyF5nam9xZGxoGJ+g7QpE8FVbQd4QiMYPh7cOn7hvWPhxYXqzvCEUikhvWeQMAFOBte2TYFsz8U98RimTvBEM7dzTSdwCiYuMIRCIiIiIiIiIiItKIIxCJiIiIiIiIiKhYBEKOUfuQ8bdLREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxDkQiYiIiIiIiIioeAR8Iv2HjCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBrxISpERERERERERFQsAiEfovIh4whEIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhII86BSERERERERERExSIQcozah4y/XSIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFGfIgKEREREREREREVi0Ao0HcE0iKOQCSDJhAIEBERoe8YREREREREREQfLI5ApFLt9evXGD9+PCIjIxEdHQ1bW1tUrlwZ48ePx8cff4yXL1/C1tZWJ1kUCgUityzGn0fDkZaSBO/AUHTq+yMcnT001rl78wKO7F6Npw9uIUHyGv1GzkPlGg10lnfLhpU4enAPUlKSEVghGH0HfQfn8m4F1juwdwd279gEqSQeHl4+6NX/W/gFBOkk78HtC3H22HakpSTBK6AKOvQaj7IFbN+jEctx7fxhxLx4CGMTU3j4h6Jl5+FwdPHSala7T6rB+7vesKlaCaYujrjQYRCidx8tuE6dGgiaPQaWQX5If/oS92YswbO1O7Wa810KhQIHti/CmWPbkZ6SBM+AKujYa1yB2/hIxHJcPX9EuY09/UPRqvMwrW/jt3n3bF6CU0d2IC01CT4BoejS73uUc9Gc986Nizi0aw2evDnmBo6ai9Caujnm9u2JwM7wLZBK4uHp5YO+A4fAP6CCxvJ/njqOjetWISb6FZxdXNGtV19Uq15LJ1kBYN/enYjIk7fPgKHvzbtp/e+5eXv2Q5gO8wI5+0TEpqU4cXgnUlOS4RdYGV0HjIGTi7vGOlE3LmH/znV4fP8WpJJYDBkzG1Vr1dNZ3vCNy/HHoV1ISUmGf4Vg9Bo4qsC8AHAocjsid65HgiQe7l6+6N7vO/j4V9RZZkM7d2xT5k1CQIVg9Bk04r15D+4Nx548eXv2HwZfHeU9s28+rp3ZBllaIly8qqLh5xNh6+ipsc6VUxtx9c9NSIx7DgCwd/ZDzWaD4BVUVyd5Dakdfpt556alOHE44k07EYJuhWgn9u1ch8f3b79pJ35GmA7bCUNr1wwpryFmNrS8ANC7iwdaNXaCpYURrt1OxJwl9/DsZbrG8kIh0LOTB5rUc4S92Bix8RnYfywaa7Y+1XrWbYdOYP2eI4hLSISfe3mM6PE5Kvp6qi0bcfRPRJ46hwfPXgAAAr3cMeiL1hrLE33oOAKRSrUOHTrgn3/+wZo1a3Dnzh3s3r0b9erVQ1xcHADAyckJIpFIJ1kO71qF4/s3olO/cRg5YwNMRGZYOHUAMjNkGutkyNLg6hGAz3t/r5OMee0K34j9e8LR7+sRmDFnKUSmZpg6/jtkFJD3z5NHsWbFQnTs3AOzfl0BDy9fTBv/HRKkEq3n/WPPSpw6sAH/6z0B30zZBBORGZbN7Ffg9r1/6zw+atIZQydvQv/vl0OelYVlM/pClp6q1axGFuZIvBqF60MnFaq8macrqu9eirjj53C6Whs8XLAGwUunwqHxJ1rN+a5je37HyQMb0LH3eHw7ZSNEIjP8NrP/e7bxBXzSpDO+mbwRA75fhuysTPw2o5/WtzEAHIxYjWP7NuLL/j9gzIx1EJmaYf6UQe8/5jz90bnvWK3ny+v0iT/w+/Il6NSlG+YuWApPbx9MGjcaUg3Hzu2b1zFn1lQ0atIccxcsQ83aH2PmlPF4/OihbvKePIZVy5fgiy7dMWf+Mnh6+WDyuFEF5p370xQ0bPIZ5sxfjpq1P8HMqeN0lvetfTvX4PDezeg2YCzG/bQaJqammDtpSIH7hCw9DW5efviq/2gdJs2xd8c6HNy7FT0Hjsbkn1dAJDLDzAnfFtgOnzl1GBtW/or2nfpg6i9r4O7ph5kTvkWCNF4nmQ3t3LE7fAP279mOPl+PwLQ5y2Bqaobp44cXmPevk0exdsVCdOjcEzN/XQkPL19MHz9cJ3kvHFmOyyfXodHnE9F5+FYYm5hhx5LeyMrUnNdS7IRPWo1Al5E70GVkONz8a2H38q8R+/Ku1vMaUjv81r6da3F47xZ0HzAW439aBZGpGeZMGlLgPiFLT4O7lz+69h+lw6Q5DK1dM7S8gOFlNrS8Xdq7okMLF8xechf9R15GWroccyZWgomx5ltZv2zvhrbNnTFv6T18Nfgiflv7KGc9LV20mvXwmYuYt24H+nT4DGunj4GfhyuGzlyI+IQkteUv3rqDph9Vw5Ifv8HKSSNQzt4WQ2YsREy8VKs5iUordiBSqSWVSnHq1CnMmjUL9evXh4eHB2rUqIGxY8eidevWAHR3C7NCocAfkevRrENfVK5eH+U9/NF98DQkSF7jyvljGutVrPIpWnUegtCaDbWeMS+FQoHIXVvR4YtuqF7rU3h4+WLw8B8giY/D+TOnNNbbG7EFDZu2Qv3GLeDm7oV+X4+AicgUxw5Haj3vyf3r0Khdf1Sq1gAuHgHoPGgGEiUxuH5B88i+fmOXoUbddnBy84WLRyA6DZwGSexLPHt4U6t5Xx88iTsT5iF615FClffo1wlpD5/h1qhZSL79AI8Xb8Cr8IPw+qaHVnPmpVAocGL/OjRp1w/Bb7Zxl0HTkSiJwbUCtnH/sUtRo25bOLv5orxHILroaBsrFAoc3bsBn/2vL0Jr1Ierpz96DpkCqeQ1Lv/9h8Z6lap+grZdBqOKDke7AMCundvQpNlnaNikOdzcPTFw8DCIRCIcPbRfbfk9u3agalgNtPtfJ7i5e+DLbr3g7eOHfXsidJJ3985taNysBRo2zsk7YPBwiExNNebduzscVcJqoF2HnLxdur7Ju1d3o2gVCgUO79mEVp/3RtWa9eDm6Ye+30yGJP41Lp07rrFeSNjH6PDlIITVqq+zrMCbEb+7t6Dt5z1RrVYduHv5YeCwCZDGx+Li2ZMa6+3ftQn1m7RB3UYt4eruhV6DRkMkMsWJI3t1ktnQzh37dm1D+zx5vx7+43vzRkZsVuZ1dfdCn69HwkRkij8Oa3cbKxQKXDqxFjWaDIRPSCOULR+IZl1/QkpCDO5f1Xw+8QluAK+KdWHr6AlbRy983HIYjEXmePXostbzGlI7DORkPrRnE1p/3gtVa9Z9005MgiQ+FpfOndBYL6edGKiXdsLQ2jVDygsYXmZDywsAn7cqj7XbnuD03/G4/zgV0+ZFwd5OhE9rOWisUynQCqfPxeHMRQlexchw/K9Y/P2PFEF+VlrNujHyKNo2+Ait6tWGt6szxvTuBFMTE+w5fkZt+SmDe+J/TerA39MNnuWd8EO/L6FQKHD+epRWcxoygVD4n3j9V/13f3Iq9SwtLWFpaYmIiAjIZJq/cdOFuJjnSJTGIiA493Y9MwsrePoG42HUFT0mUy8m+iWkkngEh1ZTLrOwsIRvQAVE3b6htk5mZiYe3LuDkNAw5TKhUIiQ0Gq4o6FOSYmPeYYkaSz8K+XZvuZWcPcJweO7hd++6ak53x6aW9qUeMbiENcKRewx1QuT14dPw7ZWqM4yxCm3cW3lMjNzK3j4hOBREbZxWmoyAO1v49jonGOuQkhN5TIzCyt4+QXjQSk75jIzM3FfzbFTOTQMUbfVd7RG3b6JkCpVVZZVCauu8fgsSW/zVs53rFfV+PlRt2+qlAeA0KrVtd425PU6+jkSJHGoGFJDuczcwhI+/pVwL+qaznIU1uvoF5BK4lCxcnXlspy8FXFXQ96szEw8vBeFSqG5dYRCISpVro67t7X/MxrauSPmzTYODlXdxr4BQbh7+7raOllv8ub9GYVCIYJDq+GulvMmxD1DauJruAd8pFwmMrOCk0dlvHj0T6HWIZdnI+piJLJkqXD2rKKtqAAMqx1+6207EZSvnaiI+1FX9ZhMPcNr1wwrL2B4mQ0tr3M5U9jbmeDCFalyWUpqNm7dSULFAM2dgddvJyEsRAw3FzMAgI+nBUKCrHH2kvZG22dmZeH2w6eoXilQuUwoFKJ6pUBcu/ugUOtIl2UgKysb1pbm2opJVKpxDkQqtcqUKYPVq1ejb9+++O2331C1alXUrVsXnTp1QkhIyHvry2SyfB2PGRmAiUnRb3lOlMYCAKzF9irLrcT2SJTGFXl92iaV5GQSi1XnhxSL7SDVcBtcUmIC5PJs2IjtVJbbiG3x/Nlj7QR9IzEhZ/ta2ah+U2llY6/c9u8jl8sRsXYWPAOqwNnNr8QzFoeonANk0ao/hyw6FsY2VhCaiiBP134HedKbbWxpo7oPW9rYI6lI23gmvHSwjTUdc9Y2dkgoZcdczrEjh/id+VhtxLZ49vSJ2jpSSXy+49NGbAuJRPu3UL7Na5OvfbDF8yLkFeso71tvf+9q9wlJ6dongNx2OH+baqf8t3clJUrVtsPWYlu8eP5IKznzMrRzh1QSr/ysdz9bU95EjXnt8ELLeVMTXwMAzK1U92FzK3ukJhbcDse+iMLmuZ2QlSWDicgcrfosgr2zr9ayAobVDr/1NpdNvsz2pbKdMLR2zdDyAoaX2dDy2tsaAwAk0gyV5fHSDNjZmmistz78KczNjbB+URjkcgWEQgGWr3+Ewydeay2rNDEZ2XI57GxUOzbtbKzw+MWrQq1j4cYIONjaoEaeTkii/xJ2IFKp1qFDB7Ro0QKnTp3C2bNnsX//fvz0009YsWIFevToUWDdGTNmYNIk1Tnqug74Ad0Gjnvv5/59KhKblk5Wvh80dtG/yq8rp/44hKWLZivfj50wS49p3u/i6b3YvmKi8n2fUUuKvc4dq6bi1dO7GDxxXbHX9SG4eHovtq7I3f/7jlpc7HWGr5qKl0/vYejEtcVe17vOnYzEhqVTle8Hf7+gxD+DDMuZE/uxZsl05ftvf5ynvzCF8OfxA1i5OLftHTl+jh7TFI6hnTtO/XEIyxf9rHw/ZsJPekzzfrfO78bRLROU79v2X/qv12Xr6IWvRkdAlpaEu5cP4uD60eg4dH2JdiIaYjv814n9WLNkhvL9sB9/0WOa9zO0ds3Q8gKGl9nQ8jauWxYjBuZ+iTx6yr8bud3gk7JoXNcRk+dG4eGTFPh5WWJIb2/ExmfgwB8xJRW3RK3ZdQiHz1zEknHfQmRirO84RHrBDkQq9UxNTdG4cWM0btwY48aNQ58+fTBhwoT3diCOHTsWw4cPV1l2+k7hPjOkWj14+gYr32dl5XyrliiNg41tWeXyJGkcXD0DCrdSLapW8xOVp0dmZWYCAKRSCWztckf1SaXx8PRSP3LMytoGQqFRvon6E6QSiG3t1db5tyqG1YdH3u37Jm9SQiys827fhDiU93z/N3w7Vk3FzUsn8PWENRDbO5Vo1pIgi46FqJzq6EpROQdkJiRpbfRhxbD6GOGbO1I3KzNnH05OUN2HkxPi4FKIfTh81TTcvHQCg7W0jStXrwcvv7z7hPpjLjEhHm6e/iX++cWRc+wIIX1nNF6CVAJbOzu1dcS2dvkeWJIglejkqfJv8777wAipVAKxbeHzSrWcN7RGHXj7V1K+z7tPiPO0a4kJ8XDz0v8+UbXGpypPSs7KymnXEqTxKu1wgjQeHt6a2mGx2nY4USrJN6KqJBjauaNazU9Unuyc+WafSHgnb4JUAk8v9R1r1hrzxpd4Xp/gBnD2rKx8//ZaIjUpDpY2jsrlqUlxKOta8LnOqIwJxGVznnxczr0SXj25hn9OrEWjTpMLrFcUhtgOV6lRBz5q2omEfO1EHNxLQTthaO2aoeUFDC+zoeU9/Xc8bkZdUr43Ns6ZEc1WbII4SaZyuZ3YBHcfJmtcz8AeXtgQ/hRHT+WMOHzwOBXlyorw1f/ctNaBKLa2hJFQmO+BKfEJSbAXWxdYd/3eI1iz+xAWfj8Efh7ltZKPyBBwDkQyOEFBQUhJSXlvOZFIBGtra5VXYW9fNjWzgKOzu/Ll7OoDa7EDoq6fU5ZJS03Go3vX4BVQuYA16YaZuTmcXVyVL1d3T4ht7XD98kVlmdTUFNyLuoWAwIpq12FsbAxvX39cu5JbRy6X49qVi/DXUOffMjWzgIOTh/JVztUHVmIH3M2zfdNTk/Hk/lV4+GnevgqFAjtWTcW180cx8MffYe/oWqI5S4r07GXYN6ilssyh4UeQnL2stc80NbNAWSd35cvpzTa+c/2sskx6ajIe378Kz/ds4/BV03Dt/FEM0uI2znfMueUcc7ev/a0sk5aajId3r8G7FBxzeRkbG8PH1x9Xr+ReUMvlcly9fAkBgUFq6wQEBuHq5Usqyy7/c0Hj8VmSlHkvq+a9dvmSxs8PCAxS+fkA4Mo/Jd825GVmZoFyzm7Kl4ubN2xs7XHz6nllmbTUZNy/cx2+AcEFrEk3zMwt4OTipnyVd/OC2NYeN67k5k1NTcH9OzfgpyFvGWNjePkGqNSRy+W4fvU8/AJL/mc0tHOHmbk5nFxclS9X95xtfO3yhXfy3oRfYCW16yijIe/1KxfhV8J5TUwtIS7roXzZO/nC3Losnt7JnRNXlpaMV4+vwKWo8xkq5MjOynh/uSIwxHa48O3EDfgEvH/6G20zuHbNwPIChpfZ0PKmpWXj+at05evR01TExWcgLESsLGNuZoQK/la4EaX+ycYAYGoihEKuukwuV0Co+cHNxWZcpgwCvdxUHoAil8tx4UYUgv28NdZbu/swVu7Yj1/HfI0gHw/tBfxACISC/8Trv4ojEKnUiouLQ8eOHdGrVy+EhITAysoKFy5cwE8//YQ2bdroNItAIED9Fl/hQPgyODq5w96xPPZuWQQb27KoXD33KYO/TuqDyjUaol7zzgCA9LRUvH6VO6dYXMxzPH14GxaWNrAr66zVvC3afI7wLWvgVN4VjuWcsWX9Ctja2aN67U+V5SZ9/w1q1K6D5q06AABatv0Ci36ZDh+/QPj6V0Dkrm2QpaehfqPPtJb1bd46zbviSMRSODi5w97RFfu3LYC1rSMqVct9gvWSqb0QXL0hPmn6JQBgx+9TcOmvfej13QKIzMyRKM35FtPM3ArGJqZay2tkYQ4LX3fle3MvV1hXDkRGfALSn75EwNThMC1fDld6jgYAPF62GR6DvkTgjJF4ujocDvVrwbljc5xv3V9rGd8lEAhQt3lXHI5YhrJOHrBzLI/92xbC2tYRwXm28eKpvRFcvSE+bdoFABD++1Rc/Gsfen83HyIzC+WcWKbmljDR4jYWCARo2PJL7Nu+HI7O7nBwLI9dmxZBbFsWoTVynzA4d2I/VKnRAPU/6wQg/zEXq6Njrk27jvh17kz4+gXAzz8Qe3aFI12WjoaNmwEA5s2eAXt7B3Tt2RcA0KpNe/wwehgidmxFteq1cOrEMdy/eweDhnyntYx5tW7XEfPnzoSPnz/8/Ctg767tSE/PzfvrnOmwsy+Lrj1y8rZs3QE/jvkWu3ZsRVj1Wjh98hju34vCQB3lBXL2icatOmPPtpUo5+IGB8fy2LlxCWztyqJqzXrKcj+NG4iqteqhUYsvAOTsEzEvnyr//XXMczx5EAULKxvYl9XeiGWBQIBmrb9AxNbVcHJxQ9lyLti+YRnEdg4Iq1VHWW76j4NRrVZdNGnZEQDQvE1nLJ03BV6+FeDjH4QDu7dAlp6Oug1baC1r3syGdu74rE1H7NyyBs7l3TTmnfL9N6heuw6avcnbom0nLP5lGnz8AuHjXwH7dm2FLD0N9RppdxsLBAJUrdsN5w4ugbisB2zsXfFX5K+wsHGET0gjZbntC7vDN6QxQut8BQA4vXsOPIPqwMrWGZmyFNy+sBdP7/2N9gNXaj2vIbXDbzM3adUZe7b9Dqc37cSOjb/B1s4BVWvWVZabNS7nicuNWnyuzBydp52IjXmBxw+iYKmDdsLQ2jVDymuImQ0tLwBs3fMc3T93w7OXaXgZnY4+XTwQFy/DqbO5c7vOmxyMk2djsWPfSwDAX+fj0bWjG6Jfp+Ph01T4eVviizauiDxSuLkI/60uLRpi0pK1qODtjoq+nti8/xjSZDK0rJvzRf+ExWvgaCvG151z/tZcs/sQlm2LxJTBPeBc1g6x0gQAgLmpCOam2rsOJiqt2IFIpZalpSVq1qyJX375Bffv30dmZibc3NzQt29ffP/99zrP07hNT2Skp2Hj0slIS02CT2AVfP3DEhjnGdUYG/0MKUm5t/k9eXADv07srXwfviZn7qaadVuj2+DceYa0oU2HLkhPT8PSBT8jNSUZgUHB+GHybJVRmNGvXiApMUH5/uM6DZGYIMWW9SshlcTD09sXP0yerfG2xpJUv1VvZMjSsH3FRKSlJsEroCr6jVmqsn3jop8iJUmqfP/XkS0AgMVTeqis64sBU1GjbjutZbUJq4TaR3PnWgyanbM/Pl27A1d7j4XIuSzM3HL/SEp79AznW/dH0Jyx8BzSDenPXuFa/x8Re/i01jKq06BVL2TI0rA1zzbuP+a3d/bhpyr78J9vtvGiKT1V1tV5wFTUqNtWq3mbtu2BjPQ0rP9tClJTkuAbWAVDxy1WzfvqKZLz5H18/wbmTuirfL9tdc48dLXrtUKPIVO0lvWTuvWRkCjFpnWrIJFI4OXtgwmTZymPndevYyAQ5g76DwyqhOGjfsCGtb9j/eqVcClfHmPGTYaHp5fWMqrkrdMAiQkJ2Lx+NSSSeHh5+2D8u3kFqnmHjfwRG9f9jvVrVsC5fHmM+XGKzvK+9Vm77shIT8fqxdORmpIE/wqhGD5+vso+EfPqGZITpcr3j+7dxKxxA5TvN/+eM0fax/Vbos83E7Wat2X7rpClp2PloplITUmGf1AIRk+c9047/AxJefLW/rQxkhKk2L5xORIkcfDw9sPoib/ApoRvr9XE0M4drTt8CVl6OpYt+AmpKckICArG2Mlz3sn7XGUbf/Qm79b1K5R5x06eo5O81Rr1RWZGGo5sHg9ZWiJcvMPQfuAKlDHOzZsQ+xRpybntWmpyHA6uH42UhBiYmFnBwSUA7QeuhEfgx1rPa0jt8FuftesGWXoaVi2ennPcVaiM78bPV9knYt7ZJx7eu6XSTmxSthMt0FfL7YShtWuGltcQMxta3o07nsHM1AgjB/nB0qIMrt1KwIhJN5CRqVCWcXEyhY117ryBvyy/jz5dPDB8gC9sbYwRG5+BXQdfYvUW9Q9zKymNa4dBkpiEZdv3Ik6aBH+P8vh1zNfKW5ijYyUQCnJHl+04fAqZWVkYM2+Fynr6dPgM/f6n/S/2iEobgUKhULy/GNGH4chV7T/ttqQ5miW8v1Ap8iRJ+3+AlSRBTe3fMlqSBOeu6ztCkZmbZOk7QpGUM1P/9NbSSqEwvNsopJlW7y9UipgIDWsfNhFmvr9QKSKH4e3DZx+UfX+hUiSwfJq+IxSJyMiw9mEAUBjgfkyU1+gxl/UdoUj2TjCsv+tsqjZ6f6EPQPTorvqOoBPlZv03H9zJEYhERERERERERFQs/+X5Af8L+BAVIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUZ8iAoRERERERERERWPkGPUPmT87RIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBpxDkQiIiIiIiIiIioWgUCg7wikRRyBSERERERERERERBqxA5GIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKID1EhIiIiIiIiIqJiEQg5Ru1Dxt8uERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKiYhEIBfqOQFrEEYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFGnAOR/lM+ujRT3xGK7FfzH/UdoUiahCboO0KRRJ+7ru8IRaKoWUnfEYrM4dYJfUcokp/XG+s7QpF0bG2r7whF5mYVp+8IRRKdJtZ3hCIJ2TJc3xGKJKbHdH1HKLI6Pi/0HaFIHNMf6ztCkcSZuOo7QpFlKfhnlTYpwHnVtO3w4Pv6jlA0z1L0naBoqjbSdwKiYuOZjoiIiIiIiIiIikfIm1w/ZPztEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGnEORCIiIiIiIiIiKhaBkA88+pBxBCIRERERERERERFpxA5EIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhIIz5EhYiIiIiIiIiIikUg4Bi1Dxl/u0RERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiIpHKNB3AtIijkAkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg0YgciERERERERERERacSHqBARERERERERUbEIhByj9iHjb5eIiIiIiIiIiIg0YgciGbQePXqgbdu2+o5BRERERERERPTB4i3MVGoJBIIC/33ChAn49ddfoVAotJ5ly8U7WHPuFuKS0+DvaIvRTcJQycVBbdndVx9gQuRZlWUmRkKcG9VJ6znf9WlFAUK9BRAZA8/igIMX5ZAkF65urUAB6ocIcf6OHEcua38bKxQKbN+wHH8c2o2UlCT4VwhBr0Gj4OziVmC9Q5Hbsff/7N13WFNXAwbwN1EIe6vsvVyI4mytW6t1a22rVqviXq22tVr3qLbWWqtV66gTt4iIe8/WXbeiiCI4mEmYYSXfH0gwSFAqSUi/9/c8eR7v5Zyb18vJuXA499xdmyAVp8DVwxtfDBsPb9+aGs9bmPngzqX4+/hOyDLS4O5XF70GTUUVBze1dY7uXoUbl44i4dkjGBgawd03EJ17j0NVRw+N5bRpWh+eXwfDsl4tGDlWxeWeIxG/51jpdZo1RI0FE2FWwwey2OeImrcccRvCNJaxJAf2hiE8dCsk4hS4e3ghePiX8PGrrrb8X2dOYEvIGiTGv4CDoxM+HzgcQQ0aazEx0K2FKZrVM4KJkRBRsbnYsC8NCSn5pdaxMheiVxsz1PY2hKGBAAkp+VgTnorHz/M0nlehUODAjqU4f3wnsjLS4OFXF72CS2/DR3avwo2Lxdpwn3GopsE2XEjf2oRCocDebctw7uguZGWmwdMvEL2HTkbVUs7vgztXcCR8HWKj70IqTsTQCb8isGErreQ1atQKJk07QGhmibwXT5C+dxPynj4qsaxl8Hcw9PB/bX925HWkblyk4aRFDuwNw25lm/DG4OFj39AmTmJLyJ9IiH8BB0dn9Bs4TKttYv/eMOwO3aZsw4OHj4VvKXnPnTmJLSFrlHn7Dxyq1byhB45ic/gBpEik8HZ3xbjgz1HDx7PEsnuOnMSBU3/h0ZM4AICfpzuG9f1YbXlN2BcRjrDQ7RCLU+Dh4YWhI0bD1+/1dlro7JlT2LRxHRLiX8DR0QlfDBqC+g0aaS0voH9tWB/z6tN1A9C/zFtPXcH6YxeQlJoOX6eqmNirHWq7O76x3oHLdzBxXThaBvhg0dCPtZC0wNZz17H+1FUkpWXC18EOE7s1R21X+zfWO3DtPiZuOoiWNT2xaEAnLSQlqng4A5EqrOfPnytfixYtgoWFhcq+b775BpaWlrCystJojkN3YvDLsasY1rQWNg/qAN9qVhi57QRSMmRq65iJDHBkTHfla/+orhrNWJLG/gLU9xHg4BU51h+TIzcP+LSZEJXe4lPvYA3U9RQgXqL5gcNCEaEhOLR3BwaNnIDZC/6EkZExfpz2FXJystXW+fvMUYSsXowevYPxw6J1cPXwwY/TxkEqSdFK5uMRa3D64Cb0Cp6Gr2ZvhkhkjD9+HIbcUjI/vHsZTdv1xpezNmP49yuRn5eLP+YNRbYsU2M5K5maIPVGJG6NnflW5Y3dndFgzwokn7yAs/W74tGS9ai9Yg7s2jbVWMbizp0+jnWrluKTPl/g58Wr4ObhhdlTv4FUIi6x/L07t/Dr/Nlo3e4jLFi8Cg2bfID5cybjyeNorWXu8L4J2jQyxoZ9aZizOgXZOQp8/bkVKldSX8fESIDvB1kjP1+BXzdJMGVZMrYdTkeGTDufvWN7XrbhwdMwbs5mGIqM8ce8t2vDX83ejBGTV0Ken4s/5mq2DQP62SaO7F6Lk/u3oPfQKfh2bghEImMsmT2i1PObI8uCs7sfPh08SWs5AUBUqyHMOnyGjBPhEC+bgbwXsbAc8DUEpuYllk/d/DuSfvxS+UpZPBmK/Hxk37qktcxnTx/H2lXL8EmfAViweBXcPbwwa+q3kJTSJhbOn4XW7Tril8Wr0bBJU/w0ZwpitNQmCvIux6d9vsAvi1e+zDvhDXkL2vAvi1ehUZOm+HHOVMQ8LnlQt7wdPXcBS9ZtxaBPumHNzzPh7eaC8bMXQCxNLbH81dv30LZpIyye+R1WzJ2CqnY2GDfrZyQml/z/K29nTp3An6v+wGd9+uHXJX/A3dMT06dOVHt+7965jQU//YC27dpj0ZI/0KjJ+5g7e7rWzi+gr21Yf/Lq43VD3zIfvHIHC8KOYViHptj63SD4OVXDiKXbkJyWUWq9p8kSLNx9HPW8Sp8oUN4OXruPBRFnMKxtI2z96jP4OdphxOpwJKeX/jPM05RULNx7BvU83jww+v9OIBT8X7z+X3EAkSose3t75cvS0hICgUBln5mZmVZuYQ65eA896niha4AXvOwsMbl9QxhVrozdNx6WWs/OzFj5sjU11mjGkjTwEeDcXQUePAMSpcDei3KYGwO+TqV3eAaVgS6NhThwWQ5ZjnayKhQKHNyzDd0+GYD6jZvB1cMbI8ZNgyQlCZfPn1Zbb//uLWj5YRe0aNMJzq4eCB45ASKRCKeO7NVK5lMHNqJd96GoXb8VHN380GfkXKSKE3DzsvrZfcMmrUDD5t3g4OINJzd/9BnxA8RJzxH36I7GsiYeOo370xchPvzoW5V3G/oZsh7F4e6En5B+LxoxyzbhRegheHw5QGMZi4sI24427TuhVduP4OLqjmGjv4bIyAjHDu8vsfy+PTtRN6ghuvXsDWdXd/TuFwwPL18c2Ku9WZNtGxkj4nQGrkXmIC4hH6t3p8LKXIh6/iK1dT563wQp0nys2ZOGR8/ykCSR43Z0DhLFpc9aLA8KhQKni7XhvqPmQvqGNjx80go0aqHdNgzoX5tQKBQ4vm8T2vccgjoNW8LZ3RdfjJkDqTgR1y8eV1uvZr2m6NJ7NAIbtdZKzkLG77eD7PJpZF89i/zEZ0jfswGK3BwYBX1QYnlFVgYU6anKl6FXTShyc7Q6gBgRtgNt23dE67YdXraJ8RAZGeG4mjaxd0/oyzbxGZxd3dCnXzA8vHy01ib2FMs7/GXeY4cPlJq3e8/P4OLqhj79BsHTywf7tZR3W8QhdG7THB1bfQAPFyd8O+wLiESG2Hus5OvyjK+Go0f71vD1cIObsyMmjhgEuUKByzc12zcUCg8LRbv2H6FNu/ZwdXXDyNFfQSQS4ejhgyWWjwjfhXpBDdDj40/h4uqGz/sPhKeXN/ZFhGslL6B/bVj/8urXdUMfM288fhE93quDbk0C4OVghymftYeRYWXs/vuG2jr5cjm+X78HIz76AM52VlrJWWjj6X/Qo1EtdGtQA17VbDGlRysYGVTG7ovq+6l8uRzfbz6EEe0aw9nGUotpiSoeDiASlSI3Px93X6SgkUfRtHahQIBG7va48TRJbb2snDx0WLob7X/fja92nsLDRIkW0haxMgXMjAV4HF80iyk7F3iWDDjZll73w3oCRD1X4HGChkO+IiH+GSTiZNQKbKDcZ2JqBi/fGnhw71aJdfJyc/EoKhK16hTVEQqFqBXYAA8iS65TnpIT4pAmSYJvrSbKfcYm5nDzCsDjB9ff+jhZmQX3lJuYVZwfSKwaByLp+N8q+xKPnIV140CtvH9ubi4eRt1HQGCQcp9QKERAYBDu37tdYp37926rlAeAwHoNEKmmfHmrYiWElXkl3InOVe7LylYgOi4XXi4GausF+onw+HkeRnxsgUXf2GH6UGs0q2ekjchITohDqiQJvrWLtWHvADy+X7HasD62ieSEp0iVJME/oOh2SGNTc7j71Eb0ffW/WOlEpUqo7OiOnIevnBuFArkP78DAxfutDmEU1AzZNy8Audr5y1NBm4gssU1E3iv5F8GS2kTdeg3Vli9PhW24zmt566ltk5H37qiUBwrasLo2X55yc/MQ+fAxGgTUUO4TCoWoH1ATt+6X/gfUQrKcbOTl58PCzFRTMZVyc3MRFXUfgYH1lPuEQiHqBNbDPTXf33v37qBO3Xoq++oFNVBbvrzpZxvWt7z6dd3Qt8y5efm4G/sCjf2KljARCgVo7OeOG4+eqq234sBZWJuZosd7dTSe8VW5efm4+zQBjX2KZj0KhQI09nHBjZjnauutOHIR1mbG6NFQO0skEVVkHECk/6zs7GykpqaqvLJzy7ammDgzG/kKBWxMVH+htzU1QnJ6ybcwu9mYY3rHRlj0cXPM6dIECoUCAzYeQXyqZm/ve5Xpy7jF77LOyFYov1aS6i4CVLMS4OQN7d26DABScTIAwNLKRmW/pZWN8mvFpaVKIJfnw9L69ToSNXXKU5q0YADZzFJ1RNbM0hZpEvWDy6+Sy+XYveFHePjVhYOLT7ln/LdE1eyQHa/6f8iOT4KBpTmERupn05WXtFQp5PJ8WFlZq+y3tLKGRFzy7ekScQosi5W3KqV8ebMwK7icpmbIVfanZshhaar+UlvFuhJa1jdGfEo+FoZIcPJyFvq0N8d7dTQ/iFjYTs2LtWFzS1uklqENh63XfBvWxzYhFRecQwsr1fNrUYbzqy1CE3MIKlWCPF311lR5uhRCM4s31q/s5IHK9s6QXVY/Y7y8FbQJOayKXTdK+x5LxCmvlS+tDZWnwrxlaZMFeV8vLxZr/pZgSVoa8uVy2Fip/mHAxtICKRLpWx1j+cYdsLO2Qv1XBiE1JbWwPViXcH5TSj5fErG4hPNrBbGW+gh9bcP6lVe/rhv6llmcnol8uQK25iYq+20tTJGUWvKi61cfxiLs7xuY3qeDxvMVJ87IKshrViyvmQmS0kr+Pe3qo2cIu3Qb03tp964AooqKD1Gh/6x58+Zh5kzVNd++79ock7u11Oj71nGugjrOVYq2naqg58q92PnPA4xqrpm/tNV0FaB9UNGtydvPykspXTJzY6BtXQG2nJIjv+zVy+TsyUP4c+lPyu0J0xZo9g3LwZWze7F9dVF7GjJh2TsfM3TtHDyPjcLYGRve+VikXY1ri9C/U9HacIs2v90v1MUJBMDjZ3nYdbxgraAnL/LgVLUyWgQZ46/r6tdZ/Tcun92L7auK2vDQ7969De9cU9CGv5zJNnzx9D5sWTlbuT1i0u86TKNdRvWbIe9FrNoHrtD/n4279uLouQv4feZEiAwNdR2HiCqADFk2Jm+IwPTeHWBdbBCvIsqQ5WDylsOY/nFrWOtgOSqiiogDiPSfNWnSJIwfP15lX/62n8t0DGsTESoJBEjJVP1FPjlDBluzt5shZFBJCD97a8S+7eOP/4UHzxR4llI0a7DwQSmmRqqzEE1F6h+MYm8NmBoJMKht0WwpoVAA1ypAkLcA80PlKK8HXgc1bApv36IZCXm5Bbd9SiUpsLYperq1VJICN0/fEo9hbmEFobASpMX+wiqVpMDK+g33af8LNYNa4hvvgFcyF9ymly5NhqV10YBxujQZju5+bzxe6NofcOfqKYyevh5Wtm9+8ps2ZccnQVRN9Snjomp2yJWmQS5T//CH8mJuYQmhsNJri7JLJWJYFZtxWsjK2ua1BcYlpZR/V9cicxAdV/R+lV9eTS1MhZCmF43AW5gK8SRe/cxnSZoczxJVv/4sKR9B1ct/pmetoJZwK6ENpxVrw2nSZDi5vbkN71xT0IbHzNB8G9aHNhHQoAXcfWort/PyCs5vqkT1/KZKk+H8Fn2ENskz06DIz39ttqHQzPK1WYmvMTCEqHZDZB7brbmAJShoE0JIij00q7TvsZW1zWvlS2tD5akwb1naZEHe18tbF5tlpwlW5uaoJBS+NtswRZr62qzE4jaHH0BI2D4smj4B3u7aeUCCRWF7EJdwfm1KPl9W1tYlnF8JrLXQHgD9bcP6lbdiXzeK07fM1mYmqCQUILnY7L3k1AzYWZi9Vj42SYJnyVKMXbFDuU/+8peLemN/RPjUYXCporn+zdrUuCBvsQemJKdnws789QHN2GQpnolTMXZtxOt5v1uC8G/7wUXLazjqBQFvcv0v43eX/rNEIhEsLCxUXiKDso2ZG1SqhOr2NrjwOF65T65Q4GLMCwQ42ZVSs0i+XI6oBCns3nLA8d/IyQPE6UWvpFQgPUsB96pFsxINKwOOtsBTNXf3xiQAqw7m48/DcuXreYoCt2MU+PNw+Q0eAoCxiSnsHV2ULydXD1hZ2+L29cvKMpmZGXh4/w58/GuVeIzKBgbw8PbD7RtFdeRyOW5fvwwfv5LrvAsjY1NUsXdVvuydvWBuZYf7t84ry8gy0xHz8AbcfdTPNFUoFAhd+wNuXjqGkVPWwLaqc7lnfVeS89dg26qxyj671u9BfP6aVt7fwMAAXt6+uHntinKfXC7HjWtX4etf8vozvv41ceP6FZV9N/65DD815d+VLEeBBHG+8vUsMR+StHzU8Cxa79DIUABPZwM8jM1Ve5yo2FzY26o+ptnethKSpeU/DbikNmxhZYcHxdtw1A24+5behneuKWjDo6Zqpw3rQ5swMjZFVQdX5cvh5fmNvHlBWSYrMx2PH9yEp29AKUfSgfx85D17DEPPV241FQhg4FkdubFRpVYV1WoAQSUDyK79peGQqgrahB9uXLuq3FfQJq7Az7/kW2Z9/Wvi5vWrKvuu/3NZbfnyVNiGi+e9ee2q2jbp518DN17Le0Vtmy9PBgaV4eflrvIAFLlcjis37qCWr5faept278e6nXvwy9SvUd3bQ2258mZgYABvb19cv168PfwDfzXfX3//Grhx7R+Vfdf+uaK2fHnTzzasb3kr9nWjOH3LbFC5Eqq72ONC5GPlPrlcgQv3YxDg4fRaeY9qttj5/WBsmxisfLWo7YMGPm7YNjEY9tZvXjLjnfM6VcWFqFjVvFGxCHBzeD1vVWvs/Lovto3ro3y1qOGJBl7O2DauD+ytzF+rQ/RfxwFEojf4vKE/wq5FYc+NaEQnSTH34CVk5eaha4AnAGBKxF9YfPKasvyKszfxd/RzxInTcfdFCibv+RvPUzPQPfDtFqIvL5ceKPBeDQG8HYEqlkDnRkKkZQH3nxaNBPZuLkSQd8EgY05ewcDjq6+cPCArp+DfmiQQCNC+y6cI27YOVy6cwZPHUVi+cBasbOxQv3EzZbkfJo/Gob1Ff7X8qFtvnDi0B6eP7cPT2MdYs2w+ZDIZmrfppNnALzM379APR3avxK3LJ/DsyX1sWv49LKyronb9onVSls0JxplDm5XboWvm4PLZvfh89E8QGZsiVZKEVEkScnLK93bVV1UyNYFFHX9Y1PEHAJh4OMOijj+MXAp+WPKbMx511hbdUh6zcitMPFzgP+9bmPp5wm14Hzj06oBHv63TWMbiOnf/BEcP7cOJowcR9+QxVi5diGxZFlq1LVgzZ/EvPyBk3Upl+Y5dPsa1KxexZ9c2xMXGYNumtXgYFYkOnbprLfORC1no9IEpAn0N4VS1EgZ3t4AkTY6r94pmbX7TzwqtGhTdBnP4fCY8nQ3QsakJqlpXQqNaIjSvZ4zjlzS/ZqpAIECzDv1wOKyoDYcs+x6Wxdrw0tnBOHOwqA3vfNmG+43RXhsG9K9NCAQCtOrYFwdCV+HGpZN4GvMA65dMgaV1FdRp2EpZ7rcZQ3DywBbltiwrE7GP7iH20T0AQHL8U8Q+uoeURPULvJeHrHOHYVS/OUR130elKg4w69IfAkMRZFfOAgDMew6GaduPX6tnHNQM2XevQpGVodF8JencvReOHtr7sk3EYMXSX5EtkynbxG+/zFVpE5269MQ/Vy4i/GWb2KrlNtGley8cObQXx48eROzLvDKZDK3btlfm3bhuVQl5tyMu9gm2blqHh1GR+EhLeT/t/CEijp7C/hNn8TjuGRas3ABZdjY6tip4MvfsxSuxPKTomhwStg+rtuzCpJGD4FDFDsliCZLFEmRmabZvKNS1e08cPrgfx44eRuyTGCxf+htk2UXn99cFP2L92tXK8p279sDVK5cQtmsH4mKfYHPIekQ9uI+OnbtqJS+gf21Y//Lq13VDHzP3a9UQu/66hj3nbyD6RRLmbDuIrOxcdGtc8IeyyRsi8Fv4SQCAyKAyfByrqLzMjY1gamQIH8cqMKhcqZR3Kqe8zepi14Xb2HP5LqLjUzBn1wlk5eShW4OCQe3JWw7jt/3nivLa26q8zI1EMBUZwsfeVit5iSoa3sJM9AYf1nCDOFOG5WduIDlDBr+q1lj6SUvYvlwL40VqJoSCopl+abIczDpwAckZMlgYGaK6vQ3W9WsLLzvtPmX3/D0FDCoBHYKEMDIEYpOA7adV1ze0MgOMNf9MjLfSuefnyJZlYfXvPyIzIx2+NQIwceavMDQsChj/4inSUotup2ryQRukSsXYuWk1JOJkuHn6YOLMX197sIqmtOo8CDnZWdi+egayMtPg4VcPwyb+AYNXMifFxyIjrejWknNHtwEAls4eqHKs3sPnoGHzbhrJaRlUC02ObVRu11jwPQAgdsMu3AieBJFDFRi7FP3lNetxHC51GYYav0yC+5j+kMW9wM1hU5B05KxG8pXk/WatIJVKsDVkDSTiFHh4emPKrJ+Vt+QkJSZA8MotEv41auGrb6diy8Y/sWn9Kjg4OWPClB/g6u6ptcwHzmVCZCDAF53NYWIkxIMnuVgYIkFeflGZqjaVYG5SlPvxszws3SZFz9Zm6NLcFInifGw5lIbzNzV/qzgAtO5S0Ia3rSpow55q2nD6q234SEEb/n3W6224UYtuGsuqj22ibbeByM7OwuYVs5CZkQYv/7oYPWWZyvlNjI9DeqpEuf3k4W0smjFYuR26vmCN2MYtuqD/6KI1Fstb9q2LEJiaw7R1NwjNLJH3/Amk6xdCkVHwFyShlS2KT0WvZGcPA3dfZKwt2/Ig5aVps1ZIlUqwJWStsk1MnTX/lTYRr3J99q9RC+O+nYrNG//EpvWr4eDkhO+mzIGbltpEQV4ptoasg1icAg9PL0yb9ZMyb2IJbXjct1OweeMahLzMO3HKbLi5a2dmX5v3G0EiTcPqrWFIkUjh4+GKX6Z8rbyFOT4pGYJXzm/YoePIzcvDlAVLVY4z6JOuCP5U84MZHzRvCWmqFJs3roNYLIanpxdmzJqnvOU7MTEBAmHR+a1eoya+nvA9Nm1Yi43r1sDRyQnfT52ptfML6Gsb1p+8+njd0LfM7YNqQJyeiWX7ziApLQN+TlWxbNQnsLUoePr6i5RUlTaha+0DfSHOyMKyQ+cL8jpWwbLBXZUPgnkhSatQeYkqGoFCUZ43JhJVbJnrZr65UAXzm8kUXUcok3aB/+5hEroSn65ftx8oGpX/7dma5nb3lK4jlMnCTfo1Ob9XF82vh1beXMw1/6T08hSfZaXrCGUSsG2EriOUScKAubqOUGYC6NePz1VlMbqOUCbJxhVveY83yVNwXoYmKcBBHU3zfnRQ1xHKRgcz39+FUZdRuo6gFakLv9J1BK2wGL9I1xF0Qr9+SyIiIiIiIiIiIiKt4gAiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFlf7JSIiIiIiIiKidyPkHLX/Mn53iYiIiIiIiIiISC0OIBIREREREREREZFaHEAkIiIiIiIiIiIitbgGIhERERERERERvROBQKDrCKRBnIFIREREREREREREanEAkYiIiIiIiIiIiNTiACIRERERERERERGpxQFEIiIiIiIiIiIiUosPUSEiIiIiIiIioncj5By1/zJ+d4mIiIiIiIiIiEgtDiASERERERERERGRWhxAJCIiIiIiIiIiIrW4BiIREREREREREb0TgVCg6wikQZyBSERERERERERERGpxAJGIiIiIiIiIiIjU4gAiERERERERERERqcUBRCIiIiIiIiIiIlJLoFAoFLoOQaQtKTfP6jpCmRmJn+k6QpkcN+uh6whlYmaYq+sIZWJnJNV1hDKLqd5c1xHKxOjqdV1HKBNzg2xdRygzW8NkXUcokxyFSNcRykScY6HrCGVSM+uCriOUWbpZNV1HKBOJ0E7XEcrESJil6whE/3cUCj78QpO8vTx0HUEr0pdN1HUErTAb+aOuI+gEZyASERERERERERGRWhxAJCIiIiIiIiIiIrU4gEhERERERERERERqVdZ1ACIiIiIiIiIi0nNCrqX5X8YZiERERERERERERKQWBxCJiIiIiIiIiIhILQ4gEhERERERERERkVocQCQiIiIiIiIiIiK1+BAVIiIiIiIiIiJ6JwIB56j9l/G7S0RERERERERERGpxAJGIiIiIiIiIiIjU4gAiERERERERERERqcU1EImIiIiIiIiI6N0IBbpOQBrEGYhERERERERERESkFgcQiYiIiIiIiIiISC0OIBIREREREREREZFaHEAkIiIiIiIiIiIitfgQFSIiIiIiIiIieicCIeeo/Zfxu0tERERERERERERqcQCRiIiIiIiIiIiI1OIAIhEREREREREREanFNRCpwuvcuTNyc3Nx8ODB17525swZNGvWDNevX0dAQIDGMuw8cByb9hxEikQKbzcXjA/ug5o+niWWDT9yCgdO/Y3o2KcAAD9PNwzv00NteU3ZduIC1h86i2RpOnxd7PFd746o5eFcYtljV2/jz/2nEZuQgrz8fLhWtUW/du+jU5NAreVVKBQ4tPN3nD++E1kZafDwq4ueg6ahioOb2jrHdq/CzUtHkPDsEQwMjeDmG4hOvcejqqOH1jJHbF2OM0d3ISszDV5+gegz9HtUc1Sf+f7tKzgcvh5Pou9CKk7EiAkLEdiolVbyHtgbhvDQrZCIU+Du4YXg4V/Cx6+62vJ/nTmBLSFrkBj/Ag6OTvh84HAENWis8Zw2TevD8+tgWNarBSPHqrjccyTi9xwrvU6zhqixYCLMavhAFvscUfOWI25DmMazvkqhUGDvtmU497I9ePoFovfQyahaSht+cOcKjoSvQ+zL9jB0wq8IbKid9lCYedfmlThxZDcyM9Lh6x+AASO+g72jq9o6925fxb6wEDyOugeJOAlfTpqP+o1baCVvREQEQnfuhFgshoenJ0aMGAE/P78Sy8bExGDjxo2IevAACQkJGDp0KLp1766VnIX2R+xGWOg25WduyIgx8C3lM3fuzEls3rgWCfEv4ODojP6DhqC+Fj5zr1IoFNi9ZQVOHQlDZkY6fPzroN/wiaW2icjbV3EgbCNiHt6FRJyEMRMXoJ6W2sSOw6cQEnEUydJU+Lg64ZsBn6Cmt3uJZXcfO4d9Zy4gOu4ZAMDfwxUjP+2itrwm7N53ANt27UGKWAIvDzeMGRaM6r4+JZZ9FBOLdZu24v7DaMQnJGLk4AH4uGsnrWUFCq4bu5XXDW8MHj72DdeNk9gS8qeyDfcbOEwr141C+tZHAPqXmXk1T98y743Yg9DQl3k9PDF8xMhS8j5GyMaNiIoqyDtk6DB068a8/ykCga4TkAZxBiJVeMHBwThy5Aji4uJe+9ratWtRv359jQ4eHj13EYvXb0Nwry5YN386fNxdMG7Or0iRppZY/urtSLRt2hC/z/gWK+d+j2p2Nvhq9kIkJIs1lrG4Q5du4pftBzCsc0tsnjoCvs72GLloPVJS00ssb2lqgsEfNcf6SUOwffpodH2/HmasC8Nftx5oLfOJiD9x5uAmfBw8HV/O3gJDkTFW/jgUuTnZaus8vHsJ77XrjbGztmDY96sgz8vDynlDkC3L1ErmQ7vX4fj+zeg7bDImztsIkZExFs8eWWrmnOwsOLv7oveQSVrJWOjc6eNYt2opPunzBX5evApuHl6YPfUbSCUlt8t7d27h1/mz0brdR1iweBUaNvkA8+dMxpPH0RrPWsnUBKk3InFr7My3Km/s7owGe1Yg+eQFnK3fFY+WrEftFXNg17aphpOqOrJ7LU7u34LeQ6fg27khEImMsWT2iNLbgywLzu5++HSwdttDoX27NuDwvm0YOGIiZvy8BiIjY8yfMRY5pWTOlsng6u6DL4Z9q8WkwKlTp7Bq5Ur06dsXS5YsgaeHB6ZOmQKJRKI2p4O9PQYOHAhra2utZgWAs6dOYM2q5fisT38sXLIC7p5emDn1O0hK+cz98tMctGnXAQuXrESjJu/jx9nTEPP4kVZz7w9bjyN7t6L/8EmYOn8dDI2MsHDmmFLbcbYsCy4ePvh82HdaTAoc+fsKFm3chcE9P8KGuRPh4+aMsT/+jhRpWonlr9y9jw/fq4/lU77EnzO/QTVba4yZ9zsSUiRayXvizDksX70e/Xv3wopF8+Hl4Y7vps2BWCItsXx2djYc7KthyBd9YWNtpZWMrzp7+jjWrlqGT/oMwILFq+Du4YVZU78ttQ0vnD8Lrdt1xC+LV6Nhk6b4ac4UxGjhugHoXx8B6F9m5tU8fct8+tQprFq1Cn36fI7FS36Hh6cnpk6drD5vdjbsHewxYOAg5iXSQxxApAqvU6dOqFKlCtatW6eyPz09HTt27EBwcLBG339LxGF0adMMnVo1hYeLIyYM7QeRyBB7j58tsfzMr4aiZ/tW8PVwhbuTAyYNHwC5QoHLN+9qNOerQo78hR4f1EfX9+vBy7EqJn/eGUaGBth97mqJ5ev7eaBVvRrwdKgKl6o26NOmCXycq+GfqBit5FUoFDh9YCPadB+GWvVbwdHND71HzkOqOAG3LqufeTZ00ko0bN4d9i7ecHTzx2cjfoA46TniHt3RSuZjezfho4+HILBhSzi7+2LgmNmQiBNx7eIJtfVq1WuKbn1Go66WZh0WigjbjjbtO6FV24/g4uqOYaO/hsjICMcO7y+x/L49O1E3qCG69ewNZ1d39O4XDA8vXxzYq/lZfYmHTuP+9EWIDz/6VuXdhn6GrEdxuDvhJ6Tfi0bMsk14EXoIHl8O0GzQVygUChzftwntew5BnZft4YsxcyAVJ+L6xeNq69Ws1xRdeo9GYKPWWstaSKFQ4GDEVnTpNQhBjZrD1d0Hw76aAUlKEq6cP6W2Xp2g99Dr8xGo36SlFtMCYWFhaN+hA9q1awdXNzeMHjMGIpEIhw8fLrG8r58fggcPRvMWLWBgYKDVrAAQHrYD7dp/hNbtOsDF1R0jRo+DSCTCscMHSiwfEb4L9YIaovvHn8HF1Q19+w+Cp5cP9kfs1lpmhUKBIxFb0PmTYNRr1AIu7j4Y8uUsiFMScfXCSbX1AoLeR8++IxHUWLttYvO+Y+jW6j10btEEns4OmBj8GYwMDRFx8u8Sy88ePRAft2sGX3cXuDvZY/LQvlAoFLh0K1IreXfsjsBHH7ZBhzat4O7qgnEjh0IkEuHAkZL7CH9fbwwf1B+tmjXVSRuOCNuBtu07onXbDi+vG+MhMjLCcTXXjb17Ql9eNz6Ds6sb+vQLhoeXj1auG4D+9RGA/mVmXs3Tt8xhYbvQvn17tG3XDq6ubhg9egyMRCIcPnyoxPK+vn4IDh6C5s2Zl0gfcQCRKrzKlSujf//+WLduHRQKhXL/jh07kJ+fj969e2vsvXNz8xAZHYMGAUW36wiFQjSoXQO3Ih++1TFkOdnIy8+HhZmppmKqyM3Lw92YZ2hUveiWaaFQiEbVvXDjYewb6ysUCly4+xCPXyQhyNddg0mLpCTEIU2SBN9aRbc5GZuYw9UrADEPrr/1cWSZBbNOTMwsyz1jcUnxT5EqSUL1gEbKfcam5vDwqY3oyLfPrA25ubl4GHUfAYFByn1CoRABgUG4f+92iXXu37utUh4AAus1QKSa8rpk1TgQScdVBwwSj5yFdeNArWVITihoD/7F2oO7T21E37+htRxlkRj/DFJxMmrVaajcZ2JqBk/fmoiKvKnDZK/Lzc1F1IMHCAwMVO4TCoUIDAzEvbva++PM21L3masTGITIeyX/gSPy3h0E1K2nsq9ukHY/c4nxTyEVJ6NmgGqb8PKtVfHaRF4e7j2KRYNa/sp9QqEQDWr54+aDt5vxJsvOQV5ePizMTDQVUyk3Nxf3o6IRVKfojgmhUIigwNq4E6mdAcyyKGjDkSVeN9S14ZKuG3XrNVRbvjzpWx8B6F9m5tU8fcucm5uLqKgHCAysq9xXkLcu7t1jXqL/Ig4gkl4YNGgQHj58iFOnimbFrF27Fj179oSlZcmDRdnZ2UhNTVV5ZefklOl9JWlpyJfLYWNpobLfxsoCyWpuOSpuWchOVLG2QoOAGmV6739LnJ5ZkNnCTGW/rYUZktXcwgwAaZkyvDd6NhqOmIGxi0PwXe+OaFzDW9NxAQCp0iQAgLmlncp+c0tbpEqS3uoYcrkcuzf8BHe/unBwKXk9qfJUmMvCylZlv4WlDaSSZI2/f1mkpUohl+fDykr11gtLK2tIxCkl1pGIU2BZrLxVKeV1SVTNDtnxqu0kOz4JBpbmEBqJtJJBKlbXHt6+DWubRFzQTi2tbFT2W1rZQCquWG04NTUVcrn8tduHrKytkSLW3vIQb6vgMyeHlfXrnzlxivrPXEmfUbEW/3+FfVeJ/VoFaxOS1PSX12dzlf02luZIlpS8xEhxv2/eDTtrSzR8ZRBSU6SpaS/bsOrPLNZWVkgRSzT+/mWlbMPF+ofSrgMFbbh4f6Kd64a+9RGA/mVmXs3Tt8yFea2KLbFgZWUFcQrzEv0X8SEqpBf8/f3x3nvvYc2aNWjRogWioqJw5swZzJo1S22defPmYeZM1TXUJgwfiO9GDtJ0XKUNYftx5NxFLJsxASLDij3t3dTIEFunjUSWLAcX7kXjl+0H4VzFBvX9yv+BJFfO7sXO1TOU24MnLH/nY+5aOwcvYh9g9IyN73ysklw4vQ+bVsxRbo/+folG3of0w8XT+7Bl5Wzl9ohJv+swzds5d/Ig1i6fp9z+euqvOkxDFcHfpw5g/fK5yu2vpizSXRgtWx9+GEf+voLlU7+q8NdnIiIivSHkHLX/Mg4gkt4IDg7GmDFjsHTpUqxduxZeXl5o3ry52vKTJk3C+PHjVfZlPLhcpve0MjdHJaHwtQempEhSYWtV+m2ym8IPYmPYfiye9g283V3K9L7vwtrMpCBzsdmGyanpsC02K/FVQqEQrlULZp34uTrg0fNErNl/WiMDiDWDWsLNu7ZyOy83FwCQJk2ChXUV5f40aTKc3N88M2TX2jm4c/UURk1fDytb+3LPCwB1GrSAh8+rmQtms6ZKkmH5SuZUaQpc3H01kuHfMrewhFBY6bWF76USMaysbUqsY2Vt89oDViSllNel7PgkiKqpzl4VVbNDrjQNcpn6Bz+8i4AGLeD+anvIU9cekuHsXvKT/bStXsMP4O1XU7md+7INSyUpsLIpOn9SSQrcPCpWG7awsIBQKHxtNp5ELIZNBVzUvOAzJ4RE/PpnztpG/WeupM+oJhdtD2zYDJ6+tZTbr/Zrr7aJVGkKXCpYm7CyMHt5fVZ9YEqKNA22VhZqahUI2XsU6/ccxu/fj4GPm5MmYypZWpi/bMOqdy+IJRKdPCDlTZRtWKI6e7C060BBG1YtX9p1pjzpWx8B6F9m5tU8fctcmFdSbBa1RCKBtQ3zEv0XcXiY9MYnn3wCoVCIzZs3Y8OGDRg0aBAEpTwmXiQSwcLCQuUlMjQs03saGFSGn6ebygNQ5HI5Lt+8i1p+Xmrrhew+gLWhe/HrlHGo7u1epvd8VwaVK6O6myMu3C1aA0oul+Pi3WgEeL39QKZCoUBOXp4mIsLI2BR29m7KVzVnL5hb2eHBrQvKMrLMdDx5eANuPnVKzbhr7RzcvHQMI6asgW1VZ43kLcxc1cFV+XJw8YKFlR3u3byoLJOVmY5HD27C0099Zl0wMDCAl7cvbl67otwnl8tx49pV+PrXLLGOr39N3Lh+RWXfjX8uw09NeV2SnL8G21aNVfbZtX4P4vPXNPaer7UH54L2EHmzqA1nZabj8YOb8PTV3FPiy8LYxBTVHFyULycXT1ha2+L2jUvKMlmZ6Yi+fxvefrVLOZL2GRgYwNvHB9evXVPuk8vluHbtGvyrV1dfUUcKP3M3rhc9uKrwM+fnX/JyFn7+NXDjmuqDrq5p+DNnbKzaJhxftok7xdrEw/u3Kl6bqFwZ/h4uKg9AkcvluHw7ErV9PNXW27DnCP7cdQC/TRyFGl5u2ogKoKBN+Hp74uqNorUk5XI5rl6/iRp+FeOPDK8qaMN+Km2yoA1fUduGff1r4uZ11TZ8/Z/LasuXJ33rIwD9y8y8mqdvmQ0MDODt7YNr168p9ynz+jMv0X8RBxBJb5iZmeHTTz/FpEmT8Pz5cwwYMEAr79u7czvsOXoa+06ew+O4Z5i/KgSy7Gx0avk+AGDm4tVYtilUWX5j2H6s3Lobk0cOgEMVOySLpUgWS5GZJdNKXgD4vO17CDtzBXv++gfRzxMwd1MEsnJy0PX9ggX6p/y5E4t3FT3N7c/9p3D+ThTiElMQ/TwBGw6fw77z1/BRY+0MhAkEAjTr0A9Hd6/ArcvH8fzJfWxePgkW1lVRq37R02mXzxmEs4c2Kbd3rZmNK2f34vPR8yEyNkGqJBGpkkTk5mj+XAsEArTu1Bf7d67C9Usn8TTmAdYungIr6yoIbFj0JNKFM4bixP6tym1ZViZiH91D7KN7AICkhKeIfXQPKYnPNZq3c/dPcPTQPpw4ehBxTx5j5dKFyJZloVXbDgCAxb/8gJB1K5XlO3b5GNeuXMSeXdsQFxuDbZvW4mFUJDp06q7RnABQydQEFnX8YVGnYPapiYczLOr4w8jFAQDgN2c86qz9SVk+ZuVWmHi4wH/etzD184Tb8D5w6NUBj35bp/GshQQCAVp17IsDoatw42V7WL9kCiytq6BOw6Inbv82YwhOHtii3C7eHpLjtdMeCjO37/wZwrevwdULpxH7OAp/LJoBKxs7BDUumt09b+pIHNm3XSVzTPR9xETfB1DwMJaY6PtISnyh0bzdu3fHwYMHcfTIETx58gRLf/8d2dnZaNu2LQBgwYIFWLt2rbJ8bm4uHj58iIcPHyIvLw/Jycl4+PAhnj17ptGchbp274UjB/fh+NFDiH0Sgz+WLoIsW4bWbdsDABYtmIeNa1cpy3fu2gP/XLmE3bu2Iy72CbaErMPDB/fxUeduWskLFLSJtp17I2LHn/jn4inEPo7CqkXTYW1TBfUatVCWmz91BI7u26bclmVl4kl0JJ5EFwzmJSY8xZPoSCRruE306dga4SfOYe+p83j09AV+WrMVWdnZ6NS84A8K05etx9It4cry6/ccxoodezF12OdwqGKDJIkUSRIpMmXauT736tYZ+w4dxaFjJxETG4dFy1ZBJstG+zYF14x5Cxdj1fqia1xubi6ioh8hKvoR8vLykJScgqjoR3j6TPP9AwB07t4LRw/tfXndiMGKpb8iWyZTXjd++2WuynWjU5ee+OfKRYS/vG5s1eJ1A9C/PkIfMzMvM7+etwcOHTyAo0df5l26BLJsGdq2bQcA+GXBz1i3dk0peZOYl0iP8BZm0ivBwcH4888/8dFHH8HR0VEr79nm/YYQp6Zh9dbdSJakwsfdBb9OHgebl7cwxyelQCgsmgm56/BJ5Obl4fsFquv6BffqgsGfdtVK5g8b1IY4LQPLw48hOTUdfi4OWPplf+UtzC9SpBAKiv5+IMvOxdxNEUgQp0JkYAB3BzvMCf4YHzbQ3oyTlp2DkZOdhZ2rZyArMw0efvUwdOIKGBgWPQQjOT4WGWkS5fZfRwt+gV02e4DKsT4dPgcNm2v+F5YPuw1AjiwLIX/MRmZGGrz962Ls1GUqmZNexCI9rehWlJiHt7Fw+hDl9o51vwAAmrTojAFjitbUK2/vN2sFqVSCrSFrIBGnwMPTG1Nm/ay8tSwpMQGCV9qEf41a+Orbqdiy8U9sWr8KDk7OmDDlB7i6q5/ZU14sg2qhybGitSxrLPgeABC7YRduBE+CyKEKjF8OJgJA1uM4XOoyDDV+mQT3Mf0hi3uBm8OmIOnIWY1nfVXbbgORnZ2FzStmITMjDV7+dTF6imp7SIyPQ3qqRLn95OFtLJoxWLkdun4BAKBxiy7oP1pz7aFQxx79kS2TYc2yucjMSIdv9Tr4dvpvMHwlc8KLp0h7JfOjqLuYO2WEcnvzmkUAgKatOmLYl9M1lrV58+ZIlUqxMSQE4pQUeHp5Ydbs2cpbfBMTEiB8ZVZ6SkoKxowerdwODQ1FaGgoateujZ/mz9dYzkJNm7eENFWCLRvXQiwWw8PTC9Nn/aT8zCUmJkAgVP3MjZ8wGZs2rEHIuj/h6OSEiVNnwc29/JeRKM1H3b9AjkyGdcvmIjMjDb7VAzF+2mKVdpzwQrUdP466g5+mDldub11TsL7m+y07YfCXMzSWtW2TIIhT07By514kS9Lg6+aE3yaOUt7CHJ8kVmkTu46cQW5eHiYuWq1ynME9P8LQjztqLGehlh+8D4k0FWs3bYVYLIGXpzt+mjlZeQtzQmKSyrU5OUWMoV9+q9zeHrYH28P2oE6tGvh1nvo1oMtL02atkCqVYEvIWuV1Y+qs+a9cN+JVzq9/jVoY9+1UbN74JzatXw0HJyd8N2UO3LRw3QD0r4/Qx8zMq3n6lrlZ8+aQpkoRsnEjxGIxPD09MWvWnKK8iQkQCF/Nm4yxY0Ypt3eFhmLXy7w//vQz8/4XlHKHIOk/gUKhUOg6BJG2pNzU7oBCeTAS69dfuI6b9dB1hDIxM8zVdYQysTN6u6d/VyQx1dWvVVoRGV29rusIZWJuoJl1HjXJ1rBiPdH3TXIU2nmad3kR55S+BmBFUzPrwpsLVTDpZtV0HaFMJEK7NxeqQIyEWbqOQPR/R6HgwI8meXtp9w+CupK5XvN/4KoITL6YpusIOsFbmImIiIiIiIiIiEgtDiASERERERERERFpyNKlS+Hu7g4jIyM0atQIFy9eVFt23bp1EAgEKi8jIyOVMgqFAtOmTYODgwOMjY3Rpk0bPHjwQKP/Bw4gEhERERERERERacC2bdswfvx4TJ8+HVevXkWdOnXw4YcfIiEhQW0dCwsLPH/+XPmKiYlR+fr8+fOxePFi/PHHH7hw4QJMTU3x4YcfQqbBh8NxAJGIiIiIiIiIiN6JQCj8v3iV1cKFCzFkyBAMHDgQNWrUwB9//AETExOsWbNGbR2BQAB7e3vlq1q1ovWXFQoFFi1ahClTpqBr164ICAjAhg0b8OzZM+zevfvffOveCgcQiYiIiIiIiIiI3kJ2djZSU1NVXtnZJT/YMCcnB1euXEGbNm2U+4RCIdq0aYO///5b7Xukp6fDzc0NLi4u6Nq1K27fvq382qNHj/DixQuVY1paWqJRo0alHvNdcQCRiIiIiIiIiIjoLcybNw+WlpYqr3nz5pVYNikpCfn5+SozCAGgWrVqePHiRYl1/Pz8sGbNGoSHhyMkJARyuRzvvfce4uLiAEBZryzHLA+VNXZkIiIiIiIiIiKi/5BJkyZh/PjxKvtEIlG5Hb9JkyZo0qSJcvu9995D9erVsWLFCsyePbvc3qesOIBIRERERERERETvRvD/cZOrSCR66wFDOzs7VKpUCfHx8Sr74+PjYW9v/1bHMDAwQN26dREVFQUAynrx8fFwcHBQOWZgYOBbHfPf+P/47hIREREREREREWmRoaEhgoKCcOzYMeU+uVyOY8eOqcwyLE1+fj5u3rypHCz08PCAvb29yjFTU1Nx4cKFtz7mv8EZiERERERERERERBowfvx4fPHFF6hfvz4aNmyIRYsWISMjAwMHDgQA9O/fH05OTsp1FGfNmoXGjRvD29sbEokEP//8M2JiYjB48GAABU9o/uqrrzBnzhz4+PjAw8MDU6dOhaOjI7p166ax/wcHEImIiIiIiIiIiDTg008/RWJiIqZNm4YXL14gMDAQBw8eVD4E5cmTJxAKi24QFovFGDJkCF68eAFra2sEBQXhr7/+Qo0aNZRlJkyYgIyMDAwdOhQSiQRNmzbFwYMHYWRkpLH/h0ChUCg0dnSiCibl5lldRygzI/EzXUcok+NmPXQdoUzMDHN1HaFM7Iykuo5QZjHVm+s6QpkYXb2u6whlYm6QresIZWZrmKzrCGWSoyi/RbG1QZxjoesIZVIz64KuI5RZulm1NxeqQCRCO11HKBMjYZauIxD931EoBLqO8J/m7eWh6whakRUyV9cRtML48+91HUEnOAORiIiIiIiIiIjejZAD0f9lfIgKERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFtdAJCIiIiIiIiKidyIQcI7afxm/u0RERERERERERKQWBxCJiIiIiIiIiIhILQ4gEhERERERERERkVocQCQiIiIiIiIiIiK1+BAVIiIiIiIiIiJ6N0KBrhOQBnEAkf6vrIp8T9cRymyY92ldRyiT6hZPdB2hTHIUIl1HKJOfQwx0HaHM+l69rusIZSKrV0fXEcqk7tU/dR2hzA4mva/rCGXyQbW7uo5QJsMnx+g6Qpn8+ENDXUcoMxFydR2hTGJSrHQdoUzSsirpOkKZCYUKXUcoE/6OT8WZGcl1HaFM5s88q+sIZXI2wkPXEYjeGW9hJiIiIiIiIiIiIrU4gEhERERERERERERqcQCRiIiIiIiIiIiI1OIaiERERERERERE9G4EnKP2X8bvLhEREREREREREanFAUQiIiIiIiIiIiJSiwOIREREREREREREpBbXQCQiIiIiIiIioncjEOg6AWkQZyASERERERERERGRWhxAJCIiIiIiIiIiIrU4gEhERERERERERERqcQCRiIiIiIiIiIiI1OJDVIiIiIiIiIiI6N0IOUftv4zfXSIiIiIiIiIiIlKLA4hERERERERERESkFgcQiYiIiIiIiIiISC2ugUhERERERERERO9GwDlq/2X87hIREREREREREZFaHEAkIiIiIiIiIiIitTiASERERERERERERGpxAJGIiIiIiIiIiIjU4kNUqEJ68eIFfvjhB+zbtw9Pnz5F1apVERgYiK+++gqtW7fWSSaFQoF/ji1B5KUdyJGloapbXbzXZTos7dzfqv71U6tw5fBC1HivHxp3/F6zYQHsOHQCmyKOIFkihY+bM74e+BlqenuUWHb3sTPYf/o8omOfAQD8PVwxonc3teU1ISIiAqE7d0IsFsPD0xMjRoyAn59fiWVjYmKwceNGRD14gISEBAwdOhTdunfXWlYA2B+xG2Gh2yARp8DdwwtDRoyBr191teXPnTmJzRvXIiH+BRwcndF/0BDUb9BYe4Ff6tbCFM3qGcHESIio2Fxs2JeGhJT8UutYmQvRq40ZansbwtBAgISUfKwJT8Xj53kazapQKLB32zKcO7oLWZlp8PQLRO+hk1HVwU1tnQd3ruBI+DrERt+FVJyIoRN+RWDDVhrNCQA2TevD8+tgWNarBSPHqrjccyTi9xwrvU6zhqixYCLMavhAFvscUfOWI25DmMazFtp54Dg27TmIFIkU3m4uGB/cBzV9PEssG37kFA6c+hvRsU8BAH6ebhjep4fa8pqiUChwMnwJrp7eAVlmKly866Fjv+mwreauts6lE1tw+eQWSJIKsld19EazLqPgU7uZxvOG792P7bt2I0UsgZeHO0YPGwx/P98Syz6OeYJ1m7bgQdRDxCckYsSQQejZtbPGM5Zk0Gcu6NS2GsxMKuHmvTQsXBmNp89lassLhcCAT13QrlkV2FgZIEmci4MnErBhR5zGsyoUCoRtWYFTR3YjMyMdPv4B6D98IuwdXdXWibx9FfvDNiLm4T1IxEkYM/FnBDVuofGshXl3blqN44f3ICMjDX7VAzBo5LdwcHQptd7hfaGI2LUJUnEKXD28MWDYeHj71tBK3iO7fselEzuQlZkGd9+66DZgGuzs3dXWObFnJW5fPoqE59EwMDCCm08gOnz2Nao4aOdnCoVCgdN7FuOfMzuQnZUKZ6966NB3BmxK6SeunNyMq6e2QJJc0E9UcfRB044j4V27uVbyngpfgn/OFPVrHT4vvV+7fGILrpx8Na83mnUeBW8t9Gv61g/rY2Z9zHs49HdcOLEDWRkF/USPQdNQpZR+4nj4Sty8fBSJz6JR2dAI7j6B+Oizr1HVUTv9RHBfd3RuZw9z08q4eTcVC5Y9QNzzLLXlhUJgUG93tGtZFbZWhkhKycH+Yy+wftsTreTVK0KBrhOQBnEGIlU4jx8/RlBQEI4fP46ff/4ZN2/exMGDB9GyZUuMGjWqxDq5ubkaz3XzzGrc+TsE73Wdgc4jtsHAwASH1g1BXm72G+smxt1E5KVtsLYveUCsvB356xJ+27ATwT07Yv2Pk+Ht5owv5y5GijS1xPJXb99Hu/caYNm08Vg9+ztUtbXG2B9+Q0KKWCt5T506hVUrV6JP375YsmQJPD08MHXKFEgkkhLLZ8tkcLC3x8CBA2Ftba2VjK86e+oE1qxajs/69MfCJSvg7umFmVO/g0RS8vm6d+cWfvlpDtq064CFS1aiUZP38ePsaYh5/EiruTu8b4I2jYyxYV8a5qxOQXaOAl9/boXKldTXMTES4PtB1sjPV+DXTRJMWZaMbYfTkSFTaDzvkd1rcXL/FvQeOgXfzg2BSGSMJbNHIDdH/WcuR5YFZ3c/fDp4ksbzvaqSqQlSb0Ti1tiZb1Xe2N0ZDfasQPLJCzhbvyseLVmP2ivmwK5tUw0nLXD03EUsXr8Nwb26YN386fBxd8G4Ob+W0kdEom3Thvh9xrdYOfd7VLOzwVezFyIhWTt9RKFzB1bjwtGN6NhvBgZP3g5DkTFCFg4utR+2sK6GNj2/xtBpoRg6dSfcqzfG1iWjkPD0gUaznjh9Fn+sXot+vT/FH7/9Ak8Pd0ycNgtiNf2aLDsbDvbVMPiLfrDRQb9WqHd3J/To6IBf/niI4RNvQpYtx4KpNWBooP4Xgj7dndD1Q3ssWv0I/cdew4qNMejdzQk9P7LXeN79YRtwZO82fDF8EqbNXwuRkTF+mTkGOaX0E9myLLh6+KLfsAkaz1dcRGgIDu7dgeCR32L2gtUQGRnhx2njSs3795mj2Lh6MXr2HoS5i9bCzcMbP04bB6kkReN5T+37E38dDkG3gdMxasZWGIiMsWb+0FL74Uf3LqNxm94YNX0Lgr9bjfz8PPz502DkyDI1nhcA/j60CpeOb0SHz2dgwKTtMBAZY8tvwaX2E+bW9mjZ4xsET96FQZND4ebXGDuWjULiM832EwDw18HVuHhsIz76fAYGfV+Qd/Ovb+7XWvX8GoOnhmLwlJ1w92+Mbb9rvl8D9Ksf1tfM+pb35N4/cfZQCHoMnI4xs7bCUGSM1T+W3k88vHcZ77XpjdEzt2DoxIJ+YtWP2ukn+vZ0wcednLBg2QMM/eYfZMnysXBW7VKvc317uqLbR4749Y8o9B15CcvXRaNvDxd83NlJ43mJKhIOIFKFM3LkSAgEAly8eBE9e/aEr68vatasifHjx+P8+fMAAIFAgOXLl6NLly4wNTXFDz/8oNFMCoUCt89tQJ0Ww+FWozVs7P3QrNePyEpLwJO7R0utm5udgVPbv8X73WZBZGyh0ZyFtuw7iq6tm6Jzy/fh6eyIiYP7wsjQEBEn/iqx/Kyxwfj4wxbwdXeBu5M9Jg/vD7lCgcs372klb1hYGNp36IB27drB1c0No8eMgUgkwuHDh0ss7+vnh+DBg9G8RQsYGBhoJeOrwsN2oF37j9C6XQe4uLpjxOhxEIlEOHb4QInlI8J3oV5QQ3T/+DO4uLqhb/9B8PTywf6I3VrN3baRMSJOZ+BaZA7iEvKxencqrMyFqOcvUlvno/dNkCLNx5o9aXj0LA9JEjluR+cgUVz6rMV3pVAocHzfJrTvOQR1GraEs7svvhgzB1JxIq5fPK62Xs16TdGl92gENtLuTOXEQ6dxf/oixIeX3h8Uchv6GbIexeHuhJ+Qfi8aMcs24UXoIXh8OUCzQV/aEnEYXdo0Q6dWTeHh4ogJQ/tBJDLE3uNnSyw/86uh6Nm+FXw9XOHu5IBJwwe87CPuaiUvUNAmLhzdgGadhsO/bmtUc/FDt+CfkCZJwL2r6s+7X2Ar+AQ0h201d9jae6B1j3EwFJkgLvq6RvOG7t6Djz5si/ZtW8PN1QVfjRoOkUiEg0dKnpnq7+uDYYMGoGXzD2BgoLsbRHp1csDGnXE4d0mM6JhMzF38ALY2hmja0EZtnZp+5jh3MQXnr4jxIjEbp/5OxqVrEvj7mGs0q0KhwOGILejyySDUa9QcLu4+GPLlTIhTknD1wim19QKC3kfPviMQ1LilRvMVp1AocGDPdnT/ZADqN24GNw9vjBw3DeKUJFw+f1ptvX27t6LVh13Qok0nOLt6IHjkBBiKRDh5ZK/G8547uAGtugxDzaDWcHD1w6fDfkSqJAF3rqifYT1owkrUb9Yd1Zx94Ojmj15D50KS/Bxxj+9oNG9h5otHN6BpxxHwC2yDas7+6DJwPtIkCYj8R30/4VunFbxrN4dNNXfYVvNAy+4F/cTT6GtayftBp+Hwe9mvdR30sl8rLW+xfq1Vj8K8mu3X9K0f1sfM+pj3zMENaN1tGGrVbw1HVz98NqKgn7hdSj8x5LuVaNC8O+xf9hOfDnvZTzzSfD/Rq4sTNmyPwdkLyXj4OANzfr0HWxsRPmhsp7ZOreoWOHs+CX9fTsGLhGyc/CsJF6+JUV3D1zmiioYDiFShpKSk4ODBgxg1ahRMTU1f+7qVlZXy3zNmzED37t1x8+ZNDBo0SKO50sRxyEpPgqNXE+U+QyNzVHEOQMKT0i/Mf0fMhotfczh5v6fRjIVy8/JwL/oJGtYuup1WKBSiQW1/3HwQ/VbHkGXnID8vHxZmr38Pyltubi6iHjxAYGCgcp9QKERgYCDu3dXe4MTbys3NxcOo+wgIDFLuEwqFqBMYhMh7Jf/QE3nvDgLq1lPZVzeoASLv3dZo1ldVsRLCyrwS7kQXzdbNylYgOi4XXi7qB2ED/UR4/DwPIz62wKJv7DB9qDWa1TPSeN7khKdIlSTBP6CRcp+xqTncfWoj+v4Njb+/plk1DkTS8b9V9iUeOQvrxoEaf+/c3DxERsegQUDxPqIGbkU+fKtjyHKykZevnT6ikCQpDunSRHjWKOpLjUzM4ewZgNiH197qGHJ5Pm5d2IfcnEy4eAVqJigK+on7UQ9RL7COcp9QKES9wADcuRepsfd9Vw7VRLC1NsSV6xLlvozMfNx9kIaafup/SbodmYZ6AZZwdijoG7zcTVC7ujku/KPZGaqJ8U8hFSejRkBD5T4TUzN4+dbEw8iK108kxD+DRJyMWoH1lfsK8tbAg3u3SqyTl5uLR1GRqFWnqI5QKEStwAZ4EFlynfKSkhiHNGkSvGsV/exjZGIOF88AxERde+vjyLLSAAAmppblHfE1kqQ4ZKQmwr26aj/h5FEHT6P/eatjyOX5uH2xoJ9w8qyrqagAivo1j+J5PQPwtCz92su8zhrs1wD96ocL6VtmfcubkhiHNEkSfGoW9RPGJuZw9QpAzINrb30cWebLfsJMs/2EYzUj2NmIcOla0fUpIzMfd+6nopa/+oket+6mIqiONVwcjQEA3u6mCKhuifNXND8TnKgi4RqIVKFERUVBoVDA39//jWX79OmDgQMHqv16dnY2srNVp87n5RqgsoH62VbqZKUlAQCMzWxV9huZ2SErPVFtvegb+5D87A46j9hR5vf8tySp6ciXy2FjqfrLno2lBWKevXirYyzdtAt2NpZoUFv9mn7lJTU1FXK5/LVbka2srREbp/n1s8oqLVUKuVwOq2J5La2sERdb8jooEnEKrKxeLy8Wa+/2Twuzgr8XpWbIVfanZshhaar+b0lVrCuhZX1jHPo7E/vOSuDhWBl92psjLx/467r6NdHelVRc8JmzsFL9zFlY2iJVkqSx99UWUTU7ZMer/j+y45NgYGkOoZEIctmbl0b4tyRpaS/7CNUflG2sLBDz9PlbHWNZyE5UsbZCgwDNr8FWKF1a0NeaWqi2CVMLO2Sklt4m4uMi8efc3sjLzYahyASfjvodVRy9NZZVmppW0K9Zqf4iZG1lhdi4pxp733dlY2UIAEiRqi4LIpbkwsbaUG29TbuewsS4EjYuqQu5XAGhUIDVm5/g6GnNflalkmQAgGUJ/YRUnKzR9/43pOKCXzQtrVRnc1pa2UAiLvmX0NRUCeTyfFhav17nWVyMZoK+lP6yrzWzVJ2VY2Zpi3Tp231v5XI59ob8CDfferB38Sn3jMVlpL7sJ8yL9xO2SH9DP5EQF4l1P32m7Cc+HrFUo/0EUHq/9qZzHB8XibXzivq1XiM1268B+tUPF9K3zPqWN+1lP2FeQj+R9pY/r8nlcuzZ+CPctdBPFF7LxJLi17mcUq9zITufwNSkEjYtb6C8zq3c+AhHTiVoNK9eEnCO2n8ZBxCpQlEo3n5dtfr165f69Xnz5mHmTNX1yFr3moa2n0x/47EfXovAufAZyu22/Ze/da5C6ZLnOL93HtoP+vNfDVrqyvrdB3Hkr0tYNv1riAy1f3swlY/GtUXo36loEHnRZum/Oo5AADx+loddxzMAAE9e5MGpamW0CDIu1wHEi6f3YcvK2crtEZN+L7djU/naELYfR85dxLIZEzTaR9w4H4G9G4r66z5f/vGvj2Vn74Hh08Mgy0rDnSuHsPvPiRjw3Uat/PJakbVpZoevh3kptyf+8O9mfbd8zxZtm1XB7F/v43FsFrw9TDF6kDuSUnJw6KT6P7KV1V+nDmD98nnK7XFTfi23Y2vC2ZOHsHrpfOX2hGkLdJjmzf45F4GwtTOU2wO+/vefuULh62fjRdwDjJga8s7HKsmtC3uwP6Son/h09Ip/fSxbew8Mnrob2VlpuHflECLWfofPvwkp137i5vkI7NtYlLf32Hfr14ZOC0P2y35tz5qJ6D+hfPs1feyH9S2zvuW9ei4CoX/OUG4P+vbd+4mwdQX9xMhp5d9PtG1eFd+OKnp42YRZN//VcVo1rYK2zati5oK7ePQkEz6ephg72BtJKTk4eDy+vOISVXgcQKQKxcfHBwKBAPfuvXntvZJucX7VpEmTMH78eJV9S/a93S+7rtVboYpLgHI7Py8HAJCVngwTi6rK/bL0JNg4lDxLL/nZbcgykhG+tKdyn0KejxePL+Pu+c34YuZ1CIWlPL3iX7KyMEMloRAp0jSV/SnSVNhYlX5bQEjEYWwIP4jfp3wFHzfncs9WEgsLCwiFwtdm40nEYp0+SEAdcwtLCIVCSIrllUrEsLYpeY0wK2ub1x6wIpWINfoAmGuROYiOK3rPyi97ewtTIaTpRbMQLUyFeBKv/mnKkjQ5niWqfv1ZUj6CqpfvoHhAgxZw96mt3M57+ZlLlSTD0rqKcn+qNBnO7tp5GJEmZccnQVRN9a/1omp2yJWmaXT2IQBYmZu/7CNUH5iSIkmF7Rv6iE3hB7ExbD8WT/sG3u6lPzX2XfnVaQnn6UX9cGGbyEhNhrlVUT+ckZqEai6lz5auVNkQNtUKnt7t6F4Lzx7dwvmjG9C5/ywNJAcsLcwL+jWJ6sC9WCKBtbWVRt7z3zh3MQV376crtw1eLiBvY2mAFHHR7AxrKwNEPcpQe5wRX7hj066nOH6uYNZf9JNMVKsiQt8eTuU6gFi3YTN4+dZSbuflFrQJqSQZVjZFn6dUaTJcPUp+2rU2BTVsCm/fmsrtXGXeFFi/klcqSYG7Z8mzbiwsrCAUVlLOXny1jpW1+nUp/40a9VrBxfuVn31e5k2XJsHCqqgfTpcmw8HtzXeKhK+fg3vXTmHY5A2wtNHMA3V86rTCYI+ipQIKf17LSCveTySjmkvpmStVNoRN1YJ+wsGtFp49volLxzbgo37l10/4BraEk8fb9Wv2ZejXHNxr4fnjW7h4dAM6lmO/po/9sL5l1re8Neq1gqvX63nTpEmwsFbtJxzfop8IWzcHd/85hZFTN8DKtvz7ibMXk3Hn/mXltqFBwew4aysDJItzlPutrQwRFZ3+Wv1CIwd6YtPOWBw7U3BNi47JgH0VI/Tr5coBRPq/wvmlVKHY2Njgww8/xNKlS5GR8fovK+qeylsSkUgECwsLldfbzgQ0EJnCwtZN+bKq6g1jMzs8iz6vLJMjS0di3A1Uda1T4jEcvZqg+9hwdBu9S/myc6oFrzqd0G30Lo0MHgKAQeXK8Pd0xaVXHm4gl8tx6dY91PbxVFtvY/ghrAndh0WTxqK6l7tGspXEwMAA3j4+uH7tmnKfXC7HtWvX4F9d87dQl5WBgQG8vH1x4/pV5T65XI4b167Cz7/k2zn9/GvgxrWrKvuu/XMZfv41SyxfHmQ5CiSI85WvZ4n5kKTlo4Zn0SC6kaEAns4GeBir/inmUbG5sLdVbav2tpWQLJWrqfHvGBmboqqDq/Ll4OwFCys7RN68oCyTlZmOxw9uwtM3oJQj6QfJ+WuwbdVYZZ9d6/cgPn9N4+9tYFAZfp5uKg9AkcvluHzzLmr5eamtF7L7ANaG7sWvU8ahure7xnOKjM1gU81N+ari6A0zyyqIvlu0dmR2Vjriom+UeY0nhUKuHBzRBAMDA/h6e+Hq9aJ1+ORyOf65fhM1/CvOAHiWTI6nL2TK1+PYLCSLc1AvwEpZxsS4Eqr7mON2ZJra44hEwtfuICi8xas8GRubopqDi/Ll6OIJS2tb3Llxqej/lJmOh/dvw8tP9/2EsYkp7B2dlS9nVw9YWdvi1vWiX2YzMzPw8P4d+PjXKvEYlQ0M4OHth1s3rij3yeVy3L5+GT5+Jdf5t0TGprCr5qZ8VXXyhrmlHaJuF/3sI8tKR2z0Dbh5B6o9jkKhQPj6Obh95SiGTFoDm6qa+4OkyMgMNlXdlC87B2+YWlTB42L9xNNH18u8nqFCIVcOSJZr3hL6tUfF80bfgNO/6NfyyjuvHvbD+pZZ3/IaGZvCzt5N+arm5A1zq2L9RGY6njy8ATcf9XkVCgXC1s3BrctHMWyy5vqJrKx8PH0uU74ePclEUko26tcp+iO+iXEl1PC1wK17qWqPYySqBHmx61y+XIFyvswRVXgcQKQKZ+nSpcjPz0fDhg0RGhqKBw8e4O7du1i8eDGaNGny5gNogEAgQM33++P6iT/w5O5xpLy4j9M7J8LYvCpcq7dRljvw50Dc+XsTgIJBSOtqviqvyobGEJlYwbqaZmdG9O7YBuHHz2Lfqb/xKO45flq9GbLsHHRqUbAg84zf12Lp5jBl+Q3hB7Fi+x5MGfEFHKvaIlkiRbJEikyZ5ta4e1X37t1x8OBBHD1yBE+ePMHS339HdnY22rZtCwBYsGAB1q5dqyyfm5uLhw8f4uHDh8jLy0NycjIePnyIZ8+eaSVv1+69cOTgPhw/egixT2Lwx9JFkGXL0LptewDAogXzsHHtKmX5zl174J8rl7B713bExT7BlpB1ePjgPj7q3E0reQsduZCFTh+YItDXEE5VK2FwdwtI0uS4eq9oxts3/azQqoGxcvvw+Ux4OhugY1MTVLWuhEa1RGhezxjHL2VqNKtAIECrjn1xIHQVblw6iacxD7B+yRRYWldBnYatlOV+mzEEJw9sUW7LsjIR++geYh8VzGJOjn+K2Ef3kJL4dmv7/VuVTE1gUccfFnUK/tpu4uEMizr+MHJxAAD4zRmPOmt/UpaPWbkVJh4u8J/3LUz9POE2vA8cenXAo9/WaTRnod6d22HP0dPYd/IcHsc9w/xVIZBlZ6NTy/cBADMXr8ayTaHK8hvD9mPl1t2YPHIAHKrYIVksRbJYisws7fQRQEGbaNSmP87s/QOR144jPi4SYau/g7lVVfjXK+qHN/w8ABePFd0GdTT0F8REXoIkKQ7xcZE4GvoLHkdeRO3GnTWat2e3Lth/6AgOHzuOmNhY/LZsBWQyGdq3KXhC+I+//IbV6zYqy+fm5iIq+hGioh8hLy8PScnJiIp+hKfPNNt2i9ux9zn6f+yM9xpYw9PVBN+P9UZySg7OXiyaAbdwRg1071A0U+SvS2J8/rEzGgdZw76KCB80ssEnnR1x5oJmF5cXCARo17k3InaswT8XTyH2cRRWLpoBaxs71GvUXFnup6kjcHTfduW2LCsTMdGRiIkueKBNUsIzxERHIjnx7dYJfpe8Hbp8gt3b1uPyhTN48vghli+cBWsbO9Rv3ExZbs7kMTi0d6dyu2O3z3Di0B6cOrYfT2MfY82yn5Etk6F5m04az/t++/44Hr4Cd64ex4vY+9j+x0RYWFVFjaCiJ92vmjcQfx3ZpNwOXz8b//wVgc9G/AyRkSnSJIlIkyQiN0fz/YVAIEDDNv1xbv9y3L92DAlxkdizZgLMrarCr25RP7Fp4Re4dLyonzix6xc8uV/QTyTEReLErl8Qc/8iajbSbD9RmPfsvqJ+bfefL/u1V/JuXDBAJe+x0F8Qc7+oXztW2K9pIa8+9cP6mFkf837Qvj+O7V6B21eO4/mT+9j6sp+o+Uo/sWLuQJw7XNRPhK2bjavnItBnVEE/kSpJRKqW+okde57ii09d8X5DW3i6mWLKeH8kp2TjzPmiNRsXzQlAj46Oyu1zl5LR/xM3NKlvA/uqIjRrbItPuznj9N/6vy43UVnwFmaqcDw9PXH16lX88MMP+Prrr/H8+XNUqVIFQUFBWL687GsRlpfaHwxGXk4Wzu2ejhxZKqq61cOHA1aqzGpMS3kCWab2HoyhTtv3GkCSmo6V2/cgWZIKX3dnLJo0FrZWBQ9NiE9OUZkZsuvIaeTm5WHSQtW1gwZ/3AlDemn+h7vmzZsjVSrFxpAQiFNS4OnlhVmzZytv8U1MSIBQUJQ3JSUFY0aPVm6HhoYiNDQUtWvXxk/z5792/PLWtHlLSFMl2LJxLcRiMTw8vTB91k/K28kSExMgEBb9fca/Ri2MnzAZmzasQci6P+Ho5ISJU2fBzd1D41lfdeBcJkQGAnzR2RwmRkI8eJKLhSES5OUXlalqUwnmJkXZHz/Lw9JtUvRsbYYuzU2RKM7HlkNpOH9Ts7fZAkDbbgORnZ2FzStmITMjDV7+dTF6yjIYGBZ95hLj45CeKlFuP3l4G4tmDFZuh64vWHOscYsu6D+6aI3F8mYZVAtNjhUNBtVY8D0AIHbDLtwIngSRQxUYvxxMBICsx3G41GUYavwyCe5j+kMW9wI3h01B0pGzGsv4qjbvN4Q4NQ2rt+5GsiQVPu4u+HXyOOUyB/FJxfqIwyeRm5eH7xeo9sHBvbpg8KddtZIZAN7vMBi5OVmIWD8NssxUuPoE4fNxq1T64ZTEJ8hMf+XpiqkpCPvzO6RLEyEyNkc1Zz98Pm41vGq+r9GsLZs1hVSainUhWyEWi+Hl6YF5s6Ypb2FOSExUOcfJKWIMH1u07MaOXeHYsSscAbVqYuGPczSa9VVbwp7CWCTEN8O9YGZaGTfvpuLb2XeQk1s088LR3giWFkWzmX9bHY3gPq4YN9QT1haVkSTOxZ7DL7B+h+YfhPVR9/7IlmVh7bK5yMxIh2/1Ovh62mIYvtJPJLx4irRX+olHUXfx09Thyu0tawrWUny/ZUcM+XKGRvN27vk5smUyrP79J2RmpMOvRgAmzlyokje+WN4mH7RBqlSCnZtWQSJOgZunDybOXFjutzCXpHnHYORkZ2HXmumQZabB3bceBn67UqUfTk6IRUZa0Wfu/LGtAICVc79QOdbHQ35A/WbdNZ65yYdDkJudhf0hBf2Ei3cQPvtytUo/IU6MRdar/URaMvas/Q7p0gSIjM1R1ckPvb/8E541NNtPAMB77QcjNzsL+zYU9Wt9vlpVLO8TZL5yjjPTUhBerF/r+9VqeGq4XwP0qx/W18z6lrdFp4J+YuefRf3E4O+K9RPxqv3E30cL+ok/5qj2E58M/QENmmu2n9gUGgsjo0qYMNq34Dp3R4qvp99Uuc452RvD6pXr3K8rojCkrzu+HuEDa0sDJKXkYM/B51i7VbMPs9JLAk7L/C8TKMry1AoiPffTzvK97VIbhnmf1nWEMkm2cNV1hDLJUejPA24A4OcQ/XuwTd8eFm8uVIHI6pW8LEFF1eTqn7qOUGYHpdr5pbG8fFDt3z1cRFc+/06i6whl8uMP5XsrrjaIKqlf+qEiipFY6TpCmaRlaWaZF00SCvXrVyreeknFmRnp1+9J82dq54+u5eVsRPM3F/oPkO1ZqusIWmHUZZSuI+gEb2EmIiIiIiIiIiIitTiASERERERERERERGpxDUQiIiIiIiIiIno3Qs5R+y/jd5eIiIiIiIiIiIjU4gAiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFh+iQkRERERERERE70Yg0HUC0iDOQCQiIiIiIiIiIiK1OIBIREREREREREREanEAkYiIiIiIiIiIiNTiGohERERERERERPRuBJyj9l/G7y4RERERERERERGpxQFEIiIiIiIiIiIiUosDiERERERERERERKQWBxCJiIiIiIiIiIhILT5EhYiIiIiIiIiI3o2Qc9T+y/jdJSIiIiIiIiIiIrU4gEhERERERERERERqcQCRiIiIiIiIiIiI1OIaiERERERERERE9G4EAl0nIA3iDEQiIiIiIiIiIiJSS6BQKBS6DkGkLfuv5uo6Qpm5WyTqOkKZyOQiXUcoEyNhtq4jlElMWhVdRygzW+NMXUcoE+/cm7qOUCZ/1wvWdYQyq3Fvn64jlMltqbuuI5SJUeV8XUcoExujdF1HKDNxtqmuI5RJvly/5gz4mT7SdYQyU0C/Zt0oBPrVJkjzJHIrXUcok8hEW11HKJPP3tOvPuLfkh36U9cRtMLoQ/37+bs88MpBREREREREREREanEAkYiIiIiIiIiIiNTiQ1SIiIiIiIiIiOjdcHmE/zR+d4mIiIiIiIiIiEgtDiASERERERERERGRWhxAJCIiIiIiIiIiIrW4BiIREREREREREb0bgUDXCUiDOAORiIiIiIiIiIiI1OIAIhEREREREREREanFAUQiIiIiIiIiIiJSiwOIREREREREREREpBYfokJERERERERERO9GyDlq/2X87hIREREREREREZFaHEAkIiIiIiIiIiIitTiASERERERERERERGpxDUQiIiIiIiIiInonCoFA1xFIgzgDkYiIiIiIiIiIiNTiACIRERERERERERGpxQFEIiIiIiIiIiIiUosDiERERERERERERKQWH6JCRERERERERETvRsA5av9lHEAknRkwYADWr1+PYcOG4Y8//lD52qhRo7Bs2TJ88cUXWLdunW4CFqNQKHBw51L8fXwnZBlpcPeri16DpqKKg5vaOkd3r8KNS0eR8OwRDAyN4O4biM69x6Gqo4fG8+7fG4bdodsgEafA3cMLg4ePha9fdbXlz505iS0ha5AQ/wIOjs7oP3Aogho01njOQgqFAjs3rcbxw3uQkZEGv+oBGDTyWzg4upRa7/C+UETs2gSpOAWuHt4YMGw8vH1raDyvvp1foOAcH9ixFOeP70RWRho8/OqiV3DpbfjI7lW4cbFYG+4zDtW00IYVCgV2bV6JE0d2IzMjHb7+ARgw4jvYO7qqrXPv9lXsCwvB46h7kIiT8OWk+ajfuIXGswLAzgPHsWnPQaRIpPB2c8H44D6o6eNZYtnwI6dw4NTfiI59CgDw83TD8D491JYvbzZN68Pz62BY1qsFI8equNxzJOL3HCu9TrOGqLFgIsxq+EAW+xxR85YjbkOYVvIW2hOxFztDQyEWi+Hp4YGRI4bDz8+vxLKPY2KwcWMIHkRFISEhAcOGDkH3bt20mlehUODQzt9VPnM9B00r9TN3bPcq3Lx0RPmZc/MNRKfe47Vy3SjMvG/bMpw7FoqsjDR4+gfisyFTULWUzA/uXMbRPesQG30XUnEihn67CHUattJaXn26digUCuzdtgznju5CVmYaPP0C0Xvo5Dec3ys4Ev7K+Z3wKwK1eH73b1+Kv162Bw//QHw6eGqpeaPuXMaxPevw5NEdpIoTMfibRajTsLVW8u7Zuw87QsOQ8rKPGDV8KPz9fEss+zjmCTaEbMKDqIeIT0jA8CHB6NGtq1ZyvmrP3n3YGbpLmXnk8GGlZI7BhpBNiHqZediQwVrPrG/9sL7lBfQvs0KhwI5Nq3H8UISyHw4e+Q0cnErvhw/tDUXErs3KfnjgsHHw9tNOP3xi9xJcObUDssxUuPrUQ6d+02Fr7662zum9K3D3yhEkvYiGgYERXLzrom2vr2HnoJ2f24gqCg4Pk065uLhg69atyMrKUu6TyWTYvHkzXF3VDxLowvGINTh9cBN6BU/DV7M3QyQyxh8/DkNuTrbaOg/vXkbTdr3x5azNGP79SuTn5eKPeUORLcvUaNazp49j7arl+LTPF/hl8Uq4e3hh1tQJkEjEJZa/d+cWFs6fjdbtPsIvi1ehUZOm+HHOVMQ8fqTRnK+KCA3Bwb07EDzyW8xesBoiIyP8OG0ccko5v3+fOYqNqxejZ+9BmLtoLdw8vPHjtHGQSlI0mlUfzy8AHNvzsg0PnoZxczbDUGSMP+a9XRv+avZmjJi8EvL8XPwxV/NtGAD27dqAw/u2YeCIiZjx8xqIjIwxf8bYUttEtkwGV3cffDHsW43ne9XRcxexeP02BPfqgnXzp8PH3QXj5vyKFGlqieWv3o5E26YN8fuMb7Fy7veoZmeDr2YvREJyyW2ovFUyNUHqjUjcGjvzrcobuzujwZ4VSD55AWfrd8WjJetRe8Uc2LVtquGkRU6dOo1Vq1bh8z598PuSxfD09MDkqVMhkUhKLJ+dnQ17B3sMGjgA1tbWWsv5qhMRf+LMwU34OHg6vpy9BYYiY6z8cegbPnOX8F673hg7awuGfb8K8rw8rJw3RCufOQA4Er4WJw9sxmdDp+LbeZtgKDLG73OGl5o5JzsLzm5++CT4e61kfJU+XTsA4MjutTi5fwt6D52Cb+eGQCQyxpLZI0o/v7IsOLv74dPBkzSer7ij4Wtw6sBmfDpkKr6euwkikTGW/VD6dSM7OwtO7r74JHiyFpMCJ0+fwYpVf+LzPp9h2eJf4enhju+nToe4tD7C3h6DBvSHjY76iJOnz2DlqtXo26c3li5eBE8PD0yeOq3Ufs3B3h6DBnyhk8z61g/rW15APzPvCd2EgxE7MXjUt5jzyyqIjIwwb9r4Uvvhv04fxcbVS/Bx70GY99sauHl4Y9608ZCq+Vm6PJ3dvxoXjmxE5/4zMGTqdhgYGmPjwsHIzVWfNybyEhq27oMhU7ah/zdrkJ+fhw2/DEZOtnauzUQVBQcQSafq1asHFxcX7Nq1S7lv165dcHV1Rd26dZX7WrRogbFjx2LChAmwsbGBvb09ZsyYobWcCoUCpw5sRLvuQ1G7fis4uvmhz8i5SBUn4OZl9bN2hk1agYbNu8HBxRtObv7oM+IHiJOeI+7RHY3m3RO2A23bd0Trth3g4uqO4aPHQ2RkhGOHD5RYfu+eUNQNaojuPT+Di6sb+vQbBE8vH+zfq53ZRQqFAgf2bEf3TwagfuNmcPPwxshx0yBOScLl86fV1tu3eytafdgFLdp0grOrB4JHToChSISTR/ZqNK++nV+g4ByfLtaG+46aC+kb2vDwSSvQqIX227BCocDBiK3o0msQgho1h6u7D4Z9NQOSlCRcOX9Kbb06Qe+h1+cjUL9JS43mK25LxGF0adMMnVo1hYeLIyYM7QeRyBB7j58tsfzMr4aiZ/tW8PVwhbuTAyYNHwC5QoHLN+9qJW/iodO4P30R4sOPvlV5t6GfIetRHO5O+Anp96IRs2wTXoQegseXAzQb9BW7wsLQvn17tGvXFm6urhgzejREIiMcOny4xPJ+vr4YEhyMFs2bw8DAQGs5CxV+5tp0H4ZaLz9zvUfOQ6o4AbdK+cwNnbQSDZt3h72LNxzd/PGZlj5zhZlP7AtB+55DUKdBSzi5+eKL0T9AKk7E9UvH1darWfcDdO49BoGNtDPLrJC+XTsUCgWO79tUcH4btoSzuy++GDOn4PxeLOX81muKLr1H6+T8ntwfgg97DEVAg1ZwcvNDv9FzIRUn4sYb2kOnz8ZqbdZhodCwcHRo3w4ftm0DN1dXfDl6JERGIhw6XHI/5+frg6HBA9GyeTOd9BEAsCtsN9q3/1CZeawy85ESyxf0a4PQQkeZ9a0f1re8gP5lVigUOBC+Hd0//QL1G38ANw9vjBo/taAf/vuM2nr7dm9Dqw87o0XbjnB29cDgUd9qrR8+f2QDmnUeDv96rWHv4oceQ35CmjgB966q/5mo39erUbdpD1R18oG9qz+6B8+DNPkZnj2+rdG8RBUNBxBJ5wYNGoS1a9cqt9esWYOBAwe+Vm79+vUwNTXFhQsXMH/+fMyaNQtHjpT8A1Z5S06IQ5okCb61mij3GZuYw80rAI8fXH/r42RlpgMATMwsyz1jodzcXDyMuo86gUHKfUKhEAGB9RB5r+SLXOS9OyrlASCwXgPcV1O+vCXEP4NEnIxagfWV+0xMzeDlWwMP7t0qsU5ebi4eRUWiVp2iOkKhELUCG+BBZMl1yoM+nl+goA2nSpLgW7tYG/YOwOP7FasNA0Bi/DNIxcmoVaehcp+JqRk8fWsiKvKmRt+7rHJz8xAZHYMGAUW3sAuFQjSoXQO3Ih++1TFkOdnIy8+HhZmppmK+E6vGgUg6/rfKvsQjZ2HdOFAr75+bm4sHUVGoG1j0fkKhEHUDA3H33j2tZCirFOV1o2ipAmMTc7h6BSCmDNcNWWYaAM1/5gAgOeEpUiVJ8Kv9SmZTc7h718ajyLfPrC36dO0Ais6vf0Aj5T5jU3O4+9RG9P0bGn3vf6PwuuEXoNqG3b1r41EZrhvaoL6PqFNh+4jCzPUC6yj3FfZrd+5F6jBZyfStH9a3vIB+Zi7sh2sX64e9/Wrg/hv64dqBDZT7hEIhagfWV1unvIgT45AuTYRnzfeU+4xMzOHkFYDYqGtvfRxZVsG12dhU89dmvSMQ/n+8/k/9//7PqcL4/PPPcfbsWcTExCAmJgbnzp3D559//lq5gIAATJ8+HT4+Pujfvz/q16+PY8fUz+LIzs5Gamqqyqu0W25KkyZNAgCYWdqq7DeztEWaJOmtjiGXy7F7w4/w8KsLBxeff5XjbaSlSiGXy2FppXobg5WVNSTikm/PkohTYFVCebFYO7dTSl/msrSyUdlvaWWjNnNqqgRyeT4srd++TnnQx/MLQNlOzYu1YXNLW6SWoQ2Hrdd8GwYAiTgZQMltQvryaxWFJC0N+XI5bCwtVPbbWFkgWSJ9q2MsC9mJKtZWaBCg+bV//g1RNTtkx6u2k+z4JBhYmkNoJNL4+6empkIul8PK2kplv5WVFcQp2vsclUWqtPAzZ6eyv6yfud0bfoK7Fj5zAJS5LKyK9RNWtkiVVKzPHaBf1w4AkIpLPr8WZWgT2lT4PX+X64a2FPYR1lZWKvutrayQIpboJNObKPu1Yj8fWFtZafXng7elb/2wvuUF9DOzpLR+WM11Q9kPl6HvLi/p0kQAgJlFsd/pLOyQLn37a/PBLXPh6lMP1ZxLXq+U6L+KD1EhnatSpQo6duyIdevWQaFQoGPHjrCzs3utXEBAgMq2g4MDEhIS1B533rx5mDlTdX2vPkOnoO+waW/MdOXsXmxfXVR3yIRlb6zzJqFr5+B5bBTGztjwzsfSd2dPHsLqpfOV2xOmLdBhmv+my2f3YvuqojY89Lt3b8M71xS04S9nln8bPnfyINYun6fc/nrqr+X+HhXVhrD9OHLuIpbNmACRoW5umaJ3d+XsXuxcPUO5PXjC8nc+5q61c/Ai9gFGz9j4zscqycUz+7BlxSzl9shJSzXyPuVF364dF0/vw5aVs5XbIyb9rsM0b3bpzF5sXVnUHoZX8PZARNp39sQhrFr6s3L7u+k/l1Ja9278HYGI9dOV232/+qOU0m9nX8gsJMQ9wKDvN7/zsYj0DQcQqUIYNGgQRo8eDQBYurTkH1iLr+shEAggl8vVHnPSpEkYP368yr4Td95u0m3NoJb4xrtowDIvNwcAkC5NhqV1FeX+dGkyHN1Lfiraq0LX/oA7V09h9PT1sLK1f6sM/5a5hSWEQuFrixBLJGJYFZtxUcjK2ua1B4BIJGKNLcYc1LApvH1rKrdzX55fqSQF1jZFg8dSSQrcPUuedWNhYQWhsJJyBsqrddT9P8uDPpxfAKgV1BJuJbThtGJtOE2aDCe3N7fhnWsK2vCYGZppw/UafgBvv5LbhFWxNuHmUbH+2mtlbo5KQuFrD0xJkaTC1qr0W1s2hR/ExrD9WDztG3i7l/60Ql3Kjk+CqJrqH3ZE1eyQK02DXPbvZnaXhYWFBYRCISTFZhJJJBJY2+hm0fjiaga1hJt3beV2Xm4ugIIZ7BbFP3Pu/m883q61c3Dn6imM0uB1I6B+C7i/mjmv4HOXKinWT0iS4fwW1zpN07drR0CDFnD3efP5TZVWjPNbu35LuPu85XXjLdqwNhX2EcUfmCKWSGBTbDZXRaHs14r9fCCWSHT2MIzS6EM//Cp9ywvoR+agRk3V/rxWvB9283hDPyzRfD/sF9gSTp5F/Vr+y344PTUZ5lZVlfvTU5Ng71L9tfrF7ds4C/evncSgSSGwtNHs73REFRFvYaYKoX379sjJyUFubi4+/PDDcjmmSCSChYWFysvA8O1utTMyNkUVe1fly97ZC+ZWdrh/67yyjCwzHTEPb8Ddp47a4ygUCoSu/QE3Lx3DyClrYFvV+Z3/X29iYGAAL29f3Lh2VblPLpfj5rWr8POvWWIdP/8auHH9qsq+6/9cga+a8u/K2MQU9o7OypezqwesrG1x6/plZZnMzAw8vH8HPv61SjxGZQMDeHj74daNK8p9crkct69fho9fyXXKgz6cX6DkNmxhZYcHxdtw1A24+5behneuKWjDo6Zqrg0bm5iimoOL8uXk4glLa1vcvnFJWSYrMx3R92/D2692KUfSPgODyvDzdFN5AIpcLsflm3dRy89Lbb2Q3QewNnQvfp0yDtW93bWQ9N+TnL8G21aNVfbZtX4P4vPXtPL+BgYG8PH2xrXrRe8nl8tx7do1VPevGAMZRsamsLN3U76qvbxuPLh1QVlGlpmOJw9vwO0N141da+fg5qVjGKHh64aRsSmqOrgqXw4v+4nIVzJnZabjcdRNePipz6wt+nbtUHt+bxY7vw9uwtM3oJQjaYe668ZreaNuwqOU64YuKPuIa0VrMxb0ETcqTB9RXGHmf64VrX9ZkPk6avjrfkC5OH3oh1+lb3kB/cisth++VtSnZmZmICryDnzf1A+/0nfL5XLcun5FbZ1/S2RsBttqbspXFUdvmFlWQfSdonWdZVnpePrwBly8A9UeR6FQYN/GWbh79SgGTFgH6yqa/52OqCLiDESqECpVqoS7d+8q/13RCAQCNO/QD0d2r0QVezfYVHXCgR2/w8K6KmrXL3rK4LI5wajdoDU++LAPACB0zRxc+Ws/gr9eDJGxqXLNICMTMxgaGmksb5fuvbB44Y/w8vGFj2917A3fCZlMhtZt2wMAfvtlLmxsq6DfgCEAgE5demLKxK8Qvms7gho0xtnTx/EwKhIjxnytsYyvEggE6NDlE+zeth72ji6oWs0RO0JWwtrGDvUbN1OWmzN5DBo0aY4PO30MAOjY7TMs/3UOPL394e1bAwfCtyFbJkPzNp00mlffzi9QcI6bdeiHw2FFbXj/9t9hWawNL50djIAGrfFB+4I2vHPNHFw5tx+Dv9FuGxYIBGjf+TOEb18DewcXVKnmiJ2b/4CVjR2CGjdXlps3dSTqN26Bth0/AQDIsjIR/zxO+fXE+GeIib4PU3ML2FXR3F+Ke3duh9m//wl/L3fU9PbA1n1HIcvORqeW7wMAZi5ejSq21hjZtycAYGPYfqzaFo6ZXw2BQxU7JIsL1ko0NhLBxFhz57VQJVMTmHq7KrdNPJxhUccfOSlSyGKfw2/OeBg5VcP1gd8BAGJWboXbyL7wn/ctYteFwq5lYzj06oBLXYZpPGuhHt27Y8HChfDx8YGfry/CwsMhy5ahXdu2AICfF/wCW1tbDBo4AEDBYvRPnjwBAOTl5SEpORkPHz6EsbExHB0dNZ638DN3dPcK2Nm7wraqMw7sWAIL66qo9cpnbvmcQajdoDWaftgXALBrzWxc/Ws/Bn29BCJjE6RKCtZrMjYxh4EGP3OFmVt2/BwHQ1eiqr0rbKs6Ye+2pbC0roI6DVopy/02czDqNGyNFh16Ayj43CW+eKL8enLCU8Q+ugdTM0vYVHHQaF59unYIBAK06tgXB0JXoaqDG2yrOiFi68vz2/CV8ztjCOo0aqX+/MZr7/y2+OhzHNq1AlUdXraHrb/D0roKAl5pD0tmDUZAw1Zo/vK6kS17vT3EPb4HEzNL2NhpLm/P7l3x88JF8PHxhr+vL3aF74FMJsOHbQs+b/N/+RW2tjYIHvAFgMI+Irbg33l5SEpOwcOH0TAyNoKTFvoIAOjRvRsWLPwVvj7eRf2aTIZ2bdu8zLwQdra2GKQmc3JyslYz61s/rG959TGzQCBAh66fIGzbetg7OaNqNUdsD1lV0A83+UBZbvb3Y9GgSTO071zYD3+K5b/+AE+fgn54f/j2l/1wR43nbdy2P05H/AHbau6wtnPC8bDFMLeuCv96bZTl1s0fgOr12qBRm4J1+fdtnIWb5/ei99ilMDQ2RdrLtRSNjDV/bdY3CoFA1xFIgziASBWGhYXFmwvpUKvOg5CTnYXtq2cgKzMNHn71MGziHyqzGpPiY5GRVnQryrmj2wAAS2erPlW69/A5aNi8m8ayNm3WCqlSKbaGrINYnAIPTy9Mm/WT8raAxMQECF55epR/jVoY9+0UbN64BiHrV8PByQkTp8yGm7uHxjIW17nn58iWybD695+QmZEOvxoBmDhzIQxfOb/xL54iLVWi3G7yQRukSiXYuWkVJOIUuHn6YOLMhRq9hRnQz/MLAK27FLThbasK2rCnmjac/mobPlLQhn+f9XobbtSim0bzduzRH9kyGdYsm4vMjHT4Vq+Db6f/ptImEoq1iUdRdzF3ygjl9uY1iwAATVt1xLAvi9bAKW9t3m8IcWoaVm/djWRJKnzcXfDr5HGweXkLc3xSCoTCoh+odh0+idy8PHy/QHWdvOBeXTD4064ay1nIMqgWmhwrWlevxoLvAQCxG3bhRvAkiByqwNil6Bf9rMdxuNRlGGr8MgnuY/pDFvcCN4dNQdKRsxrPWqh582aQpkqxcWMIxGIxPD09MWfWLOWtfgmJiRC8co6TU1IwasxY5XZo6C6Ehu5C7dq18fNPP2olc8vOwcjJzsLOV64bQyeuUPnMJcfHIiNNotz+6+V1Y9nsASrH+nT4HDRs3l3jmdt2HYgcWRY2r5iFrMw0ePnXxajJy4v1E3Eq17on0bfx24xg5Xbo+oI1sRo174L+o+doNK8+XTsAoG23gcjOLji/mRkF53f0lGUq5zcxPg7pr+R98vA2Fs0YrNwOXV+w9mPjFl3Qf3TRGoua0KZrwXVjy4qZBdcN/7oY+X0JP/sUy7t45iDldtiGgvbQsHkX9Bv1g8aytmj2AaRSKTaEbFb2ET/MmqHaRwhU+4gRY79Sbu/cFYadu8IQULsWFvw4V2M5S8686ZXMM5WZExMTISyWeeTYL0vM/POP8147fnnTt35Y3/Lqa+YuPfsiW5aFVUvmF/XDs34poR8uerDce80K+uEdIauL+uFZv2ilH2760WDk5mQhYt00yDJT4eobhM/Hr4KBQVFeccITZKYXXecundgCAFj7U3+VY3ULnou6TXtoPDNRRSFQKBQKXYcg0pb9V3N1HaHM3C0SdR2hTGRyzT+RtTwZCTW/flt5ikmr8uZCFYytcaauI5SJd+5NXUcok7/rBb+5UAVT494+XUcok9tSd11HKBOjyvm6jlAmNkbpuo5QZuJsU11HKJN8uX6tWuRn+kjXEcpMAf2adaMQ6FebIM2TyK10HaFMIhNt31yoAvnsPf3qI/6tzFNbdR1BK0yaf6brCDrBKwcRERERERERERGpxVuYiYiIiIiIiIjo3XB2838av7tERERERERERESkFgcQiYiIiIiIiIiISC0OIBIREREREREREZFaHEAkIiIiIiIiIiIitfgQFSIiIiIiIiIiejcCga4TkAZxBiIRERERERERERGpxQFEIiIiIiIiIiIiUosDiERERERERERERKQW10AkIiIiIiIiIqJ3I+Qctf8yfneJiIiIiIiIiIhILQ4gEhERERERERERkVocQCQiIiIiIiIiIiK1OIBIREREREREREREavEhKkRERERERERE9E4UAoGuI5AGcQYiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFtdAJCIiIiIiIiKidyPgHLX/Mn53iYiIiIiIiIiISC0OIBIREREREREREZFavIWZ/q9UrqTQdYQyk8lFuo5QJjbCZF1HKJNnuQ66jlAmLub6dX4BwFiYqesIZXIw6X1dRyiTJvf26TpCmd3x76jrCGWyoOs6XUcok13T83UdoUwklfSrHwaANKGxriOUiZNJkq4jlMkt/y66jkD0f8fr3jFdtHhntgABAABJREFURygTewuZriOUkX5dN4hKwhmIREREREREREREpBZnIBIRERERERER0TtR8CEq/2n87hIREREREREREZFaHEAkIiIiIiIiIiIitTiASERERERERERERGpxDUQiIiIiIiIiIno3AoGuE5AGcQYiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFgcQiYiIiIiIiIiISC0+RIWIiIiIiIiIiN6JQsA5av9l/O4SERERERERERGRWhxAJCIiIiIiIiIiIrU4gEhERERERERERERqcQ1EIiIiIiIiIiJ6NwKBrhOQBnEGIhEREREREREREanFAUQiIiIiIiIiIiJSiwOIREREREREREREpBYHEImIiIiIiIiIiEgtPkSFiIiIiIiIiIjejYBz1P7L+N0lIiIiIiIiIiIitTgDkSqUAQMGYP369a/tf/DgAby9vXWQqIhCocD+7Uvx17FQZGWkwcM/EJ8OnoqqDm5q60TduYxje9bhyaM7SBUnYvA3i1CnYWut5d25aTWOH96DjIw0+FUPwKCR38LB0aXUeof3hSJi1yZIxSlw9fDGgGHj4e1bQ+N59+zdh52hu5AiFsPTwwMjhw+Dv59viWUfx8RgQ8gmREU9RHxCAoYNGYwe3bpqPGNxCoUCu7eswKkjYcjMSIePfx30Gz4R9o6uautE3r6KA2EbEfPwLiTiJIyZuAD1GrfQSt4De8MQHroVEnEK3D28EDz8S/j4VVdb/q8zJ7AlZA0S41/AwdEJnw8cjqAGjbWSFQAiIiIQunMnxGIxPDw9MWLECPj5+ZVYNiYmBhs3bkTUgwdISEjA0KFD0a17d61lBQraw8nwJbh6egdkmalw8a6Hjv2mw7aau9o6l05sweWTWyBJegoAqOrojWZdRsGndjON590TsRc7Q0MhLvzMjRiu9vw+jonBxo0heBAVhYSEBAwbOgTdu3XTeMZCNk3rw/PrYFjWqwUjx6q43HMk4vccK71Os4aosWAizGr4QBb7HFHzliNuQ5iWEhcZ+KkLOrWpCjOTyrgVmYqFKx/h6QuZ2vJCITDgExe0/cAONlaGSBLn4ODJBGzc+VTjWXceOI5New4iRSKFt5sLxgf3QU0fzxLLhh85hQOn/kZ0bEEuP083DO/TQ215TYmIiFBpx2/TTxS246FDh2q1HQMF/cSerctx5kgYsjLT4OVfB32Hfo9qjup/lrh/+woOh29AzMM7kIqTMOK7hajbqKVW8u6L2I3dodshfnndGDpiDHz9/NWWP3fmFDZtXIuE+BdwdHRG/0FDUL9BI61k1bd+Qt/yAvqXmXm1Q5/6CaCgH47Yuhxnju4q6If9AtHnrfrh9XgSfRdScSJGTFiIwEattJaZqKLgDESqcNq3b4/nz5+rvDw8PHQdC0fD1+DUgc34dMhUfD13E0QiYyz7YRhyc7LV1snOzoKTuy8+CZ6sxaQFIkJDcHDvDgSP/BazF6yGyMgIP04bh5xS8v595ig2rl6Mnr0HYe6itXDz8MaP08ZBKknRaNaTp89g5arV6NunN5YuXgRPDw9MnjoNEomkxPLZ2dlwsLfHoAFfwMbaWqPZSrM/bD2O7N2K/sMnYer8dTA0MsLCmWNKbxOyLLh4+ODzYd9pMSlw7vRxrFu1FJ/0+QI/L14FNw8vzJ76DaQScYnl7925hV/nz0brdh9hweJVaNjkA8yfMxlPHkdrJe+pU6ewauVK9OnbF0uWLIGnhwemTpmivk3IZHCwt8fAgQNhraM2ce7Aalw4uhEd+83A4MnbYSgyRsjCwcjLVd8eLKyroU3PrzF0WiiGTt0J9+qNsXXJKCQ8faDRrKdOncaqVavweZ8++H3JYnh6emDy1KmlfubsHewxaOAAnZzfSqYmSL0RiVtjZ75VeWN3ZzTYswLJJy/gbP2ueLRkPWqvmAO7tk01nFRV726O6PmRPRaujMaI728iK1uOn6dWh6GBoJQ6Tujarhp++/MRvvjqGlaGxKB3Vyf0+Mheo1mPnruIxeu3IbhXF6ybPx0+7i4YN+dXpEhTSyx/9XYk2jZtiN9nfIuVc79HNTsbfDV7IRKSS+5TNOHUqVNYuWoV+vbpgyVLlsDD0xNTSmnHsuxs2Ds46LSfOBS2Dsf3bcHnw7/HpB83QCQyxm+zR73xZwlnd1/0GTJJi0mBM6dOYM2qP/Bpn/5YuOQPeHh6YcbU7yBRc924e+c2Fvw0B23adcCvS1agUZP3MW/2NMQ8fqSVvPrWT+hbXkD/MjOv5ulbPwEAh3avw/H9m9F32GRMnLcRIiNjLJ49stR+OOdlP9xby/0wUUXDAUSqcEQiEezt7VVelSpVQnh4OOrVqwcjIyN4enpi5syZyMvL00omhUKBk/tD8GGPoQho0ApObn7oN3oupOJE3Lh0XG29mnU/QKfPxmpt1mEhhUKBA3u2o/snA1C/cTO4eXhj5LhpEKck4fL502rr7du9Fa0+7IIWbTrB2dUDwSMnwFAkwskjezWad1fYbrRv/yE+bNsGbq6uGDt6JERGIhw6fKTE8n6+vhgSPAgtmjeDgYGBRrOpo1AocCRiCzp/Eox6jVrAxd0HQ76cBXFKIq5eOKm2XkDQ++jZdySCGmtn9kihiLDtaNO+E1q1/Qguru4YNvpriIyMcOzw/hLL79uzE3WDGqJbz95wdnVH737B8PDyxYG92vmrdlhYGNp36IB27drB1c0No8eMgUgkwuHDh0ss7+vnh+DBg9G8RQudtAmFQoELRzegWafh8K/bGtVc/NAt+CekSRJw7+pRtfX8AlvBJ6A5bKu5w9beA617jIOhyARx0dc1mndXWBjat2+Pdu3aws3VFWNGj4ZIZIRDas5vwWcuGC2aN9fJ+U08dBr3py9CfLj6c/kqt6GfIetRHO5O+Anp96IRs2wTXoQegseXAzQbtJiPOzpgY2gczl0SIzomE/OWRMHO2hBNG9qorVPLzxxnL4lx/qoELxKzcep8Ci5dl6C6t5lGs26JOIwubZqhU6um8HBxxISh/SASGWLv8bMllp/51VD0bN8Kvh6ucHdywKThAyBXKHD55l2N5nxVWFgYOrRvj3bt2r3SjtX3E36+vhisw3asUChwdO9mdPx4CAIbtoSzuy8Gjp0NSUoi/rl4Qm292vWaolufUajbWLuzXcLDdqJd+4/Qpl17uLq6Y8ToryASiXD08MESy0eE70K9oAbo8fGncHF1Q9/+A+Hp5YN9Ebu1klff+gl9ywvoX2bm1Tx96ycUCgWO7d2Ej17th8fMhkSciGul9MO16jVFtz6jUZezDt9IIRD8X7z+X3EAkfTCmTNn0L9/f3z55Ze4c+cOVqxYgXXr1uGHH37QyvsnJ8QhVZIEv4Ci2zeNTczh7l0bj+5r9hf9fyMh/hkk4mTUCqyv3GdiagYv3xp4cO9WiXXycnPxKCoSteoU1REKhagV2AAPIkuuUx5yc3PxICoK9QLrqLxv3cBA3LkXqbH3fVeJ8U8hFSejZkBD5b6Cc1wLUZE3dZjsdbm5uXgYdR8BgUHKfUKhEAGBQbh/73aJde7fu61SHgAC6zVApJry5Sk3NxdRDx4gMDBQuU8oFCIwMBD37mpvcKIsJElxSJcmwrPGe8p9RibmcPYMQOzDa291DLk8H7f+x959xzV17mEAfwhCGAJhiSB7i6K4Z92z7tqhtrXuVW2rrVZt3baOqrVate69qigI7lFnrbMqLlRcuEAgCTuM5P4BBIIJSiUJ8T7fzyefe8/pe04eD4dfTl7e855ze5GdlQ43nxDtBEXh71ytYse3VkgIbt2+rbX31SVRwxAkHDursu7l4dOwbRiiswzOlYSwtzXFpWtS5bq09FzcvJuKIH8rjdtdj05BnWBruDqbAQB8PCwQHGiFc/9KtJY1OzsH0fcfoV6NwikNBAIB6gUH4Xp0zBvtIzNLhpzcXFhXtNRWTBUF57G6OlFez+OEuKdIliSgas3CW/UsLK3g5Vcd96Ov6THZqwo+N2qG1FauEwgEqBlSG9G3b6rdJvr2TdSspfq5UatOXY3t9a081InSMLS8gOFlZt7SMcQ6oazDNQrrsLmlFbz8gnE/uvx9pyMqb9iBSOVOZGQkKlasqHx99NFHmDZtGsaPH48vvvgC3t7eaNu2LWbMmIHly5dr3I9MJkNycrLKq6Tbd0uSLEkEAFjZ2Kust7KxR7Ik4T/tU5uk4rxbjm1EqqNcbER2kIjV346cnCyBXJ4LG9s336YsJCcnQy6XQyRSvZ3MViSCWKy7W+FKS5p/TliLVM8Jaxs7SMWJ+oikUUqyFHJ57ivH2EZkq/FnKxEnwaZYe1EJ7ctSwTlR/BZDka0tksrpOZEqfQkAsLRWPR8srR2QllxyjYh7Eo2fR9TGzKE1ELlxKj758nc4umhvzlfl75ytSGW9SCSCOKl8Ht/SEjo5QBanetxlcQkwsbGCwEyokwx2tnkj3JIk2SrrxdIs2Ik0j37bsvspjp1JxIbfQnBkWwOs/KUGdu59jiOntPdZI0lJQa5cDjsba5X1diJrJEqkGrZStXTTTjjailCvhvbnzAU01wlbkQjiJO3Xqf+i4HrBykb1c9ZaZI/kcva5kZwsza8Tr34OaDq+EnHSK58zIpEtxDr43PgvykOdKA1DywsYXmbmLR1DrBMFdVjt9bukfNVhevcsWbIEnp6eMDMzQ4MGDXD+/HmNbVeuXIn33nsPtra2sLW1RZs2bV5p369fPxgZGam8OnTooNV/Ax+iQuVOy5YtsWzZMuWypaUlatSogTNnzqiMOMzNzUVmZibS09NhYWHxyn5mzZqFadNU5xD5bOiP+Hz4pNdmuHAqEttWTFcuD5uw5L/8U3Tm9PGDWLVkrnJ53OR5ekzzbjp7Yj/WL/tZufzNjwv1F4b07to/EYjcMEW53OfrP/7zvhwqe2HYlN3IzEjBzUsHEbZ6PPp9v1GrnYhU9tq854BvhxQ+QGT8rP82Cq5lY3u0ec8BM3+7iwexGfD1tMDI/p5ITMrGwRMvyypumdqwex8OnzmPpVPHQWiqn2klyqNzJ/Zh0/KZyuWRPyzSYxoiov8/507uxeaidXjiYj2mof9n27dvx5gxY/DHH3+gQYMGWLhwIdq3b4/o6GhUqlTplfbHjx9H79690bhxY5iZmWHOnDlo164dbty4gSpVqijbdejQAWvXrlUuC4Xa/eMBOxCp3LG0tHzlicupqamYNm0aPvjgg1fam5mZqd3PhAkTMGbMGJV1J6PfbL6C4Lot4elXQ7mck50FAEiRJsLG1lG5PkWaiCqemp8ypit16jeFr3815XJ2fl6pJAm2dg7K9VJJEjy9/dTuw9paBIHAWDl6seg2IlvN83W9LWtrawgEglcmWxZLJHqb5F6dkPrN4O1fXblccE4kSxIhKnKMk6VJcPNS//RofbGytoFAYPzKMZZKxBp/tiJbu1cesCIpoX1ZKjgnio9AlYjFen1oTlEBNVvCdUqRGpGTdz6kJSfCSlR4EZCWnAAnN81PugYA4wqmsHPKe/Kfi2d1PHtwHf8c2YAufaeXuN1/pfydE0tU1kskEtjalY/j+7ZkcQkQOjmorBM6OSBbmgJ55n8bif46Zy4k4dbdVOWySYW8zxs7kYnKKERbG1Pce5imcT/DPvfAlrC8UYgA8OBxOio7CvHpB1W01oEosrKCsUDwygNTkiTJsBfZlLjt5vAD2Lh7HxZN/g6+nm5ayaeOpjohlkhga6f9OvUmatZvDi+Vz4288yBFmgSRXeG1RLIkEW5e6p8crS/W1jb5deLVzwFNx1dka/fK54xEIoatDj43/gt91Im3YWh5AcPLzLylYwh1oma9FvDyC1YuF71+L/qdLlmaBDfP8nX9Tu+WBQsWYPDgwejfvz8A4I8//sDevXuxZs0ajB8//pX2mzdvVlletWoVQkNDcfToUfTt21e5vuD5EbrCW5jJINSuXRvR0dHw9fV95SUQqD+NhUIhrK2tVV6mpm/WI29mbgnHyu7KV2VXH1iLHBAddU7ZJiM9FQ/vRcHLv2YJe9INcwtLVHZxVb5c3b0gsrXH9asXlW3S09MQc+cm/AKrq91HBRMTePkG4Pq1S8p1crkcN65ehF+A+m3KgomJCfx8ffHvlcL5n+RyOa5cuYqgwPLzhcrc3BJOzm7Kl4ubN2xs7XHz2gVlm4z0VMTcuQ7fgOAS9qR7JiYm8PH1R9QV1Z/ttSuX4R9YTe02/oHVcO3qJZV11/69iAAN7cuSiYkJfP38cPXKFeW6vHPiCgKrltwZpytC84qwc/JQvhxdfFHRxhH3bxXORSTLSMWT+9dKPZ+hQiFHbv4FrjYU/M5duXpFua7g+FYN1P8fRMqC5J8rsG/VUGWdQ+vGEP9zRWvvmZEpx9MXmcrXwycZSBRnoXZwYQechbkxgvwq4uadFI37EQoFkMtV1+XKFdDmfN0mJhUQ4O2h8gAUuVyOi1G3UD3AR+N2m8L2Y21oJH79cTSq+npqL6Aahedx4ZxV5e08NjO3RCVnd+XL2c0b1iIH3Lqmei3x4O51eAfUKGFPulfwuXHt6r/KdXmfG/8iIFD9beoBgUG4duWyyror/17S2F7f9FEn3oah5QUMLzPzlo4h1IlX63Ded7rbUYW3gubV4Sh4B+j/O907wUjwf/FSN12aTKa+4z4rKwuXLl1CmzZtlOsEAgHatGmDs2fPqt2muPT0dGRnZ8OuWOf88ePHUalSJQQEBGD48OFITNTurfjsQCSDMHnyZGzYsAHTpk3DjRs3cOvWLWzbtg0//vijTt7fyMgILd7/DAd3LUfUxb/w7PEdbPx9ImxsHVGjXuHTuBZPH4QTB7Yol2WZ6Xjy8DaePMy7lS0x/imePLyNpITnWs/bsevHCNu+HhfPncLjhzFYtmA6bO0cULdhM2W7mT+MwsHIncrlTt174a+De3Di6D48jX2INUt/gSwzE83bdNZq3g96dMf+gwdx+MhRPH4ci8VLliIzMxPt2uYV2bnzF2DNuvXK9tnZ2YiJuY+YmPvIzslBYmIiYmLu4+mzZ1rNWZSRkRHadumNiB2r8e/5E4h9eA8rF06BrZ0jajdooWw3d9JwHNm7XbmcmZGOx/ej8fh+3gNiXsY/xeP70Uh8+UKrebv0+BhHDu7FX0cO4Mnjh1ixZAFkmRlo1bYjAGDR/J+wad0KZftOXT/ElUvnsWfXdjyJfYTtm9ci5l40OnbuodWcBXr06IEDBw7gyOHDePz4MZb8/jtkMhnatm0LAJg3b57KcP28cyIGMTExyFGeEzF4pqNzwsjICA3a9MWpyD8QfeUY4p5EY/eq72ElqoTA2oUXCxt+6YfzRzcpl4+Ezsej6AuQJDxB3JNoHAmdj4fR5xHcsItW837Qowf2HziIw0eO4PHjx1i8ZAkyZZlol398f5k3H2vWrlO2L358E3R8fI0tLWBdMxDWNfM6hiy8XGFdMxBmbs4AgICZY1Bz7Rxl+0crtsHCyw2Bs8bCMsAbHsP6wPmjjnjw2zp1u9eanXuf4/Oermhc1xZe7haYOMoXCeIsnD5fONJ7/pQg9OhQ+JfjsxfF+LxnFTSsLUJlRyGa1rfDx51dcOq8dueH6t2lHfYcOYm9x8/g4ZNnmLtyEzJlMnRu2QQAMG3RKizdHKpsv3H3PqzYFoYfRvSDs6MDEsVSJIqlSM/I1GrOogrqRMF5/PuSJeW+TrTp3Af7dq7ClfPH8eTRXaxZNAkiO0fUqt9S2W7BlKE4tm+bcjkzIx2xD6IR+yDvcyMh/iliH0Qj8aV2ryW69fgQhw7sxbEjBxH7+BH+WLIQmbJMtGnbHgDw67zZ2LB2lbJ9l24f4PKlCwjb9SeexD7G1k3rEXP3Djp16a7VnAUMrU4YWl5DzMy82mdodcLIyAitO3+KfTtX4uqF43j66C7WLvoRIltHhBStw1OH4K9X6vBtxD7I+06XV4dvI0nLdZjKr1mzZsHGxkblNWvWLLVtExISkJubCycnJ5X1Tk5OePHizb4Dfv/993BxcVHphOzQoQM2bNiAo0ePYs6cOThx4gQ6duyI3Nzc//4Pew3ewkwGoX379oiMjMT06dMxZ84cmJiYIDAwEIMGDdJZhjbdBiBLloGty6chIz0F3oG1MGLiHzApMqoxIS4WackS5fLjmBtYNG2Acnn3hl8AAPWbd8XnX2r3CdJden4GWWYmVv0+B+lpqQgIqoHx0xaojMKMe/EUKUXyNnqvDZKlEuzcvBIScRI8vP0wftoCrd+22qLZe5BKpdiwaTPEYjG8vb3x0/RpyluYX758CUGR4TeJSUkY8dXXyuWdu3Zj567dqBFcHb/MVl+4teH9Hl8gKzMT65b+jPS0FPhXDcGYyYtUzon4F0+QWuQYP7x3E3MmDVMub1vzKwCgScvOGPT1VK1lbdKsFaRSCbZtWgOJOAle3r74cfovyp9twst4GBkV/k0pMKg6vhk7CVs3rsbm9SvhXMUV4378Ce6e3preokw1b94cyVIpNm7aBHFSErx9fDB9xozCcyI+XuWcSEpKwqiRI5XLoaGhCA0NRXBwMObMnfvK/rWhScdByM7KQMT6ychMT4a7Xx18NnolKpgUng9JLx8jPbXw1p205CTsXv09UqUvITS3gpNrAD4bvQo+1ZpoNWvz5s0gTZZi48ZNyt+5mdOnK49v/MuXMBKo/s59Oeor5XJo6C6Ehu5CcHAwfpkzW6tZAcCmTnU0OrpRuRw0byIAIHbDLlwbOAFCZ0eY53/BAoCMh09woetQBM2fAM9RfZH55AWihv6IhMOntZ61qK1hz2AmNMZ3Q71R0bICom4nY9zMW8jKVijbVHESwsa68HLst9UPMLCXO74Z7A1baxMkiLMQcTgO63c+0WrWNk3qQ5ycglXbwpAoSYafpxt+/WE07PJvYY5LSIKgyDmx69BxZOfkYOK8ZSr7GfhRVwz6pJtWsxZo3rw5pMnJ2LRxI5LEYvh4e2PGK+dxYV1LSkrCyFGjlMtF68TcOXNe2b82tO/RDzJZBjb9MRPpaSnwrRqCryctUfncePkiVuVz41HMTcyfPFi5vGPtfABAo5Zd0H+UdqY6AID3mrdEcrIUWzaug1gshpe3D6ZMn63yuVH0nKgaVA3fjvsBmzaswcZ1a+BSpQomTJoOD08vrWUsytDqhKHlNcTMzKt9hlYnAKB9937IyszApj9m5NXhwFr4atJS1e90L2KRmlJ4vfYo5gYWTClSh9fl1+EWXdBv1AydZafyQ910adqaf3D27NnYtm0bjh8/rjJ9W69evZT/Pzg4GDVq1ICPjw+OHz+O1q1bayWLkUKhULy+GdG74dBV7d0WqC0O5ppvdSuP7ASG9QSzZ9nOr29UjlibaJ47rbwyF6TrO0KpnHumu4vYstDIOUbfEUrtZmAnfUcolV+6rdN3hFLZNUV7f3nWBomFYdVhAIjNNKzMTmbl80nImsQEaueLDxFp5nP7qL4jlMqLDPvXNypHWlQ313cEnUi+fFjfEXTCunbbN26blZUFCwsL7Ny5E927d1eu/+KLLyCRSBAeHq5x23nz5mHmzJk4cuQI6tat+9r3cnR0xMyZMzF06NA3zlcavIWZiIiIiIiIiIjeigJG/xev0jA1NUWdOnVw9GhhJ71cLsfRo0fRqFEjjdvNnTsXM2bMwIEDB96o8/DJkydITEyEs7P2/sjJDkQiIiIiIiIiIiItGDNmDFauXIn169fj1q1bGD58ONLS0pRPZe7bty8mTJigbD9nzhxMmjQJa9asgaenJ168eIEXL14gNTUVAJCamoqxY8fin3/+wcOHD3H06FF069YNvr6+aN++vdb+HZwDkYiIiIiIiIiISAs++eQTvHz5EpMnT8aLFy8QEhKCAwcOKB+s8vjxYwiKzNu8bNkyZGVl4cMPP1TZz5QpUzB16lQYGxvj2rVrWL9+PSQSCVxcXNCuXTvMmDFDa3MxAuxAJCIiIiIiIiIi0pqRI0diZJGHPhZ1/PhxleWHDx+WuC9zc3McPHiwjJK9Od7CTERERERERERERBpxBCIREREREREREb0VhRHHqL3L+NMlIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg04hyIRERERERERET0djgH4juNP10iIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERvRWFkZG+I5AWcQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKit6Iw4hi1dxl/ukRERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5H+r9QVnNd3hFKzuH1V3xFK5bes4fqOUCqtg6X6jlAqcRkifUcoNReLXH1HKJX3nG7pO0KpXJX66ztCqc3rtk7fEUplbHg/fUcolTV9DOscblVdrO8IpRZgHK3vCKVyKz1Q3xFKZW6XtfqO8M4zEhjpOwKVM2uRqe8IpVI39bC+I5RSV30HIHpr7EAkIiIiIiIiIqK3Y8Q/TrzLeAszERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKit6Iw4hi1dxl/ukRERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN+BAVIiIiIiIiIiJ6KwoY6TsCaRFHIBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBpxDkQiIiIiIiIiInorCiOOUXuX8adLREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ogPUSEiIiIiIiIiordjZKTvBKRFHIFIREREREREREREGrEDkYiIiIiIiIiIiDTiLcxUbrx48QI//fQT9u7di6dPn6JSpUoICQnBN998g9atW+s12879x7B5zwEkSaTw9XDDmIF9UM3PW23b8MMnsP/EWdyPfQoACPD2wLA+H2hsry3bzlzF+hOXkZCSDn9nB4zv3hzB7pVfu93+K3cwfvMBtKzmjYX9OusgaR6FQoF/jy5G9IUdyMpMQSWPWmjcdQpsHDzfaPurJ1bi0qEFCGr8ORp2mqjdsPkUCgVCt6zEX4fCkZaWCv+qwRgwfBwqu7iXuN2hvTuxd/cmSMVJcPfyxRdDvoWPfzWd5I3cvhRnjuxCRnoKvANC0HvID6jk7KFxm7s3L+Fw+DrE3r8Fqfglhoz7FSH1W2k9KwDsiwjD7tDtkIiT4Onlg8HDR8E/oKrG9mdOHceWjWsRH/cCzi6u6DtgMOrWa6iTrAAQHrkPf+4KQ5JYAh8vT4wcOgiBAf5q2z589BjrNm/F3XsxiIt/ieGDB6Bnty46y1pAoVDg4M7f8c+xnchIS4FXQC30HDAZjiWcE0fDViLqwmHEP3sAE1MzePiHoHPvMajk4qWTzP0/cUPnNpVQ0aICrkcnY8GKB3j6IlNje4EA6PexG9q+5wA7kSkSxFk4cDweG3c+1WpOu6Z14f3tQNjUrg4zl0q42HME4vYcLXmbZvURNG88Kgb5ITP2Oe7NWoYnG3ZrNWdxCoUCl44sxu0LO5CVkQInj1po2v3Na/GV4ytx4eACVG/8ORp10X4tVigU2Ll5FY4d2oO0tBQEVK2BASPGwtnFrcTtDu0NRcSuzco63G/oGPj6B2k97+69B7EtLAJJYil8PN3x9ZD+qOrvq7ZtxKGjOPjXSTx49AQAEODjhcGf99LYXhsUCgUiti/D6fzPDZ+AEPQeMhFOr/ncOBS+Ho/zPzeGjVugs8+NAgN6uaFzWydUtDBG1O0ULFhxH0+fv6ZOfOKGds0cYScyQYI4Gwf+iseGHU+YVw1DqcOGnNmQ8u6JiMTO0FCIxWJ4e3lhxPBhCAgIUNv24aNH2LhxE+7eu4f4+HgMHTIYPbp313rGov48cgYb9p9AojQFfm7OGPdZd1T3UX/tfuxiFNZEHENsfAJycnLhXtkBn3Vojk5N6ug0M1F5wRGIVC48fPgQderUwbFjx/DLL78gKioKBw4cQMuWLfHll1/qNduRM+exaP12DPyoK9bNnQI/TzeMnvkrkqTJattfvhGNtk3r4/epY7Hi54lwcrDDNzMWID5RrLPMB67cwbyIUxjatgG2fdMLAS4OGL4qHImp6SVu9zQpGQsiT6G2l4uOkhaKOrUKN89uQuNuU9Fl+HaYmFjg4LrByMmWvXbbl0+iEH1hO2wrq79Y0ZbIXRtxMPJP9B/+Pab/sgpCoTlmT/kGWVmaM589dRibV/+GD3oNwsxf18Pd0w+zp3wDqSRJ63kPh63F8X1b0XvIjxj78yYIheZYPGM4skvIm5WZAVfPAHwyaILW8xV1+sRfWLNyGXr16YsFi5fD09sH0yZ9D4lE/e/R7ZvXMX/OTLRp1xELFq9Ag0ZNMHvGZDx6+EAnef86eRp/rFqLz3t/gj9+mw9vL0+MnzwdYolEbftMmQzOlZ0w6IvPYWdrq5OM6vwVsRqnDmzGhwOn4OsZW2EqNMeK2UNKPCdibl1A43a98dX0rRg6cSXkOTlYMWswZJkl15ey0Lu7C3q+XxkLVtzH8IlRyJDJ8cukqjA10TzfTu/uVdCtnRN+W/0AX3xzBSs2PULvblXwwfuv/4PK2zC2tEDytWhc/2raG7U393RFvT3LkXj8HE7X7YYHi9cjePlMOLRtqtWcxV09uQo3/t6Ept2notuI7TAxtcD+NW9Yi2OjcOv8dtjpsBZHhG7CgcgdGDhiLGbMWwWhmRlmTx79mjp8BBtXLULP3gPw88K18PDyxezJo7Veh4+d+htL1mzEF598iJULZsHHywPfTZ0FsUSqtv2VqJto/V4TLJw5CUvnToejgz2+m/ozXiZq//OiwKGwdfhr3xb0GfIDvv95I0yF5lg8Y0SJNUKWmQFXT3/00vHnRoHePargg07OmP9HDIaNj0KmTI55k4JKrBN9elRBt/aVsXDVA/T96gqWb3yE3t2roKeW64RB5jWgOmyomQ0p74kTJ7Fy5Up81qcPfl+8CN7eXvhh0iRINFz/yGQyVHaujAH9+8FWD9c/h85dwYKtERjSrS02T/sG/m4uGDlvFZKSU9W2t7a0wIAurbBu0khsmzkGXd6rh2mr/sTfUdE6Tk5UPrADkcqFESNGwMjICOfPn0fPnj3h7++PatWqYcyYMfjnn38AAI8fP0a3bt1QsWJFWFtb4+OPP0ZcXJzWs22NOISubZqhc6um8HJzwbghn0MoNEXksdNq20/7Zgh6dmgFfy93eFZxxoRh/SBXKHAx6pbWsxbYePJffNCgOrrXC4KPkz1+/KAVzEwqIOz8TY3b5MrlmLjlIIa3awhXOxudZQXyRjjcOLMBNVsMg0dQa9hVDkCzj2YjIyUej28dKXHbbFkaTvw5Fk26T4fQ3FpHifMyH9izHd0/7o+6DZvB3csPw0dPgSQpAZf+Oalxu/3hW9GyXTc0b9MZru5eGDDiewiFZjhxJFLreY/t3YwOPQejZv2WcPX0xxejZkIqfomr549p3K5a7abo2nskQhrodhRw+O4daNfhfbRu1xFu7p4YPnI0hEIhjh7ar7Z9RPgu1K5THz0+7AU3dw982ncAvH38sC8iTCd5Q8P24P32bdGhbWt4uLvhmy+HQSgU4sBh9SPOAv39MHRAP7Rs/h5MTPRzM4BCocDJ/RvRpsdQVK/bCi4eAeg9YhaSxfG4flHzSLkhE1agfvMeqOzmCxePQPQa/hPECc/x5IHm+lJWPuzkjI2hT3Dmghj3H6Vj1uJ7cLA1RdP6dhq3qR5ghdMXxPjnsgQvXspw4p8kXLgqQVXfilrN+vLgSdyZshBx4SXXsAIeQ3oh48ET3Bo3B6m37+PR0s14EXoQXl/302rOohQKBa6f2YBaLYfBM6g17J0D0OLj2UhPicejm6+vxce2j0WzD3RXixUKBfbv+RM9Pu6Hug2bwcPLFyNGT4Y4KQEXS6jDe8O2oVX7rmiRX4cHjhgHU6EQxw9rtw7/Gb4Xndu1wvttWsDT3RXfDh8EM6Ep9h05rrb9pG9Hocf77eDn7QkP1yoYN3Io5HIFLl29rtWcBRQKBY7u3YyOPQcjJP9zo/+oGZCIX+LK+b80ble9dlN06z0StRrodtRhgY86O2PjzsI68fOiu7C3K7lOVAuwwpnzSfjnkjivTpxNxIUrEgT6WTFvMYZUhw01syHl3bV7Nzp06IB27drCw90do0aOhFBohoOHDqltH+Dvj8EDB6JF8+YwMTHRajZ1Nh04iR7NG6Brs3rwruKEif0+gJmpCcJPnlfbvm5VH7SqGwwvFye4OTmgT7v34OvmjCt3dPMHakOkgOD/4vX/6v/3X07lRlJSEg4cOIAvv/wSlpaWr/x3kUgEuVyObt26ISkpCSdOnMDhw4dx//59fPLJJ1rNlp2dg+j7j1CvRuFtkwKBAPWCg3A9OuaN9pGZJUNObi6sK776b9OG7Jxc3Hoaj4Z+hbdvCQRGaOjnhmuPnmvcbvnh87CtaI4P6mv/VtriUsRPkJGaABefRsp1pmZWcHStgfjHV0vc9mzEDLgFNEcV38bajqniZdwzSMSJqFaznnKdhWVF+PhXw93oKLXb5GRn48G9aFQPKdxGIBCges16uHtb/TZlJTH+KZIlCQis0UC5ztzSCp5+wbh/55pW37u0srOzEXPvDmqEFN4eIhAIUDOkDqJvq++kir59EzVq1VZZV6tOPUTfvqHVrEBe3jv3YlA7pKZynUAgQO2QGrh5u/z+hTop/glSJAnwr154m7e5hRXcfWrg0d2Sf++KykxPAQBYVNTuHx6cKwlhb2uKS9cKR2ulpefi5t1UBPlr/tJ8PToFdYKt4epsBgDw8bBAcKAVzv0r0Wre0hI1DEHCsbMq614ePg3bhiE6y5AifoKMlARU8S1Wi91qIO41tfhM+Ay4B+q2Fsfn1+HqIXWV6/LqcBDu3lbfyaaswzULtxEIBKgeUg93o7XXMZednYM7MQ9Qp2awyvvWqRmMG9F33mgfMpkMObk5sLbSzfVEQv7nRtVinxtefsG4f+fNa4QuOTvl14mrEuW6tPRc3LqbgmoBmuvEjegU1K5hU1gnPC0QXNUK5/7V7t0jBpfXAOuwoWU2pLzZ2dm4e+8eaoWEKNcJBALUCgnBrdu3tfa+/1V2Tg5uP3yK+tX8lOsEAgHqV/ND1L1Hr91eoVDg/I27ePQ8HrUDdDs1FVF5wTkQSe/u3bsHhUKBwMBAjW2OHj2KqKgoPHjwAG5ueR1jGzZsQLVq1XDhwgXUq1fvlW1kMhlkMtVbbGRZWRCamr5xNklKCnLlctjZqI6msBNZ49FTzZ1xRS3dtBOOtiLUq6H9uZUAQJyWgVy5AvYVLVTW21e0wIN49ReWlx88w+4LN/Dn6D66iPiKjJQEAIB5RXuV9WYVHZCR+lLjdvev7UXis5voMnyHVvOpIxEnAgBsRKp/DbYR2Sn/W3EpyRLI5bmvbGMtssWzpw+1krOAVJyQ/16qx9jaxh7JkgStvndppSRLIZfLISp2a4uNyBZPYh+r3UYiToJI9Gp7sVj7UwdIk1Mgl8thK1LtQLMViRD7RHfzO5VWsjTv525l46Cy3qoU54RcLkfYhjnwDKgFZze/12/wFuxs80YqJEmyVdaLpVmwE2kexbBl91NYmhtjw28hkMsVEAiMsGrrYxw5Vb7Oe6GTA2RxqplkcQkwsbGCwEwIeebrbyF+W5pqsXlFB2SkaK7FMVf3IuHZTXT/Ure1WCrOu5VXfR1Wf5tvckEdtn11m2dPXv8F8r+SJicjV22dsMHjN6wTf2zYAgc7W5VOSG1K1vC5YWVjh2SJ+s85fbMT5V3jJUmL1QlJNuxsNV//bd71FBbmxti4uFZhndjyGEdOardOGFxeA6zDhpbZkPImJyfnX6+JVNaLRCLExsZq7X3/K0lKGnLlctjbqI7KtLepiIfP4zVul5KegY7fzERWTg6MBQKM79sDDaurn+Oa6F3HDkTSO4VC8do2t27dgpubm7LzEACCgoIgEolw69YttR2Is2bNwrRpqnNPjRvWH9+PGPD2od/Qht37cPjMeSydOg5CU90P038TaZlZ+GHrIUz5sDVsLc118p4xVyJwJnyqcrlt32Wl3keq5Dn+iZyFDgNWo4KJsAzTqXfm+AGsXjpHuTx28nytv+fbOH9yL7aumKFcHj7hdz2mofLg0ulI7Fw1Vbk8aFzpf++K27V2Jl7E3sXIqRvfel/FtXnPAd8OKfwL//hZ/200Q8vG9mjzngNm/nYXD2Iz4OtpgZH9PZGYlI2DJzR3iv0/uPdvBE6FTVUud/jiv9Xis5Gz0FEHtfj08YNYtWSucnnc5Hlafb/yZPPOcBw79Td++2lyqf4QWhrnTu7FlhUzlctfTlislfcpS22aOeDboT7K5fE//bfpYlo2tkfbZo6Y8esdPIzNgK+XJUYO8ERCUhYOHi+7OmFweQ2wDhtaZkPL+//I0kyIrTNGIz1ThvM372HB1ghUcbRH3ao+r9+Y6B3DDkTSOz8/PxgZGeF2GQ91nzBhAsaMGaOyLu3uxVLtQ2RlBWOB4JUHpiRJkmEvKvl2vc3hB7Bx9z4smvwdfD1LfhpkWbK1NIexwOiVB6YkpqbDwcrilfaxiVI8Eyfjq7URynXy/E7d2t8vRvjYz+HmICrTjO5VW8HRrYZyOTcnCwCQkZoIC+tKyvWZqQmwc1b/1N3EZzeQmZaI8CU9lesU8ly8eHgRt/7Zgi+mXYVAYFxmmWvXf0/lSck5OXl/GZZKkmBrVziCSypJgoe3+pFYVtYiCATGr0zUnywRw6bYCI+3VaNeC3j6FY5Syck/xsmSRNjYOha+tzQRrp66ffjM61hZ20AgEEBSbPSgVCKGrZ36+X9EtnavPGBFKhHrZIJuG2srCASCVx6EIJZIYFvsr/L6VK1OS3j4FjknsvPO4RRpAqyLnBMp0kRU8dQ8IrzArrUzcfPyCXw5ZT1E9mU/SfuZC0m4dbdwUnOTCnmTx9uJTFRGZtjamOLewzSN+xn2uQe2hD3FsTN5I6YePE5HZUchPv2gSrn6UiWLS4DQSXU0qNDJAdnSFK2NPnQPaoUPitbiXPW1OCM1AfYaanHC0xvISE3E7t9Va/Hzhxdx458tGDCj7GpxnfpN4VukDmdn5+VVV4c9NdRh64I6XGyEolSSBJGt5vnF3paNtTWM1dYJKexeUye27Y7All3hmD/tB/h4an768duqWa8FvN7gcyNFmgRXz/Ix+ubM+STculOkTuQ/ZMLOxgRJ4iJ1QmSCew8014nhX3hi867COnH/cTqcCupEGXbIGVxeA6zDhpbZ0PIWZW1tnX+9JlFZL5FIYGunvwfEaSKysoSxQIBEqeoDUxKlqXCw0Xx7uEAggFv+53OARxU8eBaPtZHH2IGogcJI88N+yPCxA5H0zs7ODu3bt8eSJUvw1VdfvTIPokQiQdWqVREbG4vY2FjlKMSbN29CIpEgKEj9rcFCoRBCoepoiJxS/tXexKQCArw9cDHqFprXz5tfTS6X42LULXzYUfPk4JvC9mPdrr1Y+ONoVPX1LNV7vi2TCsaoWqUSzt2LRavqeR9scrkC5+7Folfjmq+096pki53ffqqybsmBs0iTZWFct+aoLCr7CblNhJYwERb+nBUKBcwrOuDZ/X9g75L3JTUrMxUvn1xDYINeavfh4tMIPb4KV1l3KvQH2Dh6oUazQWXaeQgA5haWMLdQzSyytceNqxfg6Z33RSo9PQ0xd26gTccP1O6jgokJvHwDcOPqBdRt2BxA3vl0/doFtOv0UZnmNTO3hJm5al5rkQOio87BzSuvcygjPRUP70ahWbuyfe+3ZWJiAh9ff1y7ehkNG+c9gVYul+Palct4v0t3tdsEBAbh2pXL6Nr9Q+W6K/9eRECg9uf0NDExgb+vDy5fvYYmjRoo8/57NQrdOnfU+vu/KXXnhJXIAXevn0MVz7zfu8z0VDyOuYbGbTXPL6tQKLB73U+IunAUIyatg30lV63kzciU4+mLTJV1ieIs1A62wb2HeX8gsTA3RpBfRew59ELjfoRCAeRy1XW5cgXK2/Wt5J8rcOzYTGWdQ+vGEP9zRWvvaSq0hGnxWmzlgKcxxWpx7DUEaarFvo3Q82vVWnxi5w8QOXqhZvOyrcWa6vD1qxeL1eGbaPt+D7X7KKjD169dQr1GhXX4xtWLaNepp9ptyoKJSQX4+3jh0rXreK9hPeX7Xr52HT3eb69xuy279mDTjt34ZepEBPpp98uqps+N21HnVT43HpSjzw2NdaKGSKVOVPWzQviBkutE8TtiCm4DZV7DqsOGltnQ8hZlYmICP19fXLl6BY0b582dK5fLceXKFXTp0ll7b/wfmVSogEDPKrhw8x5a1qkOIC/vhZv38HGbN5+/V6FQIDsnR1sxico1diBSubBkyRI0adIE9evXx/Tp01GjRg3k5OTg8OHDWLZsGW7evIng4GB8+umnWLhwIXJycjBixAg0b94cdevWff0bvIXeXdphxu+rEejjiWq+Xti29wgyZTJ0btkEADBt0So42ttixKd5Xzw27t6HldvDMe2bwXB2dECiOG+0gbmZEBbmZlrNWuDzZrUwafthVHN1QnU3J2w6dQUZWTnoXi+vs/WHrYdQycYSX7/fBEKTCvCrXGx+I7O8jtfi67XFyMgI1Zr0xdW//oCNvQcq2rri8pFFMLeqBPeqbZTt9q/uD4+gNghq9ClMhJawdVIdAVHB1BxCC9Er67WVuUPXTxD25zpUdnGDo5MLdm5eAZGdA+o0LOwE+PnHkajbsDnadc77stWxW28sXzgDXr5V4eMfhAN7tkOWmYnmrTtpPW+rTp9if+hKVHL2gH2lKojYtgQ2to6oWb+wM/y3qYNRs0ErtOjYGwCQmZGOly8K5x1MjHuK2Ae3YVnRBnaOzlrL263HR/htwWz4+gXAzz8QEeGhyJRlonXbDgCAhfNmwd7eAZ/3HwwA6NLtA/zw/WiE7foTdes1xKkTxxBz9w5GjPpWaxmL6tm9K+b+uggBfj4I8PfDrvBIZGZmokObvKdXz57/Gxzs7TCo3+cA8iYefxT7BACQk5ODhMRE3Lv/AOZmZqjior3jWpSRkRGadfwcR8KWw6GyO+wruWL/jsWwtq2E6nULn7q9bOYABNdrjabt8/7QsGvNDFz+ex8GfLsYQnMLJEvyRjaYW1jBxFS7NW7n3uf4vKcrnjzPxPN4GQb2ckOCOAunzxeOJps/JQinzyVhd/6X77MXxfi8ZxXEJ8iUt/p93NkF+/7SPN9RWTC2tIClr7ty2cLLFdY1A5GVJEVm7HMEzBwDsypOuNr/ewDAoxXb4DHiUwTOGovYdaFwaNkQzh91xIWuQ7WasygjIyNUb9IX/x7Lq8VWdq64eHgRLKwqwSOosBbvXdUfnkFtUK3xpzAVWsKusmrNNTE1h5mF6JX12sjbsevHCNu+HpVd3FDJyQU7Nq2ArZ0D6hapwzN/GIV6jZqjfee8PzB06t4Ly36dCW/fQPj6B2F/eH4dbqPdL7wfd+uEWb8tQ6CvNwL9fLEzYh8yMmXo2CavI/OnX5fA0d4OQ/rm1d8toeFYs2UHJn07CpUrOSIxf5SPuZmZTq4njIyM0Fr5ueEOh0pVsGfbEohsHRFSv6Wy3a9ThyCkQSu07JjXyVz8cyNBR58bBXZEPkffD13x5HkGXsTJMKC3GxKTVOvEgqlBOHUuCbv359WJvy+I8dmHrohLyMLDx+nw87bEx11csO+YduuEIeY1pDpsqJkNKe8HPXpg3oIF8PPzQ4C/P3aHhyNTlol2bdsCAH6ZNx/29vYY0L8fgLzrn8eP8+pDwfVPTEwMzM3N4eLiotWsAPBZh2aYsnI7qnq5orq3G7YcPIUMWRa6vpf3h53Jy7fC0dYGoz5+HwCwJuIYgrxc4VrJHtk5OTh99Tb2/n0JE/qqHyxA9K5jByKVC97e3rh8+TJ++uknfPvtt3j+/DkcHR1Rp04dLFu2DEZGRggPD8eoUaPQrFkzCAQCdOjQAYsXa39+njZN6kOcnIJV28KQKEmGn6cbfv1hNOzyb2GOS0hS+YvvrkPHkZ2Tg4nzVOeSGvhRVwz6pJvW8wJAhxB/iNMysPTgP0hISUOAiyOWDuoG+/xbmF9IUiAoZ8Nvgt8bhJysDJwJm4KszGRU8qiN9v1WqMyplZL0GJnp2n8oxpvq/MHnkGVmYvWS2UhPS4V/UA18P3UhTE0LM8e9eIKUZIlyudF7bZEilWDnlpWQihPh4e2H76f+Chtb7XfWtu3eHzJZBrYsn470tBT4BNbCyB+XwqRI3pdxT5BaJO/jmBtYOHWQcjl0fd6cYw1bdEXfkYVzLJa1ps1bQposwdaNayEWi+Hl7YMp0+cobzF8+TIeRgKBsn1gUHWMGfcDNm9Yg03rVsOlShWMnzQdHp5eWstYVMtmTSGVJmPdpm0Qi8Xw8fbCrOmTlbcwx798qVInEpPEGPZV4RQLO3aFY8eucNSoXg0LZs8svnvt5e4yEFmyDOxcNRUZ6SnwCqiNIeOXq5wTiXGxSEuRKJf/PrIdALB0Rj+VfX0ybCbqN1c/6qusbA17BjOhMb4b6o2KlhUQdTsZ42beQlZ24UicKk5C2FgXXt78tvoBBvZyxzeDvWFrbYIEcRYiDsdh/c4nWs1qU6c6Gh0tnBsyaN5EAEDshl24NnAChM6OMHcr7EzJePgEF7oORdD8CfAc1ReZT14gauiPSDh8Wqs5i6vZLK8Wn9qdV4udPGqjQ3/VWpycWH5qcZeen0GWmYlVv89BeloqAoJqYPy0BcXq8NNidbgNkqUS7Ny8EhJx3rQT46ct0OotzADQ6r3GkCQnY82WHUgSS+Dr5YFfpoyHnUgEAIhPSFCpE+EHDiM7JweT5/yqsp9+vXqif2/djABs170fZLIMbF4+A+lpKfANrIVRr3xuxCI1ufB8eBRzA79OHaxc3rk+b87ghi26oJ8WPzcKbN39FOZCAb4b5pNXJ24lY+yMmyp1wqWyGWysC+em/m3VfQzs447RQ7xha10BCeJs7Dn0Aut3aLdOGGReA6rDhprZkPI2b94M0mQpNm7cBLFYDG9vb8ycPl05hUz8y5cwUrn+ScKXo75SLoeG7kJo6C4EBwfjlzmztZoVANo1CIE4OQ1/7DqIRGkK/N1dsPi7QbDPv4X5RZJEJW+mLAuzN+xGfJIEQlMTeDpXwsyhvdGuQYjWsxKVR0aKN3mCBdE7IilKt1/EyoLFg6v6jlAqv2UN13eEUmkdLH19o3JEmqWbB92UJReL8vm0Tk0qyg3rnLiaUj7mIiuNeT9f0HeEUhkb3k/fEUrl1vb/9mAGfWlVvXx0RpaGi1z9E+HLq1vZr5/XtDyZOuVffUd45xmV8e3OZPjWznF8faNyxPHlTX1HKJWKDbvqO4JOxN26pO8IOuFUtY6+I+gFRyASEREREREREdFbURgJXt+IDBZ/ukRERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiN6KAnxA07uMIxCJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGvEhKkRERERERERE9FYURhyj9i7jT5eIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIcyASEREREREREdFbURgZ6TsCaRFHIBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg04kNUiIiIiIiIiIjorSjAh6i8yzgCkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ohzINL/lQpZafqOUGoDz3bXd4RS+b3XKX1HKJVYQVV9RyiVGtvH6DtCqd39dJG+I5TKsB8e6TtCqUyamqvvCKW2a4phZV7T55a+I5RK1U8Mq64Jbp7Wd4RSu5xeXd8RSqVZ1n59RyiV8EkV9R2h1OTGJvqOUDpGnKeMVOXKkvQdoVTkfx/Td4TSadhV3wl0QmHEMWrvMv50iYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBrxISpERERERERERPRWFOADmt5lHIFIREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxDkQiYiIiIiIiIjorSiMOEbtXcafLhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjPkSFiIiIiIiIiIjeigJG+o5AWsQRiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiN6Kwohj1N5l/OkSERERERERERGRRuxAJCIiIiIiIiIiIo3YgUgGa926dRCJRPqOQURERERERET0TuMciFQu9evXD+vXr8esWbMwfvx45fqwsDD06NEDCoUCn3zyCd5//32d5Pnz0ElsijyGRGky/NyrYOwXH6Kar4fatsfOX8W68EOIjUtATm4u3Co74rP3W+L99+rrJGtRPdtYoWU9S1iaC3DnkQxrwiSIS8zV2H7hOCc42r5aFg6fTcW6PVJtRsXOA39hU8QhJEmk8PVwxbcDeqOar5fatmFHTmH/ybO4H/sMABDg7Y7hvXtobK8tCoUC2zevxtGDEUhLS0Vg1WAMHvEtnKu4lbjdgchd2LNrKyTiJHh4+WDA0G/gFxCk9bxmDVrBomlHCCraIOfFY6RGbkbO0wdq29oM/B6mXoGvrJdFX0XyxoVaTppHoVAgbOtynDi8G+lpqfALrInPh41HZRd3jdtE37iM/bs34lHMLUjECRg1fh5qN2yhk7wAMKCXGzq3dUJFC2NE3U7BghX38fR5psb2AgHQ7xM3tGvmCDuRCRLE2TjwVzw27Hiik7wKhQJ7ty/FmaOhyEhLgXdgCHoN/hGVnNXXNwC4e/MijuxZh9j7tyAVv8SQsQtRs34rneTduf8YNu85kF8n3DBmYB9U8/NW2zb88AnsP3EW92OfAgACvD0wrM8HGttrg0KhwKUji3H7wg5kZaTAyaMWmnafAhsHzzfa/srxlbhwcAGqN/4cjbpM1GpWu6Z14f3tQNjUrg4zl0q42HME4vYcLXmbZvURNG88Kgb5ITP2Oe7NWoYnG3ZrNWdxCoUCO5R1OAUBVYMxaMR3r63DByNDEVGkDvcfOhq+OqjDCoUCB3YuwdljO5GZlgLPgFr4aMAkOJbwO3ckbCWuXTiC+GcPYGJqBk//EHTpPRqVXLT/mffnkTPYsP8EEqUp8HNzxrjPuqO6j/oafOxiFNZEHENsfAJycnLhXtkBn3Vojk5N6mg9Z4EdB49jc8Th/Os1V3zb/xNU8/VU2zbs6GnsO/kP7j/Ju5YI9HLH8F7dNbbXlp0HjmHznoOFdW1Ab8117cjJV+ta7x46rWuGVocNLS9geJlD9x3G1rB9SJJI4ePphtGD+iLI30dt2z2H/sKB46dx/3HedU6AjxeGfvqRxvbaYFKzKYR1W8HI0gryl8+Q8Vco5C8ea95AaA6zJu+jgm8NGJlZQp6SBNnx3ch5cEtnmYnKC45ApHLLzMwMc+bMgVgsVvvfzc3NUalSJa3nOHT2MhZu2o1BH3TAxp/Gws+9CkbNXookaYra9jYVLdC/ezusmTYaW2d/jy7NGmD68i04e1W3HzKdm1VE+8YVsTZMgslL4yHLUmD8AAeYlPBng0lLXmLET8+Vr59XJQAAzkVlaDXr4b8v4LcNOzDow85YP+dH+Hm44ZuffkOSNFlt+8s3o9G2SX0smfItVs78Hk72dvh65kLEJ6k/V7QlPHQL9keEYsiX32HW/OUQmplj5uRvkZUl07jNmZNHsX7V7/iodz/M+W0VPLx88dPkbyGVaDe7sHp9VOzYC2l/hUO8dCpyXsTCpt+3MLK0Uts+ecvvSJj9tfKVtOgHKHJzIbt+Qas5i9q3ez0OR25D32ETMGnuOpiamWHBtFHILuH4yjIz4Oblh8+Gfq+znAV696iCDzo5Y/4fMRg2PgqZMjnmTQqCqYmRxm369KiCbu0rY+GqB+j71RUs3/gIvbtXQc/3K+sk8+HwtTi+fwt6DZmEsbM2w1Rojt9nDivxGGfJMuDqEYCPB2q3Q6u4I2fOY9H67Rj4UVesmzsFfp5uGD3zV8114kY02jatj9+njsWKnyfCycEO38xYgPhE3dWJqydX4cbfm9C0+1R0G7EdJqYW2L9mMHKyNR/fAi9jo3Dr/HbYVQ7QQVLA2NICydeicf2raW/U3tzTFfX2LEfi8XM4XbcbHixej+DlM+HQtqmWk6raE7oZ+yN2YtCX3+Gn+StgZmaOnyePKbEO/33yKDas+h09e/fH7N9Ww8PLFz9PHqP1OgwAxyLW4OSBzfho4GR8M2MLhEJz/DF7aIm/czG3LqJpu974evoWDJu4Ark52fhj1hDIMtO1mvXQuStYsDUCQ7q1xeZp38DfzQUj561CUnKq2vbWlhYY0KUV1k0aiW0zx6DLe/UwbdWf+DsqWqs5Cxz++yJ+2xiKgR92wvpZE+Hr4YqvZy0q4VriDto1qYelk0Zj1fRxqGRvh69+XoT4JIlO8gIFde1PDPyoC9bNmQw/DzeM/mnh6+valO+w4qcJcLK3xTczf9VZXTO0OmxoeQ0x89HT/+D3tVvQ/5MeWD1/Bnw93TFm+lyIJeoHHvx74xbavNcIi2dMxPLZU+DkYIcx0+biZWKSTvJW8K8Fs+bdIfvnANI2zUPuy6ew/GAYjMwrqt9AYAzLnsNhZG2HjMh1SF33MzIPb4c8RbsDKwyZAkb/F6//V+xApHKrTZs2qFy5MmbNmqX2v+vqFuYt+/5C95aN0bVFQ3i7OmPCwI9hJjTFnhP/qG1fJ8gPLevVhFeVynB1ckTvji3g6+6CK9H3tZ61qA5NKiLsrxRcupWJ2Bc5WPanGCIrY9QJMte4TUqaHNLUwletqmZ4kZiDWw+ytJp1a+RhdGvdFJ1bNoGXqwu+H/wpzExNEfnXGbXtp381CB+2bwF/Tzd4VnHGxGF9IVcocDHqtlZzFqVQKLA3/E/0/KQv6jV8Dx5evhg55geIkxJx4ewpjdtFhm1H6/Zd0LJtJ7i5e2HIl9/BVGiGY4f3ajWveZN2yLx4ErLLp5H78hlS92yAIjsLZnXeU9tekZEGRWqy8mXqUw2K7CyddSAqFAocjtiKLh8PRO0GLeDm6YfBX0+HOOklLp87rnG7GnWaoOenI1CnYUud5Czqo87O2LjzCc5cEOP+o3T8vOgu7O1M0bS+ncZtqgVY4cz5JPxzSYwXL2U4cTYRF65IEOinvmO3LCkUCvy1dxM69ByMmvVaooqHP74Y+ROk4pe4euGY5sy13kOX3qMQ0qC11jMWtTXiELq2aYbOrZrCy80F44Z8DqHQFJHHTqttP+2bIejZoRX8vdzhWcUZE4b1y68TuvljjkKhwPUzG1Cr5TB4BrWGvXMAWnw8G+kp8Xh080iJ22bL0nBs+1g0+2A6hObWOsn78uBJ3JmyEHHhJWcr4DGkFzIePMGtcXOQevs+Hi3djBehB+H1dT/tBi1CoVBgX/gOfFCkDn855sfX1uG9YduUddjV3QuDvhwLU6EZ/jocqfW8J/ZvRLseQxBctxVcPALQZ8TPSBbHI+qi5tGeQycsR/3m3eHs5osqHoHoM/wniBOe48mDm1rNu+nASfRo3gBdm9WDdxUnTOz3AcxMTRB+8rza9nWr+qBV3WB4uTjBzckBfdq9B183Z1y5o36ke1nbuvcourVqgi4tGsPb1RnjB/WGmakpIo6fVdt++qgB+LBd8/xricr4YehneTXiuu6uJbZGHkbX1u+hc8uCuvYZhKYl1LWvB6Nn+5av1rXruqlrhlaHDS2vIWbetmc/urRtgU6tm8HLrQrGDusPM6EQkUdPqm0/ZfQIfNCxDfy8PODh6oLvRwyCXCHHxWvarWcFhHVaIPv6WWTfOA95Uhwyj+yAIicLJtUbqG1vUr0BjMwskLFnNXKfPYAiOQm5T2IgT3imk7xE5Q07EKncMjY2xs8//4zFixfjyRPd3M5XXHZODm4/iEX96oUjQAQCAepXD0DU3ddfECsUCpy/Ho1Hz+NRu6ruhuY72hrD1toYN+4VjmjIkCkQE5sFP3fTN9qHsTHQNMQcJy6maSsmgLxjHH3/MeoFV1WuEwgEqBdcFVF33qzTNVOWhdycXFhXtNRWzFfExz2HRJyE4JC6ynWWlhXhG1AV0bdvqN0mOzsb9+/dQY2Qwtu5BAIBaoTUxR0N25QJY2NUcPFEVkyR91AokB1zEyZuvm+0C7M6zSCLOgdka7czucDLuKeQihNRrUbhrf8WlhXh418d96KjdJKhNJydhLC3NcWlqxLlurT0XNy6m4JqAZo7A29Ep6B2DRu4OpsBAHw8LRBc1Qrn/tX+yIHE+KdIliQgILihcp25pRU8fYPxIPqq1t+/NLKzcxB9/xHq1SheJ4JwPTrmjfaRmSVDTq7u6kSK+AkyUhJQxbeRcp2pmRUc3Wog7nHJx/dM+Ay4BzZHFd/G2o75n4kahiDhmGrHzMvDp2HbMERnGeLjnkEiTkRwSD3lOgvLivANCMLd29fVbpOTX4eL1m6BQIDgkLq4q806DCAx/glSJAnwr154TphbWMHDpwYe3n3z37mM9LwRgBYVbco8Y4HsnBzcfvgU9av5KdcJBALUr+aHqHuPXru9QqHA+Rt3865/ArR/K2Xe9dpj1A8unHojr0YElv5awlI3NaKwrhXeOi8QCFCvRlVcf9PMWVnI0dH1j6HVYUPLCxhe5uzsHNyJeYi6Nasp1wkEAtStUQ03ou+90T5kujzGAmMInFyR8+hOkZUK5Dy6A2NnT7WbVPCpjpznD2HW6kNUHDoDln2/h2n9NoDR/+8INPr/xjkQqVzr0aMHQkJCMGXKFKxevbpU28pkMshkqrcEybKyIDR9sw40AJCkpCFXLoedjWoHgJ2NFR4+i9O4XWp6Bt7/chKycnJgLBDg+/4foUHwq/PJaYvIyhgAIE1Vne9QmpoLkdWb/d2gbpA5LMwEOHlJu7dISZJT846xSHWUja3ICg+fPX+jfSzZHAoHOxuVTkhtk4gTAQAika3KepHIDhKJ+tswUpKlkMtzYSNSHZFmI7LF0yev/0L2XwksrGBkbAx5qurtL/JUKUwcXn+rbIUqXqhQ2RUpu9doK+IrpJK842stsldZb21jB2n+sS9P7ER5dSVJmq2yXizJhp2t5pqzeddTWJgbY+PiWpDLFRAIjLBqy2McOZmg1bwAkCzJe4/ix9hKZI9kSfk6xpKUlPxarFon7ETWePT0zerE0k074WgrUvmyrk0ZKXnH17yi6vE1r+iAjJSXGreLuboXCc9uovuXO7Sa720JnRwgi1M9T2VxCTCxsYLATAh55utv035bEnFerbUpVodtRLYa63Cyxjpsh2darMMAkCLNO14VbVTPiYo29kiRvNnvvFwuR9iG2fAKqAVnN7/Xb/AfFVz/2Nuo3tZnb1MRD5/Ha9wuJT0DHb+Zqbz+Gd+3BxpW99dazgLKa4niNcLGGo+ear5eK2rJlt1wsLVBPR1dr0lSSsr84o32sXTTTjjaiVAvWPt1zdDqsKHlBQwvs1SZV/WPGXl532yE3tIN2+Fga6vSCaktRuaWMBIYQ5GuOg2VIj0FxnZOarcR2NhD4OaH7NuXkL57OQQiR5i1/hAQGCPrn4Naz0xU3rADkcq9OXPmoFWrVvjuu+9Ktd2sWbMwbZrqXE7jB3+KCUM/L8t4almYCbF51vdIz5Thwo07+HVTGKpUckCdIO1c7DcOMcfA7iLl8i/r3/7Lf4u6Frh6JxOSFPlb70ubNoTtx5EzF7Bk6ncQmppo7X1O/XUIy5fMUy5PmDJHa+9V3pjVbYacF7EaH7hSFs6e2I/1y35WLn/z40KtvVdZaNPMAd8OLRxVPP6n/3arUMvG9mjbzBEzfr2Dh7EZ8PWyxMgBnkhIysLB45o7mf6L86f2Yuvy6crlEROWlOn+y7MNu/fh8JnzWDp1nNbqxL1/I3AqbKpyucMXy0q9j1TJc5yNnIWOA1ajgomwDNO9G079dQgrl/yiXB4/Za4e07zepdOR+HNV4XXI4HFL33qfoWtn4nnsPXw1dcNb70sbLM2E2DpjNNIzZTh/8x4WbI1AFUd71NXhXRj/xfrwgzj890UsnTxaq9cSZUlZ16aNNYjMuqjDZcnQ8gKGl3ljaASOnv4Hi2dMLNUAD50yMoIiPRWZh7cDCgXk8U+QVdEGpnVbsgNRAwVHZ77T2IFI5V6zZs3Qvn17TJgwAf369Xvj7SZMmIAxY8aorJPdOFGq9xZZWcJYIHjlgSlJ0hTYizTfligQCOBW2REAEODpiodPX2Bd+GGtdSBevpmJmNjCEQEVjPMKt01FY5UOQJuKxnj0PPuV7YtzEBmjuq8QCzdpf0JjkXXFvGMsUR0dJ5akwF5U8u1Zm/ccwoawA1g8aTT8PFy1GRN1GzRVeUJnTnbecZRIxLC1c1Cul0iS4Oml/udsZW0DgcAY0mIjY6QSMUS29mq3KQvy9BQocnMhqKj6F21BRZtXRiW+wsQUwuD6SD8aprV8ABBSvxm8/asrl3Pyb5VOliRCVOT4JkuT4Oal/dEsr3PmfBJu3Sl8kIBJ/oNS7GxMkCQu/B2zFZng3gPN0wAM/8ITm3c9xbEzeZ3+9x+nw8lRiE8/qFLmHYg16raAp2+wcjknp/AY29g6KtenSBLh6qmbB3e8KZGVVX4tVj1fkyTJr68T4Qewcfc+LJr8HXw9S34y79twD2qFD9xqKJdzc/OOb0ZqIiysCx/4lZGaAHtn9aOlE57eQEZqInb/3lO5TiHPxfOHF3Hjny0YMOMqBAJjLf0LSkcWlwChk4PKOqGTA7KlKVobfVi3QVOVJ9Zn59cJabE6LJWI4emlfnoGa411OKnM63C1Oi3xnW/hOVFQ11Klqr9zqdJEuLzB71zo2p9w8/IJjJyyHiJ77T5oqeD6J1Gq+sCURGkqHGxec/2Tf14EeFTBg2fxWBt5TOsdiMprieI1Qpr8yh0OxW2KOIwN4Qfx+w9fa/1aoiiRlebMr7/+OYiNYfuxaPK38PXQXl0ryhDqcFGGlhcwvMw2yryqDxTJyysqcdstYXuxeVckFk77Hr6e6p/sXtYUGWlQyHNhZKFaw4wsrCBPU389rEhLhiI3F1AolOvkSXEQVLQBBMaAPFftdkTvKs6BSAZh9uzZiIiIwNmz6ifCVkcoFMLa2lrlVdq/bplUqIBALzdcuFE4V4ZcLseFG9EI9vN64/3IFQpk5eSU6r1LIzNLgbjEXOXraXwOxMm5qOZTOILFXGgEHzdT3H38+jnsmtWxgDRVjn+jM7WWuYBJhQoI8HbHhSKTlsvlcly4fgvB/prnTdoYfgBrQiOxcOLXqOrjqfWc5hYWcHZxVb5c3T0hsrXD9SuXlG3S09NwL/oWAgLV34ZhYmICb19/RF0t3EYulyPq6iX4a9imTOTmIufZQ5h6F7mdxcgIJt5VkR1b8hw1wur1YGRsgswrf2svHwBzc0s4ObspXy5u3rCxtcfNa4UPbclIT0XMnevwDQguYU+6kZEpx9MXmcrXw9gMJIqzULuGSNnGwtwYVf2scCNa/RPbAUAoFEBR5KIUgPJW5rJmZm6JSs7uypezqw+sRQ6Ivn6u8N+VnoqH96LgFVCzzN//bZiYVECAt4fKpPByuRwXo26heoDmjolNYfuxNjQSv/44GlV9PbWa0VRoCRsHD+XLtpIvzK0c8DSm8IFbWZmpeBl7DU7u6o+vi28j9Pw6HB+M2qV8OVSpDt+anfHBqF3lpvMQACT/XIF9q4Yq6xxaN4b4nytae09zCwtUdnFVvlzdvSCytUfUlYvKNnl1+Cb8Aqur3UcFDXX4+tVL8CvjOmxmbgnHyu7KV2VXH1iJHHDneuE5kZmeikcx1+Dpp/l3TqFQIHTtT4i6cBQjflwD+0ra7+QyqVABgZ5VcOFm4WeEXC7HhZv3EOzr8cb7USgUyNbi9U+BvOs1d1y4XvjE57xrieiSryX2HMKaXfuwcMJIVPV5839XWdBc126jegmZN4Xvx9qdkfj1h290cv1TwBDqcFGGlhcwvMwmJhXg7+OJS0UegCKXy3Ep6gaqBWieY3vz7kis3xGOeZPHItBX+3OkFobLhTzuCSq4F/1DvxEquPsj9/lDtZvkPn0AgcgRKPLUXYGtI+SpUnYe0v8ljkAkgxAcHIxPP/0UixYt0vl793m/Jab9sQlVvd1QzccDW/cfR0ZmFro0z3ta15SlG+FoZ4ORvboCANaGH0KQtzuqVHJAdk4Ozly5iX2nL2D8gI91mvvAmVR0b2WFF4k5eJmUgw/bWkOSkotLNzOUbSYMtMfFm5k4fLZwhJSREdC8jgVOXU6HXEd3L/fu3BYzlqxFVW8PBPl6Yfu+I8iUZaFTiyYAgGm/r4GjnQgj+nwAANgQdgAr/9yDaV8NhHMleyRK8v7yaW4mhIWZmU4yGxkZoVO3jxG6fT0qV3FFJSdnbN+0CrZ29qjXqPDJxtMmfo36jZqhY5e8EUWdu3+CJb/+DB+/QPj6V8Xe8B2QZWagZZv3tZo348whWPUchOxnD5Hz5D7MG7eDkakQmZfynupn1XMQ5MkSpB3eqbKdeZ1mkN26DEWGdh+mU5yRkRHadumNiB2r4eTiBodKVbB7yzLY2jmidoMWynZzJw1H7YYt0KbTJwCAzIx0xD+PVf73l/FP8fh+NCytbGDvqN0ROzsin6Pvh6548jwDL+JkGNDbDYlJWTh9vnCk04KpQTh1Lgm79+fNb/X3BTE++9AVcQlZePg4HX7elvi4iwv2HdM8x1hZMTIyQstOn+FA6ApUquwO+0pVELl9CWxsHVGzXitlu9+mDULN+q3RomNvAHnH+OWLx8r/nhj/FLEPbsOyog3sHJ21lrd3l3aY8ftqBPp4opqvF7btPYJMmQydW+bXiUWr4GhvixGf5v2ubdy9Dyu3h2PaN4Ph7OiARHGROmGu/TphZGSE6k364t9jf8DG3gNWdq64eHgRLKwqwSOojbLd3lX94RnUBtUafwpToSXsKquOsDUxNYeZheiV9WXN2NIClr6Fo0AsvFxhXTMQWUlSZMY+R8DMMTCr4oSr/b8HADxasQ0eIz5F4KyxiF0XCoeWDeH8UUdc6DpUqzmLMjIywvvdPsLu7evhXMVNYx2eMfFr1GvUDB3y63Cn7r2w9Nef4OMXCB//qtgX/idkmRlo0aaT1vM27/g5DoetgGNlD9hVqoL9O36HtW0lBNctfKr50pkDEVyvNd5r3wcAELpmJi79vQ8Dv10Eobmlcv5SM4uKMDXV3rn8WYdmmLJyO6p6uaK6txu2HDyFDFkWur6X99Caycu3wtHWBqM+zvv8WhNxDEFernCtZI/snBycvnobe/++hAl9P9BaxqJ6d2qN6cvWo6q3O4J8PbFt37G8GtE876E1U5esg6OdCF/27g4A2BB+ECt2RGL6qP5wcdTPtUTe9c8aBPp4qK9ri1fnXf8U1LWw/Xl17Wv91DVDq8OGltcQM/fq2hE/LVqBQB8vVPXzxp+RB5GRKUOn1s0AADN++wOOdrYY9nneddqmXZFYvTUUU8aMgHMlBySKJfl5zXSSV3bpOMw79EFuXCxyXzyGae3mMDIxRfaNvD+mmnX4FIpUKWSnIwEAWVfPwDTkPZi17IGsf09BYOsI0/ptkfWv+qdME73r2IFIBmP69OnYvn27zt+3XaPakCSnYvnOfUiUJMPfwxWLxg+Hff4Exy8SxTAqMlooU5aFOWt2ID5JAqGpCTxcKmH6iL5o16i2TnNHnkyF0NQIA3uIYGEmwJ1HMsxZm4jsIgMBnOwrwMpCdSBydV8hHGwr4ISWH55SVNvG9SBJTsHKP/cgUZIMP09X/DrxK9jn33b0IiEJRkXm09h1+ASyc3IwccFylf0M/LAzBn/cVWe5u/Xsg8zMDCxf/AvS01IRGBSMH6bPg6lp4cjPuBfPkJJceGtHk2atkSyVYPum1ZCIk+Dp7Ysfps+DyNZO3VuUGdn18zCytIJl6+4QVLRBzvPHkK5fAEX+LRsCkb3K7RkAYOxQGSae/khb+4u6XWrd+z2+QFZmJtYt/RnpaSnwrxqCMZMXwaTI8Y1/8QSpyRLl8sN7NzFn0jDl8rY1vwIAmrTsjEFfT9Vq3q27n8JcKMB3w3xQ0bICom4lY+yMm8jKLjyuLpXNYGNdOC/Rb6vuY2Afd4we4g1b6wpIEGdjz6EXWL9DN0+eb9utP7IyM7Bl+XRkpKfAJ7AWvvxhmcoxToh7grSUwqdCP75/A79NHahcDl2fd340aN4VfUfO1FrWNk3qQ5ycglXbwvLrhBt+/WE07PJv64pLSFIZubnr0PG8OjFPdS7CgR91xaBPumktZ1E1mw1CTlYGTu2egqzMZDh51EaH/itU5jdMTnyMzHTtP3X7dWzqVEejoxuVy0HzJgIAYjfswrWBEyB0doS5W2EHccbDJ7jQdSiC5k+A56i+yHzyAlFDf0TC4dM6zd2156eQZWZixeK5SE9LRUBQMCZMn1+sDj9FSpE60Ti/Dv+5aZWyDk+YPl/rdRgAWnUZgCxZBv5cNRUZ6SnwCqiNoeP/KPY7F6vyO3fmSN61z5IZ/VX21XvYTNRv3l1rWds1CIE4OQ1/7DqIRGkK/N1dsPi7QbDPv4X5RZLkleuf2Rt2K69/PJ0rYebQ3mjXIERrGYtq27guJMmpWLEjUnm9tnD8KOW1RFxCEgQq1xInkZ2Tgwm/rlTZz6CenTD4o846yZxX11Kxant4kbr2TZG6lqiauaCuzS9e17pg0Mfar2uGVocNLa8hZm7dtCEkySlYtS0USWIpfL3cMX/y2MK8L1XP4bADR5Gdk4Mf56oOCun/SQ8M7KX9Pzbk3PkXmRaWEDbuCCMLa8hfPkX6ruVQ5D/dXmBlC3mR62FFqgTpu/6AsEV3WPYdB0WqFFn/nkDWhaNaz0pUHhkpit87RfQOS75keJPdDt+p/jas8ur3XiXfElvexFro7snNZcF5/ff6jlBqdz/V/cjhtzHhhyh9RyiVSVPr6DtCqdU2uvD6RuXImruN9R2hVKp+Ylh1rcpN3XY6loVnKSJ9RyiVZln79R2hVHKEFV/fqJyRG5f/h1ao4IMOqJhc43L6IBMNhAe26DtCqViPWajvCDpxL0Z7D10sT3x93nw6s3cJ50AkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg04kNUiIiIiIiIiIjorSg4Ru2dxp8uERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCM+RIWIiIiIiIiIiN6KAkb6jkBaxBGIREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRpwDkYiIiIiIiIiI3grnQHy3cQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCM+RIWIiIiIiIiIiN4KH6LybuMIRCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCPOgUhERERERERERG+FcyC+24wUCoVC3yGIdOVWzFN9Ryg1C0WqviOUyrNsZ31HKBXzCjJ9RygVE6McfUcoNdfkG/qOUCo3zevrO0KpCI2z9R2h1ETGEn1HKBVJrkjfEUpFYCTXd4RSeRrUVN8RSs391kl9RyiV1GxzfUcoFSfTl/qOQPR/J11hqe8IpWJslKvvCKVS1aeKviPohCF+3/4v/l9+nsXxFmYiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjPkSFiIiIiIiIiIjeikLBh6i8yzgCkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ohzIBIRERERERER0VtRgHMgvss4ApGIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkER+iQkREREREREREb4UPUXm3cQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKit8I5EN9tHIFIRERERERERESkJUuWLIGnpyfMzMzQoEEDnD9/vsT2O3bsQGBgIMzMzBAcHIx9+/ap/HeFQoHJkyfD2dkZ5ubmaNOmDe7evavNfwI7EImIiIiIiIiIiLRh+/btGDNmDKZMmYLLly+jZs2aaN++PeLj49W2//vvv9G7d28MHDgQ//77L7p3747u3bvj+vXryjZz587FokWL8Mcff+DcuXOwtLRE+/btkZmZqbV/h5FCoVBobe9E5cytmKf6jlBqFopUfUcolWfZzvqOUCrmFWT6jlAqJkY5+o5Qaq7JN/QdoVRumtfXd4RSERpn6ztCqYmMJfqOUCqSXJG+I5SKwEiu7wil8jSoqb4jlJr7rZP6jlAqqdnm+o5QKk6mL/Udgej/TrrCUt8RSsXYKFffEUqlqk8VfUfQiah7cfqOoBP+biLIZKrfI4VCIYRCodr2DRo0QL169fD7778DAORyOdzc3DBq1CiMHz/+lfaffPIJ0tLSEBkZqVzXsGFDhISE4I8//oBCoYCLiwu+/fZbfPfddwAAqVQKJycnrFu3Dr169Sqrf6oKjkAkg7Bu3TqIRCJ9xyAiIiIiIiKi/2OzZs2CjY2NymvWrFlq22ZlZeHSpUto06aNcp1AIECbNm1w9uxZtducPXtWpT0AtG/fXtn+wYMHePHihUobGxsbNGjQQOM+ywIfokJ6169fP6xfvx6zZs1S6X0PCwtDjx49UB4Gye6LCMPu0O2QiJPg6eWDwcNHwT+gqsb2Z04dx5aNaxEf9wLOLq7oO2Aw6tZrqLvAAPZE7sWO0N1IEovh7eWFL4cNQWCAv9q2Dx89xoZNm3H3Xgzi4uMxbPBAfNC9m07zKhQK7N66HCcOhyE9LRV+gTXQd9h4VHZx17hN9I3L2Ld7Ix7F3IZEnIBR439BnYYtdJp5x+bVOHowAmlpKQioGoxBI76DcxW3Erc7GBmKiF1bIREnwcPLB/2HjoZvQJDW8+6P3I2w0G3557EvBg37Cn4lnMd/nzqOrZtWK8/jz/sPRR0dnsc7Dp3ApogjSJQmw8+9Cr7r9zGq+XqqbRt29Az2njqH+0+eAQACvdwx4pOuGttrg6Gewzs3r8KxQ3vyz+EaGDBiLJxdSj6HD+0NRcSuzZCKk+Du5Yt+Q8fA11/753BERAR2hoZCnF/Xhg8fjoCAALVtHz16hI0bN+LuvXuIj4/HkCFD0KN7d61nLMrQjm9BZkOoa3ZN68L724GwqV0dZi6VcLHnCMTtOVryNs3qI2jeeFQM8kNm7HPcm7UMTzbs1lpGdfZH7sKe/Drs4eWDgcO+hl8Jx+nvU39h26bVeBn3As4uVfBZ/2GoXa+RzvIaWl0ztBoBGF5m5tU+Q8u8P3I3wpXXlwV1raTry7+wddMalbqmy+tLQ/xeZ0gUiv+Ph6hMmDABY8aMUVmnafRhQkICcnNz4eTkpLLeyckJt2/fVrvNixcv1LZ/8eKF8r8XrNPURhs4ApHKBTMzM8yZMwdisVjfUV5x+sRfWLNyGXr16YsFi5fD09sH0yZ9D4lEfdbbN69j/pyZaNOuIxYsXoEGjZpg9ozJePTwgc4yHz95CstXrsZnfXph6aJf4e3liYmTpkAskahtL5PJULlyZQzo1xd2trY6y1nUvt0bcDhyO74YNgGT566F0Mwc86eNQlaW5luMZZkZcPfyx+dDx+kwaaE9oZuxP2InBn35HX6avwJmZub4efKYEjP/ffIoNqz6HT1798fs31bDw8sXP08eA6mG86msnD55DGtXLsXHffph3qKV8PTywfRJY0s8jxfMnY7W7Tph/qJVqN+oKebM/BGPHt7Xas4Ch89ewsKNuzCo5/vY8PN4+Hm44qvZvyNJmqK2/aVbd9C+cV0s+/FrrJ72HZzsbTFq1u+IT5LoJC9gmOdwROgmHIjcgYEjxmLGvFUQmplh9uTRJWY+e+oINq5ahJ69B+DnhWvh4eWL2ZNHQypJ0mrWEydOYMXKlfi0Tx8sXrwYXt7e+HHSJEg01LVMmQyVnZ3Rv39/2OqprhnS8S1gKHXN2NICydeicf2raW/U3tzTFfX2LEfi8XM4XbcbHixej+DlM+HQVne3T585eRTrVy7BR336Ye6iVfD08sXMSd9pPE63b0ZhYX4d/mXRKtRr9B7mzvwBj3VUhwHDqmuGWCMMLTPzap+hZT5z8hjWrVyCj/t8gV8WrYSHlw9mlFjXruPXuTPQut37mLdoJerruK4Z4vc6Kp+EQiGsra1VXpo6EN8l7ECkcqFNmzaoXLmyxmG/BcLCwuDn5wczMzO0b98esbGxWs8WvnsH2nV4H63bdYSbuyeGjxwNoVCIo4f2q20fEb4LtevUR48Pe8HN3QOf9h0Abx8/7IsI03rWAqG7w9GxQzu0b9sGHu7u+HrkCAjNhDh46Ija9gH+fhgysD9aNm8GExMTneUsoFAocChiK7p+PAC1GzSHm6cfBn89DeKkBFw+d0LjdjXqNEHPT4ejTsOWOkybR6FQYF/4DnzwSV/Ua/gePLx88eWYHyFOSsSFs6c0brc3bBtat++Clm07wdXdC4O+HAtToRn+OhypcZuyELF7B9p26ITWbfPO46Ejx0BoZoZjh/apbR+5JxS16tRH95694OrugT6fD4SXjx/2R+pmtM6WvUfRvVVjdGnRCN6uzhg/sBfMTE0RcVz9kPwZI/vjw3bN4O/pBs8qlfHDkE+hUChw4Xq0TvIa6jm8f8+f6PFxP9Rt2AweXr4YMXoyxEkJuPiP5vnd9oZtQ6v2XdGiTWe4unth4IhxMBUKcVzL5/Du3bvRsUMHtGvXDh7u7hg1ciSEQiEOHTqktn2Avz8GDRyIFs2b662uGdLxLchsKHXt5cGTuDNlIeLC1X+uFecxpBcyHjzBrXFzkHr7Ph4t3YwXoQfh9XU/rWUsLmL3n2jToTNatX0fbu6eGDLy2/w6vFdt+317diKkTn1069kbru6e6P35IHj5+GN/5C6d5DW0umZoNQIwvMzMq32Glrl4XRuaX9eOari+3LtnZ/71ZUFdG5hf13RzfWmI3+vI8Dk4OMDY2BhxcarzQ8bFxaFy5cpqt6lcuXKJ7Qv+tzT7LAvsQKRywdjYGD///DMWL16MJ0+eqG2Tnp6On376CRs2bMCZM2cgkUi0NjlogezsbMTcu4MaIXWU6wQCAWqG1EH07Ztqt4m+fRM1atVWWVerTj1E39bNgySys7Nx99491AoJUa4TCASoFVITtzQMkda3l3FPIRUnIqhG4cMrLCwrwse/GmKir+kxmWbxcc8gESciOKSecp2FZUX4BgTh7u3rarfJyc7G/Xt3EBxSV7lOIBAgOKQu7mrx/Mg7j6NfOY9rlHAe37l9Q6U9ANSqXV9j+7KUnZOD2w9iUa96oHKdQCBAveqBiLr7Zn+hzpRlIScnF9YVLbQVU4Uhn8PVi5yPeZlLPocf3ItG9Zqq53D1kHq4G61+m7JQUNdCitW1kJCQclvXDOn4Fs9sCHWttEQNQ5BwTPUPEC8Pn4ZtwxCdvH92/nGq8cpxqqPx+kBdHQ6pXR93dHRcDamuGWKNMLTMzKt9hpZZ0/ekGiF1NNYp9XVNN9+TDPF7Hb0bTE1NUadOHRw9WjjVilwux9GjR9GokfppSRo1aqTSHgAOHz6sbO/l5YXKlSurtElOTsa5c+c07rMssAORyo0ePXogJCQEU6ZMUfvfs7Oz8fvvv6NRo0aoU6cO1q9fj7///hvnz59X214mkyE5OVnllSUr3RN3U5KlkMvlEBW7JcBGZAtxkvrbySTiJIhEatrr6Pbs5ORkyOVy2BZ76IytSIQksUQnGUpLKkkEANiI7FXWW9vYQypO1Eek15KI837+Nmp+1hINtxomJ0shl+fCRmRXbBs7SLT471Sex8XeVySyVf47iss7j4vn1Ny+LEmSU5Erl8POxkplvZ2NFRIlyW+0j9+3hMHB1gb1i3RCapMhnsNS5Tms7nzUdA5L8s5h2zffpiwo61qxWmwrEmmsxfpmSMe3gCHVtdISOjlAFpegsk4WlwATGysIzLR/y1GK8jipHltRCT9bfdZhwLDqmiHWCEPLzLzaZ2iZC+qauu89JdW1V+ugbuqaIX6vM0RyGP1fvEprzJgxWLlyJdavX49bt25h+PDhSEtLQ//+/QEAffv2xYQJE5Ttv/76axw4cADz58/H7du3MXXqVFy8eBEjR44EABgZGeGbb77BzJkzsWfPHkRFRaFv375wcXFBdy3Og8qHqFC5MmfOHLRq1Ur5KPKiKlSogHr1CkdFBAYGQiQS4datW6hfv/4r7WfNmoVp01TnRhoxajRGfv1t2QenUvn7xH6sX1Z4u/roH3/VY5o3c+qvQ1i55Bfl8vgpc/WYhkqyPvwQDp+9hGWTvoHQVDu38xjiOXz6+EGsWlJ43o6bPE+Pad49hnh8WdeoKEOsa0RERIbgk08+wcuXLzF58mS8ePECISEhOHDggPIhKI8fP4ZAUDi+r3HjxtiyZQt+/PFHTJw4EX5+fggLC0P16tWVbcaNG4e0tDQMGTIEEokETZs2xYEDB2BmZqa1fwc7EKlcadasGdq3b48JEyagX79+b7UvdU9GevAkQUNr9aysbSAQCCAp9lcmqUQMWzs7tduIbO1emYhXKhHrbGJja2trCASCVx6YIpZIYGcr0kmG16lVvxl8/AuLX052FoC80Q4iOwfl+mRpIty91D85WtfqNmiq8qTMbGVmMWyLZJZKxPD08lW7D2trGwgExq88DEEqSYLI1l7tNmVBeR4Xe1+JRAyRbUnncfGcmtuXJZF1RRgLBK88MCVJmgJ7kXWJ226KPIL1ew7h94mj4OdRRWsZDfEcrlO/KXz9qymXC8/hpGLncBI8vf3U7sPaWpR3DovVncPaOzeUda1YLRZLJBprsa4Z4vE15LpWWrK4BAidHFTWCZ0ckC1NgTyzdHcn/BdWyuOkeg5LSvjZ6roOG2JdK2AINaI4Q8vMvNpnaJkL6pq67z0l1bVX66Buri8N8XsdvVtGjhypHEFY3PHjx19Z99FHH+Gjjz7SuD8jIyNMnz4d06dPL6uIr8VbmKncmT17NiIiInD2rOpcRTk5Obh48aJyOTo6GhKJBFWrVlW7H3VPRjIt5ZORTExM4OPrj2tXLyvXyeVyXLtyGQGBQWq3CQgMwrUrl1XWXfn3IgICq6ltX9ZMTEzg5+uLK1euKtfJ5XJcuXINVQN1czvn65ibW8LJ2U35cnHzho2tPW5eu6Bsk5Geipg7N+ATUEOPSQuZW1igsour8uXq7gWRrT2irhSek+npabgXfRN+gdXV7qOCiQm8ff0RdfWScp1cLsf1q5fgp8XzI+88DlA5L/PO40saz2P/wGqIuqp6Hl/996LG9mXJpEIFBHq5qTwARS6X4+KNaAT7eWvcbsOew1i9az9+G/8lgnw8tJrRMM9hS7Xn8PWrqudwzJ2Sz2Ev3wBcv6Z6Dt+4ehF+Aeq3KQvKuna1eF27Un7qmgEeX0Oua6Ul+ecK7Fs1VFnn0LoxxP9c0cn7mxQcpyuqxynqymWN1wfq6/AF+GvpuBpiXStgCDWiOEPLzLzaZ2iZC74nFa9r165c1lin/AOr4VqRzwsAuKaj70mG+L2OqLxhByKVO8HBwfj000+xaNEilfUmJiYYNWoUzp07h0uXLqFfv35o2LCh2tuXy1K3Hh/h8IG9OHbkIGIfP8IfSxYiU5aJ1m07AAAWzpuFjWtXKtt36fYB/r10AWG7/sST2MfYumkdYu7ewftdums1Z1E9e3TDvoOHcOjIUTx+HItFS5YhMzMT7du2BgDMnf8rVq9br2yfnZ2NmJj7iIm5j+ycHCQkJiEm5j6ePnumk7xGRkZo16U3Inaswb/nTyD24T2sWDgVtnYOqN2gubLdnEnDcWTvn8rlzIx0PLofjUf38zqaEuKf4dH9aCS+fKGTzO93+wi7t6/HxXOn8fhhDJYsmAlbO3vUa/Sest2MiV/jQESocrlT9144djACJ47ux5PYh1i1dB5kmRlo0aaTVvN26fERjhyMxF9HDuDJ40dYvuRXyDIz0aptRwDAb/N/xqZ1K5TtO3ftiX8vnUf4ru14EvsI2zavRcy9aHTs3EOrOQv06dQa4X+dQeSJf/Dg6QvMWbMNGTIZOjfP6wCYsnQ9lmwNV7Zfv+cQlu+IxKShn8HZ0Q4JEikSJFKkZ2bqJK+hnsMdu36MsO3rcfHcKTx+GINlC6bD1s4BdRs2U7ab+cMoHIzcqVzu1L0X/jq4ByeO7sPT2IdYs/QXyDIz0bxNZ63m7dGjBw4cOIDDR47g8ePH+H3JEshkMrRt2xYAMG/ePKxdu1bZPq+uxSAmJgY5OTlITExETEwMnumwrhnS8S3IbCh1zdjSAtY1A2FdM+9LtYWXK6xrBsLMzRkAEDBzDGqunaNs/2jFNlh4uSFw1lhYBnjDY1gfOH/UEQ9+W6e1jMV16fExjhyMxPEj+/Hk8UOsXDIfsswMtGz7PgBg0fyfsHndcmX797t+iCuXzmHPrm14GvsI2zevwf170ejY+QOd5DW0umZoNcIQMzMvMxeXV9f25l9fPsSKJQsgy8xQXl8umv+TyvVlp64f4sql89iTf325XcfXl4b4vY6oPOEtzFQuTZ8+Hdu3b1dZZ2Fhge+//x59+vTB06dP8d5772H16tVaz9K0eUtIkyXYunEtxGIxvLx9MGX6HOVQ+5cv42FUZL6CwKDqGDPuB2zesAab1q2GS5UqGD9pOjw8vbSetUCLZu9BKpViw6YtEIvF8Pb2xk/TpyqH28e/fAkjo8LJXxOTkjD8q2+Uyzt37cbOXbtRI7g65s3+WSeZ3+/RF7LMDKxd+jPS01LhX7Umvp28CKamhaNG4188RUqyRLn84N4tzJk0TLm8dU3efE1NWnbC4K+naj1z156fQpaZiRWL5yI9LRUBQcGYMH2+Sua4YpkbN2uNZKkEf25aBYk4CZ7evpgwfb7Wb91o2qwVkqUSbN20FhJxEry8fTFp+lzl+ya8jIOgyDkRGFQdo8dOwpaNq7F5/So4V6mC73+cCQ9PzSMAy1LbRnUgTk7Bip2RSJSkwN+jCn4b/6XyFua4BLFK3l2HTyE7JwfjF65S2c+gnu9jyIfa7ZwtYIjncJeen0GWmYlVv8/JP4drYPy0BSWew43ea4NkqQQ7N6+ERJwED28/jJ+2QOvncPPmzSFNTsamjRuRJBbDx9sbM6ZPV61rRWpxUlISRo4apVwODQ1FaGgogoODMXfOnFf2rw2GdHwLGEpds6lTHY2OblQuB82bCACI3bAL1wZOgNDZEeb5nYkAkPHwCS50HYqg+RPgOaovMp+8QNTQH5Fw+LTWMhbXJP84bdu0Rnmcfpg+r4Q6HIyvx07Gto2rsGX9SjhXccW4H3+Cu47qMGBYdc0Qa4ShZWZe7TO0zE2atYK0SF3z8vbFj9N/KVLX4mFkpPo96Zuxk7B142ps1kNdM8TvdYZG8R8eMEKGw0ihUCj0HYJIV27FPNV3hFKzUKTqO0KpPMt2fn2jcsS8gvbnvipLJkY5+o5Qaq7JN/QdoVRummt3VHNZExpn6ztCqYmMJfqOUCqSXJG+I5SKwEiu7wil8jSoqb4jlJr7rZP6jlAqqdnm+o5QKk6mL/Udgej/TrrCUt8RSsXYKFffEUqlqo/25uYuT/69W7pnDhiqWn4Or2/0DuItzERERERERERERKQROxCJiIiIiIiIiIhII86BSEREREREREREb0Wh4ByI7zKOQCQiIiIiIiIiIiKN2IFIREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxIeoEBERERERERHRW1GAD1F5l3EEIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBHnQCQiIiIiIiIioreiUHAOxHcZRyASERERERERERGRRuxAJCIiIiIiIiIiIo3YgUhEREREREREREQasQORiIiIiIiIiIiINOJDVIiIiIiIiIiI6K0owIeovMs4ApGIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIcyASEREREREREdFbUSg4B+K7jCMQiYiIiIiIiIiISCOOQKT/KybI0neEUjPNydB3hFKxNknTd4RSORXjrO8IpdLM55m+I5RaakUnfUcoFSGy9R2hVMQyS31HKLUUgbm+I5RKgHG0viOUyuX06vqOUCrut07qO0KpPa7aTN8RSsXl5hl9RyiVR+ku+o5QakYGNujGyEih7whUztTIuaDvCKUSVaGuviOUSlV9ByAqAxyBSERERERERERERBqxA5GIiIiIiIiIiIg04i3MRERERERERET0VuT6DkBaxRGIREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRpwDkYiIiIiIiIiI3opCYaTvCKRFHIFIREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ogPUSEiIiIiIiIioreiAB+i8i7jCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjzoFIRERERERERERvRaHgHIjvMo5AJCIiIiIiIiIiIo3YgUhEREREREREREQasQORiIiIiIiIiIiINGIHIhEREREREREREWnEh6gQEREREREREdFbUYAPUXmXsQOR9Kpfv35Yv349hg4dij/++EPlv3355ZdYunQpvvjiC6xbt04/AfNFRuxBaOhOiMVieHl5Y9jwEQgICFDb9tGjh9i0cSPu3buL+Ph4DB4yFN2799BxYmD33oPYFhaBJLEEvp4e+GpIf1T191Xb9sHjWKzd8ieiYx4gLv4lvhzYFx917aTTvPsjdyMsdBsk4iR4evli0LCv4BdQVWP7v08dx9ZNqxEf9wLOLq74vP9Q1KnXUHeBASgUCpzdtwhRZ3dAlpEMF6/aaP3xVNhW8tS4zdVTW3DtzFYkJz4FANg7+6FBhxHwCmqu9bz7IncjLHR7/jH2waBhX8G/hGN85tRxbN20RnmM+/YfotNjHLZ3P7bv2oMksQQ+Xh4YNXQgqvr7qW374FEs1m3ehjsx9xEX/xIjBvXDh9066ywrkHc+7Ny8CscO7UFaWgoCqtbAgBFj4eziVuJ2h/aGImLXZkjFSXD38kW/oWPg6x+ks8yR25fizJFdyEhPgXdACHoP+QGVnD00bnP35iUcDl+H2Pu3IBW/xJBxvyKkfiud5d2zbRlOHd6NjPQU+ATWxKdDJsLJRXPeOzcu4VD4BjyKuQmpOAHDv1+AWg1a6iRvYR2WwsfTHV+XUIcjDh3Fwb9O4sGjJwCAAB8vDP68l8b22qJQKHBg5xKcPbYTmWkp8AyohY8GTIJjCefEkbCVuHbhCOKfPYCJqRk8/UPQpfdoVHLx0nre/ZG7sCf/s8PDywcDh30NvwDNvz9/n/oL2zatxsu4F3B2qYLP+g9D7XqNtJ7TrmldeH87EDa1q8PMpRIu9hyBuD1HS96mWX0EzRuPikF+yIx9jnuzluHJht1az1qUQqHAjs2rcOxghLKuDRzxHZyrlFzXDkaGImLXFmVd6z90NHxL+LmUdeaI7ctwOr+u+QSEoPeQiXB6TV07FL4ej/Pr2rBxC3Ra1yK2LcOpInn7vFFdK8w7fNwChDRgHX5XMhta3p0H/sKmiENIkkjh6+GKbwf0RjVf9fU/7Mgp7D95FvdjnwEAArzdMbx3D43ttSHv+P6BU4d3Iz09Bb7K4+uucZs7Ny7hYPgGPIq5Bak4ASO+n6/Tc5iovOAtzKR3bm5u2LZtGzIyMpTrMjMzsWXLFri7ay7kunLyxAmsXLkSffp8hkWLf4eXtzcmTfoBEolEbXuZTIbKzpXRr/8A2Nra6jZsvmOn/sbSNRvQ75OeWLlgNny8PDB26s8QS6Rq28tkMjg7OWHI571hZyvSbVgAp08ew9qVS/Fxn36Yt2glPL18MH3SWEgkYrXtb9+8jgVzp6N1u06Yv2gV6jdqijkzf8Sjh/d1mvvikZW4cnIj2nw8Fb3H/AkTU3PsWjYQOdkyjdtUFFVG0y7foc/YXegzNhRu/g2xZ+WXSHh+V6tZ847xMnzS5wvMX7Qi/xiPe80xnoHW7d7H/EUr0aBRU8yeOQmPHj7Qas4Cf506g2Wr1qNv74+wfOFc+Hh54vvJM0s+hys7YfAXn+rlHAaAiNBNOBC5AwNHjMWMeasgNDPD7MmjkZWl+Xw4e+oINq5ahJ69B+DnhWvh4eWL2ZNHQypJ0knmw2FrcXzfVvQe8iPG/rwJQqE5Fs8YjuwSMmdlZsDVMwCfDJqgk4xFHdy9Dsf2bsVnwyZiwuwNEArN8duML0vMK5NlwNXTH30G6zbvsVN/Y8majfjikw+xcsEs+Hh54LupszSew1eibqL1e02wcOYkLJ07HY4O9vhu6s94maibc0GZO2INTh7YjI8GTsY3M7ZAKDTHH7OHlniMY25dRNN2vfH19C0YNnEFcnOy8cesIZBlpms165mTR7F+5RJ81Kcf5i5aBU8vX8yc9B2kGutaFBbmf3b8smgV6jV6D3Nn/oDHOvjsMLa0QPK1aFz/atobtTf3dEW9PcuRePwcTtfthgeL1yN4+Uw4tG2q5aSq9oRuxoGInRj05VjMnL8SQjMzzJo8psS69vfJI9i4ajE+7D0As35bAw8vX8yaPEbjz6WsHQpbh7/2bUGfIT/g+583wlRojsUzRpRcJzLz6kQvfdS1sHU4tm8LPh36A8bP2gihmTkWvSZvVn5d663jugYYVh0uYGiZDSnv4b8v4LcNOzDow85YP+dH+Hm44ZuffkOSNFlt+8s3o9G2SX0smfItVs78Hk72dvh65kLEJ+mmPgDAgd3rcTT/+E6cvR6mQnMsfO3xzcw/vuN1lpOoPGIHIuld7dq14ebmhl27dinX7dq1C+7u7qhVq5ZynUwmw1dffYVKlSrBzMwMTZs2xYULF7Seb/fuXejQoQPatmsHd3cPjBw5CmZCIQ4dOqi2vb9/AAYOHIzmzVvAxMRE6/nU2RG+F53atUbHNi3h6e6KMcMHwUxoin1H/lLbPtDPF8P7f4bWzZroJXPE7h1o26ETWrftCDd3TwwdOQZCMzMcO7RPbfvIPaGoVac+uvfsBVd3D/T5fCC8fPywP1J3IzMUCgUun9iA+u2Gw6dGGzhWCUSHz+ciTRqPmGtHNG7nE9wKXtWaw7aSJ2wreaFJ59EwEVrgxcMrWs27p9gxHpZ/jI8e2q+2fcEx7tGzF9zcPdDn8wHw9vHDPh0d4x1hEXi/fRt0bNMKnu5uGD1iCIRCIfYfPqa2faC/L4YN6ItWzZrq5RxWKBTYv+dP9Pi4H+o2bAYPL1+MGD0Z4qQEXPznpMbt9oZtQ6v2XdGiTWe4unth4IhxMBUKcfxwpE4yH9u7GR16DkbN+i3h6umPL0bNhFT8ElfPqz/OAFCtdlN07T0SIQ1aaz1jUQqFAkcit6DTh4MRkp+3/1czIEl6iX/Pq69tABBcuym69/kStRrqZnROgT/D96Jzu1Z4v00LeLq74ltlHT6utv2kb0ehx/vt4OftCQ/XKhg3cijkcgUuXb2us8wKhQIn9m9Eux5DEFy3FVw8AtBnxM9IFscj6qLm0XJDJyxH/ebd4ezmiyoegegz/CeIE57jyYObWs0bsftPtOnQGa3avg83d08MGflt/mfHXrXt9+3ZiZA69dGtZ2+4unui9+eD4OXjj/2Ru9S2L0svD57EnSkLEReu+fOhKI8hvZDx4AlujZuD1Nv38WjpZrwIPQivr/tpN2gRCoUC+8P/RI9PvkDdhu/Bw8sXX46ZlFfXzp7SuN3esO1o1b4LWrTtBFd3Lwz6cqxO69rRvZvRsWeROjFqBiTil7hSQp2oXrspuvUeiVo6GsVXQKFQ4GjkZrz/Yenzdu+jn7yGVIcBw8tsaHm3Rh5Gt9ZN0bllE3i5uuD7wZ/CzNQUkX+dUdt++leD8GH7FvD3dINnFWdMHNYXcoUCF6Nu6yRv3u/cFnT6cBBC6reAq6c/Bnw1Pf/4Hte4XXDtJujR50vU1sM5TFSesAORyoUBAwZg7dq1yuU1a9agf//+Km3GjRuH0NBQrF+/HpcvX4avry/at2+PpCTtjc7Izs7GvXt3ERJS2JEpEAgQElILt2/f0tr7vo3s7BxEx9xHnZrBynUCgQB1agbjZrR2R7n9F9nZ2Yi5F40aIXWU6wQCAWqE1EH0bfVfPu/cvqHSHgBq1a6vsb02SBOfID35JdwDGivXCc2tUNmjJp49/PeN9iGX5yL60l7kyNLh7Fnr9Rv8R3nH+A5qvnKMayP69g2120TfvqnSHgBCatfDHQ3ty1J2djbu3LuPOjVrKNcJBALUCQnGzehorb//fxEf9wwScSKqh9RVrrOwrAgf/yDcva2+AygnOxsP7kWjes3CbQQCAaqH1MPdaO13GiXGP0WyJAGBNRoo15lbWsHTLxj371zT+vuXVkJcXt6qNQvzWlhawcuvOu5Hl6+82dk5uBPzQG0dvhF95432IZPJkJObA2srS23FfEVi/BOkSBLgX73wll5zCyt4+NTAw7tX33g/GempAACLijZlnrFAdnY27t+7gxohqr8/wSF1NNY1dZ8dIbXr66SulZaoYQgSjp1VWffy8GnYNgzRWYaCuhZcrK75BgThzmvqWnBIPeW6vJ9LXY3blKWE/LpWtVhd8/ILxv07b34O64qyrqnLG12O8xpAHS5gaJkNKW92Tg6i7z9GveDC6XAEAgHqBVdF1J03G9mdKctCbk4urCvq5rMuIe4ppGqOr3c5PL6GSq74/3j9v2IHIpULn332GU6fPo1Hjx7h0aNHOHPmDD777DPlf09LS8OyZcvwyy+/oGPHjggKCsLKlSthbm6O1atXq92nTCZDcnKyyksm0zw0XZ3k5GTI5XKIit0SKRKJINbhUPvSkOZnthOpfnGzFdkgSSzRT6gSpCRL846xyE5lvUhkC4lYfeewRJz0SnubEtprQ3rySwCAhZW9ynoLK3ukJyeUuG3Cs2j8/l0tLBoTjKN/TkGXQUtg76y9ec4KjrGNSPWW+tcf41fbi8XaP++lySmQy+WwtS1+DovK5TkMANL842jzynlpp/EYJydLIJfnwsb2zbcpS1Jx3nlqLVI9h61t7JEsKfkc1oeCTFY2qsfLWmSPZHGiPiJpJE1ORq5cDtu3qMN/bNgCBztblU5IbUuR5h3jijaq50RFG3ukvOE5IZfLEbZhNrwCasHZTf2cpWUhr67lqqlrmn9/ysNnx5sSOjlAFqd6zGVxCTCxsYLATKiTDJKS6ppE/e+csq6VohaWpWQNdc3Kxg7JGjLrU0Fde7UO20FajvMaQh0uYGiZDSmvJDkVuXI57ETWKuttRVZI1DBdR3FLNofCwc5GpRNSmwp+r6yLHV8rkb3yuoiINONDVKhccHR0RKdOnbBu3TooFAp06tQJDg4Oyv8eExOD7OxsNGnSRLnOxMQE9evXx61b6kcCzpo1C9Omqc41NGrUV/jq62+08m+gd9utC3twdPsU5XL3ocv/875sK3nhs+/DIMtIwd0rB3Fw0/f46KtNWu1EpLJ1+vhBrFoyV7k8bvI8PaZ5M+dP7sXWFTOUy8Mn/K7HNK937sQ+bFo+U7k88odFekyjW5t3huPYqb/x20+TITQ11dr7XDodiT9XFX5ODh639K33Gbp2Jp7H3sNXUze89b5It07/dRArl/yiXP5+yi8ltC4fzp3ciy0rCuvElxMW6zHN6507uRebi9a1ieU8rwHWYUPLbGh5y9KGsP04cuYClkz9DkJT7Uw/88+Jfdi0/Cfl8qj/o+NLpA3sQKRyY8CAARg5ciQAYMmSJW+9vwkTJmDMmDEq62KfPCvVPqytrSEQCCApNmJEIpHA1k4/D0h5HZv8zEnF/vInlkj19nCJklhZ2+Qd42IPjZBIxBAVG5lVQGRr90p7aQnty4JPcCs4e9ZULufkZAEA0lMSUdGmknJ9ekoiHF0DS9yXcQVTiBzznqTn5F4dLx5H4d8TG9Cm13QtJC88xsUnsH/9MX61vS4eDGRjbQWBQACxuPg5LCk353Cd+k3h619NuZydnXc+SCVJsLUr/OOHVJIET2/1o7CsrUUQCIyVoxeLbqONc7lGvRbw9CsczVZwDidLEmFj66hcnyxNhKun+qfM61LN+s3h5V9duZyTnQ0ASJEmQWRXJK8kEW5e+s9blI21NYwFglcemPImdXjb7ghs2RWO+dN+gI+n5iduloVqdVriO9/CqQJy8s/jVKnqOZEqTYTLG5wToWt/ws3LJzByynqI7CuXfeAi8uqasZq6pvn3Rx+fHf+VLC4BQicHlXVCJwdkS1Mgzyzd3RRvqk6DpvANeLO65uH1mrr2ynHWTl2rWa8FvN6grqVIk+Dq6V/m719ar+TN1lSHk+BWHvIaYB02tMyGlrcokXVFGAsESJKoPjBFLEmBfbER+MVt3nMIG8IOYPGk0fDzcNVaxpD6zeFd5Phm5x/f5GLHN6UcHl+i8oi3MFO50aFDB2RlZSE7Oxvt27dX+W8+Pj4wNTXFmTOFE/JmZ2fjwoULCAoKUrs/oVAIa2trlZdQWLrbfkxMTODr64crV68o18nlcly5cgWBgboZal9aJiYVEODjjcvXopTr5HI5Ll27jqAA7d1O9l+ZmJjAxzcA165cVq6Ty+W4duUSAgLV/2z9A6sh6upllXVX/72osX1ZMDWrCJGjh/JlX9kXFtaOiL1TOEeVLCMVLx5dhUtp5zNUyJGb/6VHG/KOsf8rxzjqymUEBFZTu01AYBCuvXKML8FfQ/uyZGJiAn/fV8/hy1ejEBRQPi7uzC0sUdnFVflydfeCyNYe169eVLZJT09DzJ2b8AusrnYfFUxM4OUbgOvXLinXyeVy3Lh6EX4B6rd5G2bmlqjk7K58Obv6wFrkgOioc8o2GempeHg3Ct7+NUrYk268ktfNG9YiB9y6ppr3wd3r8A7Qf96iTEwqwN/HC5euFc75JpfLcfnadVQL0NwpsGXXHmz4cxfmTpmAQD8frec0M7eEY2V35auyqw+sRA64c/0fZZvM9FQ8irkGT7+aGvejUCgQuvYnRF04ihE/roF9Je19GSxgYmICb19/RF1R/f0pqa6p/+y4oJO6VlqSf67AvlVDlXUOrRtD/M8Vrb2nxrpW5Binp6fhXvRN+L+urhWphXK5HNevXtK4zdvQVNduR51XtsmrE1Hw9td8DuvKq3WthLwB5TFv+a/DhpbZ0PIWZVKhAgK83XHheuEDUORyOS5cv4Vgf2+N220MP4A1oZFYOPFrVPXx1GrG4sfXxc0bNiIH3L6m+jt3vxweX6LyiCMQqdwwNjZW3o5sbGys8t8sLS0xfPhwjB07FnZ2dnB3d8fcuXORnp6OgQMHajVXjx4fYMGCefDz84O/fwDCw3cjU5aJtm3bAQDmz/sF9vb26Nd/AIC8js3Hjx8DAHL+x959hzV1NWAAf0ExgAoBJygQNuIAt362bq3WXa2zte5Vta3aVqs4wNZqXXWvKgqOqoCKWxw4OhwVtygo08rKAoEIJt8faCBKUKpJSPv+nifP03s59+bt9eTcm5Nzz83PR0ZGOmJjY2FhYQF7e3udZn3h417dsODnNfB0c0Udd1fsDT+M3FwFunZsCwD4YdkqVK1iizFDBz/PnI+4xKSCzHn5SM+Q4P6DOFhYmKO2nW5HkQBAjz4fY+XSBXBz94S7Rx2E798LRW4u2nfqCgD4eckPqFKlKj4ZNgYA0L1nX/hN/wL7Q39F46YtcP7sKcTGRGPcpKk6z/qCiYkJGrUZij+PrYWwmhOsq9TGb4d+RkXr6nBt0FFdbu+qz+DWoBN8WxfM6Xn+wBKIvFujso0d8hRPcPfyQSTGXMRH44ufy/Nd6dnnY6xY+iNc3T3g7lEHB/fvRW5uLjp06gKg4BjbVqmGT4eNBlBwjGdN/xL7Q3drHOPxejrGH/fugR+XrYKnmyu8PNwQsv8QcnMV6NKxHQBgwdIVqFqlCkZ/NgRAwecu/kUdzs9HeoYYMQ8ewsLcHLXs7XSe18TEBF179se+X7eipr0Dqtewx57gDbCxrYomLVqry82fOQlNW7bBB937AQC69R6Itcvmw8XNC24e3jiy/1cocnPRpmN3vWRu320IjoRsRHU7J1SpXgvhu1bD2qYafJoVPmXw57mj4dO8Pdp2HQQAyM3JRtrjBPXfM1KSkfjwLipWsoZtNd0daxMTE3TsPhiH925CdTtHVK1RC/t3roHQthoaNmunLrd0zlj4Nm+H9h8OLJI3Uf339NRkJD6MhmUlK1TRYd7+vbphwc9r4eXmAi93N+wNP4ycXAW6dmwDAPh+2WpUq2KLMUMLjuuOkP3YvGMP/KZOQs3q1ZDxfOS7hbk5LC3MdZazKBMTE7Tp+ilO7NuAajWdYFu9Fo7sWQUrm+qo36Twqdtr5o9E/aYd8P4HBeeQkM3zceW3wxg5dQUEFhXVc3iZW1ZChQq6y96jT3+sWroAru6ecPOog0P790CRm4N2nT4EAKxY8j2qVKmKIcPGAgA+7NkPc6ZPxoHQXWjctCXOnz2JBzHRGDfpa51lfKFcRUtUdHNUL1s614aVjxeeimXITfwbnvOnwLxWDVwb/i0AIH7DLjhNGAKvBV8jMTAEVdu1gN3HXXGp51idZ33BxMQEXXv1R9ivW1GzVm1Ur2GP3cEbC9q1lu+rywV8NxlNW7ZGlx4v2rUBWLvse7i4F7Rrh/fvft6uddNL5g7qds0RVavXwoFdqyG0qQbfIu3Esrlj4Nu8Pdp1LdpOFLZr6Xps1zp0H4LDewvz7t/5at6lc8egYbP2aPehlrypbIf/LZmNLe+g7p0QsHoL6rg4wdvNGb8ejkCu4im6tS2Ydmreqs2oZivEhMEfAQC27TuKjbsPYN7kkbCrXkU9V6KFuQCW5ro/1xV85gbjkPr42mP/zrXPj29bdbklc8ai4UvHN/Wl45vwMBoV9VCHjY0KJoaOQDrEDkQqU6ysrLT+7ccff4RSqcSnn36KzMxMNGnSBMeOHdP5LZWt27SBTC5DcFAQJBIJXFxc4O8/X/2+aWmpMDEtbCjF4gxMnvS5ejk0JAShISGoX78+flyon/mE2r//P0jlcmzZsRtiiRRuziIsmjMDtkIhACAlPQMmpoUDkNPFYoz+6lv18q/7wvHrvnD41PPGz9/PeXn379x7rdtDLpNiZ/AWSCViOLu4wc9/kfp2p/S0FJiaFB5jL+96+OprP+wI+gXbt26CXa1a+HbWfDiJtP/aqQtNOo5G3tMcROyaDUWOHPYujfHR+E0ob1Y40lWWnoicrMJb7LKzMnAs+Fs8kaWigkVlVLX3xEfjf4GTV6vi3uKdKTjGMuwKDoREIoaziytm+y9UH+O0tFSYmBTWiYJjPAs7gjYj+Pkxnj4rAE4iZ53mfKHd+60glcmxZfsuSCRSuLqIsHDeTPXtn6lp6TAtkjdDLMGYLwo7AXaHHcDusAPwqeeNZQt0c2v4y3r0/QSK3FxsWrUQ2U+y4OndANPnLUWFCoX1IeVxMjLlUvVyy/c7Qi6TYu/2jZBKxHByccf0eUv1dktlp97DoVDkYMd6f2Q/yYSrV0NMnLUGZkUyp6UkIatI5oTYW1g+d5R6OWRrwfyPLdr2xNCJhXMs6sIHfYZBochB8Lr5yH6SCbc6vvjCb7Vm3seJGnnjY29jyezR6uU9W5YAAFq264Hhk3RXN160w5t37HneDjvhpznT1e1wano6TIucO/YfPYG8/HzMXrhMYz/DBvbF8EEf6yznK7l7jMBTRQ52b5qLnOxMOHs2wtjp6zSOcXpKIp5kFrZrFyJ+BQCsDhiusa9B4+ajWZveOsvaqnUHyGVS7AreDKlEDJGLG2b6Ly7h3FEfX3w9G7uCNmHH1o2wq1Ub38z6Ho56OHdYN66HlieD1Mvei78DACRuC8X1kTMgsKsGC4fCL6E5cUm41HMsvJfMgGjSUOQmPcaNsbOQfuK8zrMW1bPvEChyc7Bx5aLCds1/STHtWuHt+v9rXdCu7QneVNiu+S/RW7vWuXdBO7F9fUBBO+HVEJNeadcSkSUvrMPxsbewbG5hO7F3a0E70aJtDwzTdbvWexie5uYgeF1h3sl+mnnTHyciK1Mz79I5Rdq1wOftWtseGDaJ7bCxZzamvJ3+1xRSeSY27j6ADKkc7qLaWPbdZFR5/mCVx+limBRph0NPRCIvPx/fLdWcS3xkv+4Y3b+nznIW1aXPZ3iqyEHQ8+PrXscXX/iteun4Jr1yfBfPHqNe3r1lKYCC4ztikuac+0T/ZiYqleo//BBq+q+JiX1o6AilVjHvzZ5iVlaIy9cwdIRSORdrXL8atnYt3TyeZYG1smw9NfB1UqCfkcLvikRR0dARSq28qdLQEUrFs1y0oSOUyl/Z7/5WUV1ysCp7T0F+nYQ6rV9fqAyxv33h9YXKEGmu8bVrJkY26MbEhF8BSVOD/EuGjlAqN8o3MXSEUmld1/jatX8i8la2oSPoRZu6loaOYBCcA5GIiIiIiIiIiIi04i3MRERERERERET0VlQqIxuOTaXCEYhERERERERERESkFTsQiYiIiIiIiIiISCt2IBIREREREREREZFW7EAkIiIiIiIiIiIirfgQFSIiIiIiIiIieisqlaETkC5xBCIRERERERERERFpxQ5EIiIiIiIiIiIi0oodiERERERERERERKQV50AkIiIiIiIiIqK3ooSJoSOQDnEEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBU7EImIiIiIiIiIiEgrPkSFiIiIiIiIiIjeikrFh6j8m3EEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBU7EImIiIiIiIiIiEgrPkSFiIiIiIiIiIjeikpl6ASkSxyBSERERERERERERFpxBCL9p8ifWRk6QqlFxDsbOkKp9BRdN3SEUvGqJTR0hFKpnhtv6AillmIuMnSEUokXCw0doVQqCp4ZOkKp1bJMN3SEUrmT7WXoCKXS+ukRQ0colRt5bQ0dodTsb18wdIRSeeTdytARSsXtboShI5SaCiaGjkD0VhR5xvU9yal8kqEjlJKnoQMQvTWOQCQiIiIiIiIiIiKtOAKRiIiIiIiIiIjeCkdj/7txBCIRERERERERERFpxQ5EIiIiIiIiIiIi0oodiERERERERERERKQVOxCJiIiIiIiIiIhIKz5EhYiIiIiIiIiI3opSZegEpEscgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFORCJiIiIiIiIiOitqFQmho5AOsQRiERERERERERERKQVOxCJiIiIiIiIiIhIK3YgEhERERERERERkVbsQCQiIiIiIiIiIiKt+BAVIiIiIiIiIiJ6KyqVoROQLnEEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBXnQCQiIiIiIiIioreihImhI5AOcQQiERERERERERERacURiKRh9erV+Omnn/D48WP4+Phg5cqVaNasmaFjlQkqlQp7t2/CqeMH8ORJJjzrNMCICV/Dzt6hxO2OHwpBeOh2yCRiODq7YdjYKXDz8NZL3t8Pr8CN3/dAkSOHvXMjdOg/FzbVRVq3uXZuB65f2Al5RjIAoIqdO5p3mQBn7zY6zxt26Ch+DTsAsUQKV2cnTB4zAnU83Ist+zAhEVu2/4p7sQ+QkpqGz0cOQ79e3XSe8WUqlQrhu9biXEQocrIz4erpi8FjvkMNeyet29y7dQXH929FwoM7kEnSMP6bpfBt3l4veUOORGDH/iMQS2VwEzniq5GfwNvdpdiyB06cwZHI3/AwIQkA4Okiwtgh/bSW14UjB8OwL2QXpBIxRM5uGDVuMtw962gt/9u5M9gZ/AtSUx7Dzr42Ph0+Fo2bttBbXpVKhROhq3Dp9B7kZGdC5NEQvYfNRtWaIq3bnD6wAbcuRyD17wcwMzOHk7svug6cimp2znrLfHj3avx2MgQ5TzLh7OWLAaP8UN1Oex2OuX0ZJw8EIuHhbcglaRg1bTl8mnXQS95D4fuwL2Q3JBIxRM6uGDN+Ejw8vbSWv3AuEtuDtiA15THs7Wtj6IjRaNK0uV6yAs/biF/X4nyRNmLQmO9Qo4Tje/+2Zhsx7pul8G2mnzZid8QFbDsSiQxZJtwd7PDNJ71Rz9Wx2LKnLt/A5vBTSExNR37+MzjWrIpPurRBt1aN9ZL1BZVKhbCd6xF5Yh+yn2TB3asBho6bjpr2xecGgOhbf+FwWBDiY+9CKknHpOk/oXGLtnrLu2f7Jpw6Fq6+lhg5YRrsapV8LXHsYAjCQ3eoryWGj/0Kbp66vZawfa8JXKaOhHWjejC3r47LfScg5cDJkrdp3Qzei6ejkrc7chP/RsyCtUjaFqbTnEUdCt+PsOdthLOzK8aMn1hiG3H+XCS2BwU+byNq4TM9txGA8bVrzKt7xpY57NAx7NoXDrFEBleRI74YMxx1PNyKLRt+/CSOnT6Lh/HPry9dnTH604Fay+vCgYOHsCckDGKJBC7Ozvh83Bh4eXoUWzYuPgHbgrfjfkwsUlJTMW70SHzUu5feshKVNRyBSGq//vorpkyZgjlz5uCvv/6Cj48PPvjgA6Smpuo1x9OnT/X6fm8qPCQYRw/uwcgJXyNg8SYIzM3x4+yv8PSpQus2v5+LQNCmFeg7aAR+WL4FTs5u+HH2V5BJxTrPezliI6LOBqFj/7kYNGU3zCpYIHTtSOTnac9bSVgT7/WYhsFfh2Lw1yFw8GiBAxs/R/rf93Wa9dS5C1j7y1Z8NvBjbFi2EK4iJ3wz53tIpLJiyysUCtjXrI4xQ4fA1kao02wlObYvEKcO78CQsTMxfUEQBOYWWBEwAXkl1ImnihzUFnlg0OgZekwKRFz4EysDd2FE/97Y/NM8uDk5YErAYkhk8mLL/3XrLjq91xwr5n2L9T/MQvWqtvjK/yekZUj0kvf82VPYsnEN+g8ehsUrNkLk7Ap/v68hlRb//ndv38TSRf7o0LkblqzYhGYt38PC+bMQH/dAL3kBIPLQL/jteDB6D5+Dz+fugpnAApsXjSmxPjy8exktOg7C53N2YuS3m/DsWT5+WTgKT3Oz9ZI5Yv9mRB7ZgQGj/TD1h+0QCCyw5vuxJWZWKHJQS+SB/iNn6iXjC+ciT2PzxnUYMHgolq5cB2cXV8z1+1Zrnbhz+xYWL5yPjp27YtnK9WjeshUWBMxGfNxDvWU+vi8Qpw/vwOAxM/HtD0GoILDAyte0EYrcgjZi4Cj9thHH/4zC0p3hGNOrE7bP+xIeDvaYuHgTxPKsYstbVbTEiB7tEeg3EbvmT0GP95ti3qbd+O1GtF5zHw7bhhMHf8Vn42Zg9qItEJhbYMm8SSWemxW5OXB09sCnY7/RY9ICB0K242j4Xoz6/GvMX7IRAnNzLJg9pcS8v52NQNCmleg3aAQW/LwZTs5uWDB7CmRa6v67Uq6iJeTXo3Fz8rw3Km8hqo2mB9Yj48yfON+kFx6u3Ir66+ejaqf3dJrzhXORp/HLxnUYOPhTLFu5DiIXF8zxm/6aNuJ7dOrcBctXrkPzlq3wQ8AcvbYRxtauMS8zv+zUud+wenMQPhvQDxuXLoCrsxOmzV2g9Ro+6sZtdHi/FZbP98OaRf6oVrUKps39AWkZuv9uBABnzp7D+o2/4JPBA7FmxTK4OIvwnd8cSKTSYssrFArUrFkTI4YNha2NjV4yEpVl7EAktaVLl2L06NEYPnw4vL29sW7dOlhaWmLz5s3Flo+Li4OJiQlCQ0PRrl07WFpawsfHB7///rtGuZCQENStWxcCgQAikQhLlizR+LtIJEJAQACGDh0KKysrjBkzBoGBgRAKhTh48CA8PT1haWmJfv36ITs7G1u3boVIJIKNjQ0mT56MZ8+e6eyYvKBSqXDkwG706T8MTVq0hpOzGyZ8NRsScTou/3FW63aH9u1C+w96om3H7qjt6IyRE75BBYEAZ04c1HnevyK3oVnn8XBt0BHVanmhy6eL8ESWitjrEVq3c63fHs5128Cmugg21Z3RqvtXMBNY4nFclE7z7tl/EN06d0DXju0gcnTAlAljYC6ogCMRp4ot7+XuhnHDh6J961YwMzPTaTZtVCoVTh7cjg/7jYZvs3aoLfLA8EkBkErSEHXxtNbt6jV6D70HT0RDPY06fOHX8GPo0bENurV/H84OtfD12M8gEFTAwZPF19+5X47DR106wMPZCU617TF9/AgoVSpcvnFbL3nDw/agU5du6NCpKxwcRRg7cQoE5uY4dfxwseUPHghBw8bN0LvvQNR2dMLgT0fC2dUdRw7qZ+SLSqXChaPb0L7nWNRt3AF2jp4YMPZHyKWpuH1F+4idEd9sQJPWfVCjtjvsnbzw8ZgfIM34G0lxuj/OKpUKZw4H44OPxqBB0/ao5eSJTyf+AJkkDdcvFf/ZA4C6Dd9H94GT9Tbq8IX9YXvRucuH6Ni5CxwdRRg/8UsIBAJEHD9abPnw/aFo1LgpPuo3AA6OThgydDhcXN1xKHyfXvKqVCqcPLQdXfuWvo3oNUj/bUTw0bPo06Y5erZuCpdaNfDdsI9gXsEM+89eLLZ8kzquaN+kPpzta8ChRlUM7vw+3BzsEHVPf1+0VSoVjofvRM/+I9CoeRs4iNwx+ot5kIjT8defkVq3a9C4FfoOGY/GLdrpLSvw/Fpi/270GfAZmrR4H07Obvh8il/BtcTv57Rud2jfr2j/QQ+07dQNtR2dMerzr/VyLZF27CzuzVmOlP3arxuKchozEDkPk3Dnm4XIuvsA8Wu243HIMTh/MUynOV/YHxZSpI1wwoRSthGfDB0OF1c3HArfr5e8BZmNq11jXmZ+2e79h9C9c3t82LEtRI61MXX8KJgLKuBwxJliy/tNnYQ+H3aGu4sITrVr4ZuJY6FUqnDl2k295A0J24+uXTrjg04d4eToiC8mToDAXIBjx4tv5zw93DFm5HC0a9PaYN85iMoSdiASgIJRf1euXEHHjh3V60xNTdGxY8dXOgRfNnPmTEybNg1RUVHw8PDAoEGDkJ+fDwC4cuUK+vfvj4EDB+LGjRuYO3cu/Pz8EBgYqLGPxYsXw8fHB1evXoWfnx8AIDs7GytWrMCuXbtw9OhRnDlzBn369MHhw4dx+PBhBAUFYf369di7d++7PRjFSE15BKkkA/V8m6jXWVasBFcPb9y/W/wJLz8vDw9jolHPp3AbU1NT1PNtivvRuj1JyjKSkC1Pg6Pn/9TrBBaVUdPJB4/irr7RPpTKZ4i+cgj5imzYiRrqKiry8vJwL+YBGvs2UK8zNTVFI58GuHX3ns7e922lpyRDLk1HnQaFt4hYVKwMZ/f6eBB9zYDJXpWXl4/o2Dg0bVB4u5upqSmaNKiLm/di32gfuU8VyH/2DFaVKuoqplpeXh5iY6LRwLfwVkhTU1M08G2M6LvFd6zdu3tLozwANGzUTGv5d02cloRMWTrc6rVUrzO3rAwHlwaIj4l64/3k5mQCACwrWr/riK/ISE2CXJoOzwaFt3lbWFaGyK0+Ht4ra3U4D7Ex9+Dj20i9ztTUFD6+jbT+G0ffvQ2fhi/VicZN9FYn0lNLaCPK2vHNz8fduGQ0q1s4bYSpqSma1XXHjZj4126vUqlw8dZ9xP+dikae+pvmIC0lGTJJBrwbFE61UnBurovY6Ot6y/GmXlxL1H/pWsLN0xv3XnMtUd+3qXqdqakp6vs20bqNoQhb+CL9lOY1Y9qJ87Bp4avz987Ly0NMzD34FtNG3NXymb979zZ8GjbSWNeocVOt5d81Y2vXmFf3jC1zXl4+7sU+RGOf+up1pqamaOxTH7ei3+waXqFQIP9ZPqwq6+f68n5MDBr6+qrXmZqaoqGvD+7cvavz9/+vUKn+G6//Ks6BSACA9PR0PHv2DDVq1NBYX6NGDdx9TYM6bdo0dOtWMP/cvHnzULduXcTExMDLywtLly5Fhw4d1J2CHh4euH37Nn766ScMGzZMvY/27dtj6tSp6uVz584hLy8Pa9euhaurKwCgX79+CAoKQkpKCipVqgRvb2+0a9cOp0+fxoABA17JpVAooFBo3hL09KkCFSoI3vzAPCeTFAyrtxbaaqy3FtpCKil+yL1cLoVS+QzWNq9u8yjp9V/I3ka2PA0AYFm5isZ6y8pVkC1PL3Hb9EfR2LV0IPLzFaggsESPUatRxU5385LI5JlQKpWwEWp2mNgIrZGQnKyz931bcmnBcbQSah5jK2tbyKQZhoiklTQzE8+USti+dIxtra2QkPz3G+1jbdAeVLURokkD3c/fmSmXQalUQvjS500otEFyYkKx20gl4lfKWwtttH4+37Ws5/WhknVVjfWVrKsgS1byZ+4FpVKJg8E/wsmjEWo6FD//57skf15PK1tr1uHK1lXU9buskL+oEy/dPiQU2iApMbHYbQrqxKvlJXqqE3JJ8W1EZWtb9bEvK6SZT/BMqUQV60oa66tYV0Lc39qnMcnMzkHXL+fjaX4+ypmaYvrQPmhRr/h5pHThRVtr/Uo7XAUySdk6xgDU7VGx1xJa6oT6WqKYbZKTim8PDUVQoyoUKZpthyIlHWbWlWFqLoAyV/tt2m+rpDYiWWsbISmmjRDqr40wsnaNeXXP2DLL5HI803YNn/Rm1/Drtu1AVVsbjU5IXZHL5c+/cwg11tsIhUhMLLvfOYjKEnYg0hsZN24cgoOD1ctZWYVzIjVoUDhyzM7ODgCQmpoKLy8v3LlzB716aU4026pVKyxfvhzPnj1DuXLlAABNmjTByywtLdWdh0BBZ6ZIJEKlSpU01mmbo3HBggWYN09z3p4xE7/G2Enfvvb/9/yZY9i0epF6+ZvZi1+7jSHduXQAJ3+do17uPXb9P96XTXVnfPLtPihyMnE/6hiOBX+LjycH67QT0Rj8efYQtq+fr16e+N1KA6bRr6DQg4i48CdWzZsOQYUKho5TJly9EI6wLXPVy8Omrnvrfe7fGoDHSfcx3i/49YX/gUvnDmLXBn/18rgZq3XyPv9Vf549hB0bCtuIz2f8+9uIiuYC7Az4Ctm5Cly8HYOlO8NRq1oVNKnj+vqN/4HfIo9g69oF6uWvZi3Tyfu8K+dPH8PG1T+pl7+d81MJpYmI/lu2792PU+d+w8/fz+b1JZGRYAciAQCqVq2KcuXKISUlRWN9SkoKatasCX9/f0ybNq3YbYvOB2FiYgKgYCRNaVSs+Oqw9ZfnmTAxMSl2nbb3mjFjBqZMmaKx7nZC8ZPBv6xxs/fg5lFXvZyXV/BgF5lUDBvbwhFGMqkYIpfiRwpZWQlhalpOPXqx6DbCl0Ylvi3X+u1hJ/JRL+fnF+TNzsxAJevq6vXZmRmoVlv7U9wAoFz5ChBWK3hCaA3HeniccANXI7eh40D/Erf7p6ytKsPU1PSVyZYlUhlsX/qF0JB8mraFs3vhr6P5z+uEXJoBa5tq6vVymRgOIv2NwHkTwsqVUc7UFOKXjrFYJn9lVOLLduw/guCwQ1g+5xu4iUp+Sui7UtnKGqamppC+9LAhqVSi9bMjtLF9pbyshPJvy7tRezi4Ff548ux5fciSpcNKWFgfsmQZsHMq+TMHAPu3zsfdqEiMnbkN1rY1331gAPWbtIPIvTDzizqcKdOsw5myDNQSvT6zPlm9qBMSzUnkpVIJbGxLqhPFlNdRnXiljcgvvo3IlIlRu8y1ERVRztQUGTLNc2SGLAtVrStr3c7U1BQONQrOiZ5OtfDwUSq2HDylsw7Ehs1aw9Wjnno5X31uzoCwyLlZLsuAo7Phj3Hj5u/BzfPNriWcnF9zLfFK+/buryXeliIlHYIamqOwBTWqIk+WqdPRh0DJbYTQtvgHHwhtbIppI6Q6ayNeZgztWlHMq3vGltnaygrltF3Dv+Yhh7vCwrEjdD+WzJsJV5GTDlMWsrKyev6dQ6qxXiKVGvShjETGhHMgEgCgQoUKaNy4MU6eLJzsX6lU4uTJk2jZsiWqV68ONzc39etN1alTBxcuXNBYd+HCBXh4eKhHH+qKQCCAlZWVxutNb1+2sKyImva11a/ajs4Q2lTBzWuX1WWys58g9t5tuHvVK3Yf5c3M4OzmiZvXr6jXKZVK3Lp2Ge6exW/zT1UwrwRhNSf1q0pNN1haVUPivcK5iBQ5WXgcfw32pZ3PUKXEs3zdPRnbzMwMHm4u+OvaDfU6pVKJv67fQF0vw38BfMHcoiKq2zmqX3YOrrASVsXdG4UPGMjJzsLD+zfg4ulTwp70z8ysPDxdRRoPQFEqlbhy/TbqeWj/or9932EE7j2AJX5TUcfNWR9RARTUCVc3T1yP+ku9TqlU4nrUFXh6FX8LtYdXXdy49pfGumtXL2st/7YEFhVRtYaT+lW9lhsqW1dFzK0/1GVyc7KQ+OA6nNx8te5HpVJh/9b5uHUlAqNnbIZt9do6yQsU1OFqNR3Vr5q1C+pw9I0/1WVysrMQF3MDzh5lrQ6bwdXNA9evFc7hWlAnrmr9N/b08taoQwAQdVV7HXpbr7QRtUtoI8ra8S1fHl6iWrh0O0a9TqlU4tLtGNR3e/MvdiqVCnnP50DWBQuLiqhh56B+2Tu4wNqmCm5fv6Quk5Odhdh7t+Dq2aCEPemH1muJqMLrguzsJ4iJvg2P111LFLn+UCqVuHntitZtDEX6RxSqtG+hsa5qh/9B8keUzt/bzMwMbm4euHbt5fPGVXhp+cx7eXnjepTmvNBRV69oLf+uGUO7VhTz6p6xZTYzKw8PV2dcuV44H2vBNfxN1PXUfg2/I/QAtu0OxaI5M+DlrpsfnIpjZmYGdzc3REUVzkOsVCoRFXUddbzK1g+nxkylMvlPvP6r2IFIalOmTMHGjRuxdetW3LlzB+PHj8eTJ08wfPjwf7zPqVOn4uTJkwgICMC9e/ewdetWrFq1SutoxrLKxMQEXXv2x75ft+Lyn+eQEBeLtUv9YWNbFU1atFaXmz9zEo4dLHyoS7feA3H62AFEnjyM5MQ4bF7zExS5uWjTsbvO8zZqMxR/HluL2Bsnkf4oGseCv0FF6+pwbVD4oJy9qz5D1NnC2yXPH1iCpJhLkGUkIf1RNM4fWILEmIvwatJDp3k/7tUdB4+fxNGTZxCfmIRlazciN1eBLh0KnpD5w7KV2Lh1u7p8Xl4eYh48RMyDh8jPz0e6OAMxDx4i+dGbzef3LpiYmKBD9yE4vHcjrl06g+T4+9iyYhaENtXg26zwyZ5L547B6cO71Mu5OdlIfHgXiQ8L5hZNT01G4sO7EKfpNvuAHh8gPCISh0+fR1zSIyzesA25CgW6tX8fABCwYgPWBu9Rlw8OO4SNO0MxY8II2FWrigyJFBkSKbJzcnWa84UefT5GxLGDOB1xFEkJ8Vi/ehkUublo36krAODnJT8gOHCDunz3nn1x9cpF7A/9FUmJ8di1fQtiY6LRtXsfveQ1MTFBqy5DcWr/etz+6xQeJ97D7nXTYSWsDu/GhU8r3rhgOH47UViX928NwNXfwjFw/E8QmFdEpjQNmdI05D3V/XE2MTFB2w8/wbHQ9bhx+TQeJdxD0KrvYG1TDQ2aFj4BeKX/KEQe3aFeVuRmIynuLpLiCupwRmoykuLuQpyu2zrcq08/HD96CKcijiExIR7rVi9HriIXHTt9AABYtvhHbNuySV2+R6+P8NeVS9gXuhtJiQnYGbwVsffvoVuP3jrN+YKJiQk6dBuCIyGFbUTgylfbiGVzx+D0kRLaiBT9tBGfdGmNsMg/EX7+Mh4+SsGCraHIUTxFz/cLHt4xe/1OrNxd+BT0zeGn8MfNe0hKzcDDRykIOhKJQ79dQdeWjbS9xTtnYmKCzj0GIXzPZly9GInEuBhsWD4XNrZV0ah5G3W5hX7jEXFot3o5Nycb8Q+iEf8gGgCQnvoI8Q+ikZH2WOd5u/bqj7Ai1xJrlgYUXEu0fF9dLuC7yTgaXvRaYgBOHQtXX0v8smbx82uJbjrNW66iJax8vGDlU/DF2tK5Nqx8vGDuUDBdjef8KfDZslBdPn7DLlg6O8Brwdeo6OkCp3GDYfdxVzz8OVCnOV/o1acvjh89jJMRx5GYEI+1q39GriIXHTp1AVDQRmwtpo0IC92DpMQE7Ajeipj799CtRy9tb6GDzMbVrjEvM7+sf69uOHT8FI6eikRcYjKWrvsFObkKdO1Y0AZ/v2w1NmzbqS6/I2Q/Nm/fjW8njUPN6tX0fn3Zt08vHD52HMcjTiIhIRErVq9Fbm4uPuhUcK22aMky/BK4VV0+Ly8PsbEPEBv7AHn5+UjPECM29gGSHz3SS16isoa3MJPagAEDkJaWhtmzZ+Px48fw9fXF0aNHX3mwSmk0atQIu3fvxuzZsxEQEAA7Ozv4+/trPEDFWPTo+wkUubnYtGohsp9kwdO7AabPW6oxqjHlcTIy5VL1csv3O0Iuk2Lv9o2QSsRwcnHH9HlL9XLbUZOOo5H3NAcRu2ZDkSOHvUtjfDR+E8qbFeaVpSciJ6vwtofsrAwcC/4WT2SpqGBRGVXtPfHR+F/g5NVKp1nbv98KMpkcgTt+hVgihauLCAvnzlTfTpCalg5Tk8JfejLEEoz+8hv18q9h4fg1LBw+9byx/Id5L+9eZz7oPQxPc3MQvC4A2U8y4ebVEJP91sCsSJ1If5yIrMzCYxwfewtL54xWL+8JXAIAaNm2B4ZNCtBZ1o6tmkMqy8SmXWEQS2Vwd3bEkllT1bcwp6RnqKcgAICwY6eQl5+PWYs158kb0b8XRg7Qfafce63bQy6TYmfwFkglYji7uMHPf5H6s5OelqJRJ7y86+Grr/2wI+gXbN+6CXa1auHbWfPhJNLfE2HbdBuJp4ochG6eg9zsTIg8GmH41xs06kNGaiKeFKkPf5ws6Dja8MNnGvvqN/p7NGmt++PcsdcIPFXkYOf6ecjJzoSLV0NM+G6dZh1OScSTIu1aQuwtrJg3Qr0ctq1gXrdmbXri08+/11nW99u0g1wuw46gQEgkEji7uGKO/49F6kQqTE0L60Qd77qY+s1MBG/bjKDAzbCvVQsz/PzhJNLfaNrOvYdBocjB9vWFbcSkWZptRFpKIrLkmm3EsrmFbcTerQVtRIu2PTBsou7aiM7NfSGRP8G60GPIkGXCw9EeK6eNQpXntzA/FkthUuT45iqe4sdtYUgVSyGoYAaRXXXMHzsInZv76ixjcT7sMxSK3BxsWfMDsp9kwaOOD6bOXqFxbk596dz8MOYOFvqNUy/v3Fwwl2Krdt0w+ou5Os3bs+8QKHJzsHHlosJrCf8lxVxLFN4S+L/WBdcSe4I3FV5L+C/R+bWEdeN6aHkySL3svfg7AEDitlBcHzkDArtqsHjemQgAOXFJuNRzLLyXzIBo0lDkJj3GjbGzkH7ivE5zvvB+m3aQFWkjXFxcMdd/AWyeP5AiLS0VJqaFYycK2ojvsH3bFnUb8Z3fPL22EcbWrjEvM7+s/fv/g1Qux+YdeyCWSOHm7ISf5kxXT0OUmp6ukXf/0RPIy8/H7IWac9gOG9gXwwd9rPO8bVu/D5lMhm3BO563Ey743n+uup1ITUvTuB7OEIsxfvKX6uW9oWHYGxqGBvXrYfGPP+g8L1FZY6JS/ZcfQk3/NX/dK3tPZXydiw+rvL5QGdJTdN3QEUrlXp7un3b7LtVDlKEjlFqKucjQEUrlnrj66wuVIRUFzwwdodQcK2l/sm9Z9He2cbXDTZ+cMHSEUrlh3dbQEUrNvLzupvbQhUfeuv0h8F1zuxth6AilpsJ/95Y2+ncQ5qUZOkKpKMpbGjpCqTi5eRo6gl4cuGx816X/RM8mup2OraziLcxERERERERERESkFW9hJiIiIiIiIiKit6Lk/a3/ahyBSERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacU5EImIiIiIiIiI6K2oOAfivxpHIBIREREREREREZFW7EAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiIi04kNUiIiIiIiIiIjorahgYugIpEMcgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFORCJiIiIiIiIiOitKFWGTkC6xBGIREREREREREREpBU7EImIiIiIiIiIiEgrdiASERERERERERGRVuxAJCIiIiIiIiIiIq34EBUiIiIiIiIiInorKj5E5V+NIxCJiIiIiIiIiIhIK3YgEhERERERERERkVa8hZn+U8S5lQwdodSaiCSGjlAqOWbGdYwFyjxDRyiVjAq1DR2h1MxNcgwdoVQyc8oZOkKpNLKNMXSEUrvp1dPQEUplUY8tho5QKvv9jKsdrlEhzdARSi0+297QEUrF7W6EoSOUSoxXR0NHIPrPMbZ2Il1hY+gIpeJk6ABE7wA7EImIiIiIiIiI6K1wDsR/N97CTERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacUORCIiIiIiIiIiItKKD1EhIiIiIiIiIqK3olSZGDoC6RBHIBIREREREREREZFW7EAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiN6KSvXfeOmKWCzGkCFDYGVlBaFQiJEjRyIrK6vE8pMmTYKnpycsLCzg6OiIyZMnQyaTaZQzMTF55bVr165S5+NDVIiIiIiIiIiIiAxoyJAh+Pvvv3HixAnk5eVh+PDhGDNmDHbs2FFs+UePHuHRo0dYvHgxvL29ER8fj3HjxuHRo0fYu3evRtktW7agS5cu6mWhUFjqfOxAJCIiIiIiIiIiegMKhQIKhUJjnUAggEAg+Mf7vHPnDo4ePYpLly6hSZMmAICVK1fiww8/xOLFi2Fvb//KNvXq1UNISIh62dXVFd9//z0++eQT5Ofno3z5wi4/oVCImjVr/uN8AG9hJiIiIiIiIiIieiMLFiyAtbW1xmvBggVvtc/ff/8dQqFQ3XkIAB07doSpqSn+/PPPN96PTCaDlZWVRuchAHz++eeoWrUqmjVrhs2bN0P1D+7F5ghEIiIiIiIiIiKiNzBjxgxMmTJFY93bjD4EgMePH6N69eoa68qXLw9bW1s8fvz4jfaRnp6OgIAAjBkzRmO9v78/2rdvD0tLSxw/fhwTJkxAVlYWJk+eXKqM7EAkIiIiIiIiIqK3ossHjJQlpbldefr06Vi4cGGJZe7cufPWmeRyObp16wZvb2/MnTtX429+fn7q/27YsCGePHmCn376iR2IREREREREREREhjZ16lQMGzasxDIuLi6oWbMmUlNTNdbn5+dDLBa/du7CzMxMdOnSBZUrV0ZYWBjMzMxKLN+8eXMEBARAoVCUauQkOxCJiIiIiIiIiIjesWrVqqFatWqvLdeyZUtIpVJcuXIFjRs3BgCcOnUKSqUSzZs317qdXC7HBx98AIFAgAMHDsDc3Py17xUVFQUbG5tS33bNDkQiIiIiIiIiIiIDqVOnDrp06YLRo0dj3bp1yMvLw8SJEzFw4ED1E5iTk5PRoUMHbNu2Dc2aNYNcLkfnzp2RnZ2N4OBgyOVyyOVyAAUdl+XKlUN4eDhSUlLQokULmJub48SJE/jhhx8wbdq0UmdkByIREREREREREb0V5X9kDkRd2b59OyZOnIgOHTrA1NQUffv2xYoVK9R/z8vLQ3R0NLKzswEAf/31l/oJzW5ubhr7evjwIUQiEczMzLB69Wp89dVXUKlUcHNzw9KlSzF69OhS52MHIhERERERERERkQHZ2tpix44dWv8uEomgKvKkmrZt22osF6dLly7o0qXLO8ln+k72QkRERERERERERP9KHIFIAIAFCxYgNDQUd+/ehYWFBf73v/9h4cKF8PT0NHS0MkOlUuHQr2tw4WQIcp5kwsXLFwNHz0J1Oyet29y/fRkRBwKR+OAOZJI0jPl6OXyatddb3pAdG3H6+H48eZIFjzr1MWL8N6hp71jidscP7cWhsGDIJGI4OrvhszFT4epRV+d5w8PDEbJ3LyQSCZxdXDB+/Hit9S8+Ph5BQUGIuX8fqampGDNmDHr36aPzjC9TqVQI27kekSf2IftJFty9GmDouOklHuPoW3/hcFgQ4mPvQipJx6TpP6Fxi7Z6yXsofD/CQnZDIhHD2dkVY8ZPhIenl9by589FYntQIFJTHsPevhY+GzEaTZpqn8D3XTO2OqFSqXD2wApcPbcHihw5ars2Qtchc2FbQ6R1mytnduCvyJ2QZiQDAKrZu+O9bhPgVr+NzvMeOHgIe0LCIJZI4OLsjM/HjYGXp0exZePiE7AteDvux8QiJTUV40aPxEe9e+k84wu27zWBy9SRsG5UD+b21XG57wSkHDhZ8jatm8F78XRU8nZHbuLfiFmwFknbwvSUuNCIgQ7o3qkGKlmWw427mVi64QGS/87VWt7UFBg2wAGdW1eDrdAM6ZI8HD2dim17knSedc+xM9gefgIZMjncHWtj6vABqOsmKrbsvpPncfjsH3iQ9AgA4OXsiPEDe2stryvh4eHYGxICyfN6/CbtxP2YGHU70ad3b73mValUCP91Lc5HhCInOxOunr4YNOY71CjxWuIKju/fioTn1xLjvlkKXz1dSxjTecPY2gljywsYX2bm1Q9jaieAgnZ43851OBsRhuwnWXDz8sHQsTNQ4zXX70f3bUNc7B3IJOmYOH0xGjVvp7fMRGUFRyASACAyMhKff/45/vjjD5w4cQJ5eXno3Lkznjx5ovcsT58+1ft7vokT+7fgzJEdGDjGD18v2I4KAgusmj8OeU8VWrd5qshBbSdP9B/5nR6TFjgYGoRjB3dj+Phv4f/TJggEFvhxzpd4WkLe38+dwPZffsZHA0dh/rKtcBS548c5X0ImFes0a2RkJDZu2IDBQ4Zg5cqVcHF2ht+sWZBKpcWWV+Tmwq5mTQwfPhw2NjY6zVaSw2HbcOLgr/hs3AzMXrQFAnMLLJk3qcRjrMjNgaOzBz4d+40ekwLnIk/jl43rMHDwp1i2ch1ELi6Y4zcdUqmk2PJ3bt/C4oXfo1PnLli+ch2at2yFHwLmID7uoV7yGmOd+P3YRlw6FYSun8zFsBm7YSawwM6fRyI/T3t9qGxTE+0+moaRM0MxYmYInDxbYM+az5H26L5Os545ew7rN/6CTwYPxJoVy+DiLMJ3fnMg0XZ8FQrUrFkTI4YNha0Bjm+5ipaQX4/Gzcnz3qi8hag2mh5Yj4wzf+J8k154uHIr6q+fj6qd3tNxUk2D+tTCR93ssGRdLMZNv4FchRKL/bxRwcxE6zaD+9RCrw9qYvmmhxg6OQrrg+IxqHct9P2wpk6znvjtMn4OCsHIft2wdcF3cHOqjS8WrIBYJi+2/F+376Fzq6ZY4/cVNvl/g+pVbDH5hxVIFUt1mrOoyMhIbNi4EUMGD8bKlSvh7OKCWX5+WtuJXIUCNe3sDNpOHN8XiNOHd2DwmJn49ocgVBBYYGXAhBKvJRS5Oagt8sDAUTP0mNT4zhvG1k4YW17A+DIzr+4ZWzsBAEfCtiLi0C4MHfsdZi3cCoHAAkv8J762HXYQeeCTMd/qLSdRWcQORAIAHD16FMOGDUPdunXh4+ODwMBAJCQk4MqVK1q3iYuLg4mJCUJDQ9GuXTtYWlrCx8cHv//+u0a5kJAQ1K1bFwKBACKRCEuWLNH4u0gkQkBAAIYOHQorKyuMGTMGgYGBEAqFOHjwIDw9PWFpaYl+/fohOzsbW7duhUgkgo2NDSZPnoxnz57p5JgUpVKpcPpQMLr0HQ2fpu1Qy8kDn038HjJJGq5dOqV1u7oN30ePQZPg27yDzjMWpVKpcPTAr+jdfziatGgNR2d3jP9qDqTidFz546zW7Y7s34l2nXuhTcfuqO3ojBETvoVAYI7IiIM6zRsWFoYuXbuic+fOcHRywsRJkyAQCHD8+PFiy3t4emLkqFFo07YtzMzMdJpNG5VKhePhO9Gz/wg0at4GDiJ3jP5iHiTidPz1Z6TW7Ro0boW+Q8ajcQv9/mq5PywEnbt8iI6du8DR0QkTJn4JgUCAiONHiy0fvj8UjRo3xUf9BsDB0QmfDB0OF1c3HArfr5e8xlYnVCoVLkZsw3vdxsPTtyNq1PZCz+GLkClNRfTVCK3befi0h1v9NrCtIUKVGs5o1+crVBBYIvlBlE7zhoTtR9cunfFBp45wcnTEFxMnQGAuwLHjxWf19HDHmJHD0a5Na4Mc37RjZ3FvznKk7Nd+LItyGjMQOQ+TcOebhci6+wDxa7bjccgxOH8xTLdBX/JxdzsE7U3ChUsSPIjPxg8r7qOKbQW818xW6zZ1PSvjwkUx/rgiweM0BSJ/z8ClKCm83CvrNOvOQyfRq30r9Gj7P7jUtsP0UYNgXqECws/8Xmx5/0kj0K9zG3iIHCCqVRMzx34CpUqFyzfv6jRnUWFhYejapQs6d+4MJ0dHTJo4scR2wtPDA6NGjkTbNm0M1k6cPLQdXfuOhm+zdqgt8sDwSQGQStIQdfG01u3qNXoPvQZNRMPm+hl1+IKxnTeMrZ0wtryA8WVmXt0ztnZCpVLhxMEd6PHxSDRs3hYOIneM+mIepOI0/PXnGa3bNWjcCh8NmYDGLfTbDhsjlcrkP/H6r2IHIhVLJpMBKJjE83VmzpyJadOmISoqCh4eHhg0aBDy8/MBAFeuXEH//v0xcOBA3LhxA3PnzoWfnx8CAwM19rF48WL4+Pjg6tWr8PPzAwBkZ2djxYoV2LVrF44ePYozZ86gT58+OHz4MA4fPoygoCCsX78ee/fufbf/88XISE2GXJoOz/ot1OssKlaGyK0+HkZf0/n7l1ZayiNIJRmo69NUvc6yYiW4etTF/egbxW6Tn5eHhzHRqOdbuI2pqSnq+TTF/bvFb/Mu5OXlIeb+ffj6+mq8r6+vL+7euaOz931baSnJkEky4N2gmXrdi2McG33dgMlelZeXh5iYe/D1baReZ2pqCh/fRrh793ax29y9exs+DRtprGvUuKnW8u+SMdYJaXoSnsjTIKrzP/U6c8vKqOXsg+QHV99oH0rlM9y6eAh5T7NRy6WhrqIiLy8P92Ni0PCl49vQ1wd37uqv80eXhC18kX5Ks+Mr7cR52LTw1VsGuxoCVLGpgCvXpOp1T7Kf4c79TNT11N4ZeCs6E40aWKO2nTkAwFVkifp1KuPPq8WP5ngX8vLzcfdhAprVL7zlzNTUFE3re+HGvQdvtI9cxVM8y38Gq4oVdRVTw4t6XFw7UVbrcfrza4k6DQpv1bOoWBnO7vXx4F7ZupYwtvPGP1EW2onSMLa8gPFlZt7SMcZ2Qn397lPYDltWrAwX93pl7vqdqCziHIj0CqVSiS+//BKtWrVCvXr1Xlt+2rRp6NatGwBg3rx5qFu3LmJiYuDl5YWlS5eiQ4cO6k5BDw8P3L59Gz/99BOGDRum3kf79u0xdepU9fK5c+eQl5eHtWvXwtXVFQDQr18/BAUFISUlBZUqVYK3tzfatWuH06dPY8CAAa/kUigUUCg0h6I/fQpUqCAo9TGRS9MBAFbCKhrrKwurQC7NKPX+dE0qKchkLdTsALYW2qr/9rJMuRRK5bNXtrES2uBRcpxOcgKAXC6HUql85XYyoY0NEpN0P+fXPyWTvjjGmnXCyroKZFqOsaHI5TIolUoIXz7GQhskJyYWu41UIoFQ+HJ5ISQS3d7ODhhnnXgiTwMAVKysWR8qWlVBljy9xG1Tk6IRuHAg8vMUqCCwRL/xq1HN3k1nWdXHVyjUWG8jFCIxMVln76tPghpVoUjRPO6KlHSYWVeGqbkAylzttym9K7bCCgAAsSxPY71Emgdbmwpat9semgxLi3IIWtkQSqUKpqYm2LQjARFnS65Hb0Mqz8IzpRK21lYa622trRCfnPJG+1i9IwxVbazRtL72ea/eJW3thI1QiCQt7ZqhySVariWsbcvctYSxnTf+ibLQTpSGseUFjC8z85aOMbYTL9paK+uXv+/Yqq/tiUg7diDSKz7//HPcvHkT58+fV68bN24cgoOD1ctZWVnq/27QoIH6v+3s7AAAqamp8PLywp07d9Crl+ZE+61atcLy5cvx7NkzlCtXDgDQpEmTV3JYWlqqOw8BoEaNGhCJRKhUqZLGutTU1GL/PxYsWIB58zTnEPl03EwMHe+n/X/+uYvnDmHnen/18oQZq1+7jSFdOHMUv6xZqF7+evaSEkrTP/Fb5BFsXbtAvfzVrGUGTEOGdvPPAzgcPEe9PGDi+n+8ryo1nTHKbx8UOZm4e+UYwrd8i0+mBeu0E5HevY6tq2Lq2MJz1vTv/9lo2Xb/q4JOrashYNk9xCXmwM25IiaOECFd/BTHzqS9q7jv1Nb9x3Dit8tYM/srCCoYZlqJsujPs4ewY8N89fLnM1YaMA0R0X/P75GHsW3dD+rlL2f+bMA0RMaPHYikYeLEiTh48CDOnj2L2rVrq9f7+/tj2rRpxW5TdB4hE5OC+QCUSmWp3rdiMbc8vTw/kYmJSbHrtL3XjBkzMGXKFI115++9WZ4GTdpC5FZfvZyfX/BgF7k0A9Y21dTrM6UZqC0y/JOqGzV7X+NJyfn5BSNeZFIxbGyrqtfLpGI4ubgXu4/KVkKYmpZ75YEpcqnklVF275KVlRVMTU0hkWjenieVSAzysAZtGjZrDVePwhG5+XkFdUImzYCwyDGWyzLg6Fz8k2wNxcrKGqamppC+fIylEghtiz/GQhubVybAlkqlsLF5/bQGb8sY6oS7T3uMcvZRLz973kY8ycxAZWF19fon8gzUcCh5RFa58hVgW73gCax2TvXwKO4GLp3chg8/9S9xu39KfXxfetCERCqFrY1QJ++pb4qUdAhqVNVYJ6hRFXmyTJ2NyLhwUYw79wp/XDN7/qAUW2sziCWFoxBthGaIeaj9AWXjPxNhe2gyTl0oGAnxICEbNaoJMOSjWjrrQBRaVUI5U9NXHpgilslhK7TSslWB4PAT2Lb/GFbN/ALuTrVLLPsuaWsnJFIpbN5g+hV98GnaFs7ub3AtIROjtojnDX0zRDvxNowtL2B8mZm3dIyhnfBt1gYuHkXa4efX73KZGELbwnZYLhWXuet3Y6VSGToB6RLnQCQABRPKTpw4EWFhYTh16hScnZ01/l69enW4ubmpX2+qTp06uHDhgsa6CxcuwMPDQz36UFcEAgGsrKw0Xm96+7K5RUVUt3NUv+xqu8JKWBXRN/9Ul8nJzkJczA04e/qUsCf9sLCsiJr2DupXLQdnCG2q4Na1S+oy2dlPEHvvFtw96xe7j/JmZnB289TYRqlU4ub1S3D3Kn6bd8HMzAxu7u64FhWl8b5RUVHwqlNHZ+9bWhYWFVHDzkH9sndwgbVNFdy+Xni8crKzEHvvFlw9G5SwJ/0zMzODm5sHrl37S71OqVTietRVeHl5F7uNl5c3rkdpzt0XdfWK1vLvkjHUCYF5JdhWd1K/qtq5oaJVNcTdKZyLSJGTheSH10o9n6FKpVR3SOqCmZkZ3N3cEBVVOOdawfG9jjpe+rn9VNekf0ShSvsWGuuqdvgfJH9E6ew9c3KVSH6cq37FJeYgQ/IUjRoI1WUsLcqhjntl3IrO1LofgcAUqpeuvl/cyqwrZuXLw8vZEZduRhd5TyUu3YxGfQ8XrdsFHTiOzaGHsXzGRNRxddJZvuKo6/G1l+txVJmpx9quJe7euKguk5OdhYf3b8DFw/DXEkUZ23njnzBEO/E2jC0vYHyZmbd0jKGd0H79rtkOP7h/s8xdvxOVRexAJAAFty0HBwdjx44dqFy5Mh4/fozHjx8jJyfnrfY7depUnDx5EgEBAbh37x62bt2KVatWaR3NWFaZmJigXbdPcDRkA65fOo3k+HvYtmomrG2qwadp4dO4fp43CmeO7FQv5+ZkI/HhXSQ+LJjQPSM1GYkP70Kc9rfO83bpOQD7dgfiyp9nkRAXg3XL5kFoWxWNW7RWl/th1kQcP7hHvdy11yCcPn4AZ08eQnLiQ2xZuwiK3Fy06dBNp3n79OmDo0ePIuLECSQkJGD1qlVQKBTo1KkTgIKH7GzZskVdPi8vD7GxsYiNjUV+fj4yMjIQGxuLR48e6TRnUSYmJujcYxDC92zG1YuRSIyLwYblc2FjWxWNmrdRl1voNx4Rh3arl3NzshH/IBrxDwq+qKenPkL8g2hkpD3Wad5effri+NHDOBlxHIkJ8Vi7+mfkKnLRoVMXAMCyxT9i65ZN6vI9en2Ev65cQljoHiQlJmBH8FbE3L+Hbj16aXuLd8rY6oSJiQmadRyKC4fX4l7USaQmRePA5m9QWVgdng07qsttX/oZLp0qnA7idOgSJNy7BGl6ElKTonE6dAni711E3eY9dJq3b59eOHzsOI5HnERCQiJWrF6L3NxcfNCp4Inxi5Yswy+BW9XlC47vA8TGPkBefj7SM8SIjX2AZD0d33IVLWHl4wUrn4KOIUvn2rDy8YK5Q8G0GZ7zp8BnS+E0DvEbdsHS2QFeC75GRU8XOI0bDLuPu+Lhz4F6yfvCnoN/Y2i/2vhfUxu4OFriu8luyBA/xfmLhSO9l871Rp+uNdXLv12S4JN+tdGisQ1qVhPg/ea26N/DHuf+1O38UIO6dcD+U+dxKPJ3PEz+Gwt/2YlchQLd27QEAMxdHYjVO/epy2/bfwzrd4dj1rhPYV+tCjKkMmRIZcjOzdVpzqJetBMnIiKQkJCAVatXl/l2okO3ITgSshHXLp1Bcvx9BK6cBaFNNfg2a6cut2zuGJw+sku9/PK1RHqKfq4ljO28YWzthLHlNcbMzKt7xtZOmJiYoFP3wTi45xdcvRiJpPj72PTzbAhtq6FR87bqcj/NHoeTh39VL+fmZCPhYTQSHj6/fk95hISH0cjQcTtMVNbwFmYCAKxduxYA0LZtW431W7Zs0XjYSWk1atQIu3fvxuzZsxEQEAA7Ozv4+/u/1T4NpVOv4Xiam4Md6/2Rk50JV6+G+HzmWpgVGdWYnpKEJ5mFw/ITHtzCz3NHqpdDtv4EAGjepieGTiycF0kXun/0KRS5ufhl9Y/IfpIFD+8G+Hbuco1RmCmPk5Apl6qXW77fCZkyKfbu2AiZJANOLu74du4yWNvo7hZmAGjTpg3kMhmCgoMhEYvh4uoK/4AA9eT4aampMDUpHH0jFosxaeJE9XJISAhCQkJQv359LFy0SKdZi/qwz1AocnOwZc0PBce4jg+mzl6hcYxTHydrHOOHMXew0G+cennn5oK5FFu164bRX8zVWdb327SDTC7DjqBASCQSuLi4Yq7/gsJjnJYKE9PC35TqeNfF1G++w/ZtWxAUuBn2tWrhO795cBI5a3uLd8oY60TLD0YjT5GDw8GzkZsth4NbYwz8YhPKmxXWB0laInKyCtuIJ5kZOLDlW2TJUiGwqIzqtTwx6Itf4OLdSqdZ27Z+HzKZDNuCdzyvDy743n+u+vimpqWpp6QAgAyxGOMnf6le3hsahr2hYWhQvx4W//gDdM26cT20PBmkXvZe/B0AIHFbKK6PnAGBXTVYPP+CBQA5cUm41HMsvJfMgGjSUOQmPcaNsbOQfuL8K/vWpZ1hybAQmGLaOFdUqlgeN+7I8XXAbTzNKxxhaF/THNZWhdNz/LzpAUYOdsRXY1xgY1Ue6ZI8HDj+GFv36PYBQp3+1wRSeRY27DmIDKkcHk61sXz6JFR5fgtzSrpY4zMXeuIs8vLzMWPZRo39jOrbDaM/7q7TrC+0adMGMrkcwUFBEEskcHVxQYC/v2Y9LtKuicViTJw0Sb1ctJ1YtHDhK/vXhc69h0GhyMH29QHIfpIJN6+GmDRrjca1RFpKIrLkhe1EfOwtLJs7Wr28d2vBPMct2vbAsIkBOstqbOcNY2snjC2vMWZmXt0ztnYCALr2+QyK3BxsXfs9sp9kwr2OL6b4rdRoh1Nf+o4UF3sbi/zGqpd3bVkKAGjVrjtGTtacc5/o38xE9fJ9MkT/YhHXy978Ja8jFGQbOkKp2JhJXl+oDElVVH19oTLEtoLM0BFKrbxJ3usLlSEXErXfslkWtakV/fpCZczNOj0NHaFUFvXY8vpCZch+P/2NAnwXxFb6vf35XYjPtjd0hFKxt9TdU7x1Icar4+sLEdE75XY3wtARSiVdUTbmxX5Trbwrvb7Qv8C2SEMn0I+hbV5f5t+IIxCJiIiIiIiIiOitKDk87V+NcyASERERERERERGRVuxAJCIiIiIiIiIiIq3YgUhERERERERERERacQ5EIiIiIiIiIiJ6K3xE778bRyASERERERERERGRVuxAJCIiIiIiIiIiIq3YgUhERERERERERERasQORiIiIiIiIiIiItOJDVIiIiIiIiIiI6K3wISr/bhyBSERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacU5EImIiIiIiIiI6K0oOQfivxpHIBIREREREREREZFW7EAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiIi04kNUiIiIiIiIiIjoraj4EJV/NY5AJCIiIiIiIiIiIq3YgUhERERERERERERasQORiIiIiIiIiIiItOIciPSfYoxzMpiYGFfocsp8Q0coFRVMDB2hVPJVxtdslzfJM3SEUjE1Na7PnLHVYdI9ZTkzQ0f41zMxso8d2wkieh1jayfyVRwLVRYplYZOQLrETx0RERERERERERFpxQ5EIiIiIiIiIiIi0oodiERERERERERERKQVOxCJiIiIiIiIiIhIK+ObjZ+IiIiIiIiIiMoUY3xoKb05jkAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiIi04hyIRERERERERET0VjgH4r8bRyASERERERERERGRVuxAJCIiIiIiIiIiIq3YgUhERERERERERERasQORiIiIiIiIiIiItOJDVIiIiIiIiIiI6K0o+RCVfzWOQCQiIiIiIiIiIiKt2IFIREREREREREREWrEDkYiIiIiIiIiIiLTiHIhERERERERERPRWVKr/yiSIJoYOYBAcgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFORAJALB27VqsXbsWcXFxAIC6deti9uzZ6Nq1q2GDlSEqlQqHdq/BbydDkPMkEy5evhgwahaq2zlp3Sbm9mVEHAhEwsM7kEvSMHracvg0a6+3vHu3b8Tp4wfw5EkmPOo0wIgJ38DO3qHE7Y4f2ouDodshk4jh6OyGz8ZOgZtHXZ3nPXDwEPaGhEIskcDF2RkTxo2Fl6dHsWXj4uOxLXg7YmJikZKairGjR+Gj3r10nvFlKpUK+3auR+SJMGQ/yYK7lw8+HTcdNe0dtW4TfesvHAkLQnzsHUgl6Zg0fTEatWirl7xHDoZhX8guSCViiJzdMGrcZLh71tFa/rdzZ7Az+BekpjyGnX1tfDp8LBo3baGXrAAQHh6OkL17IZFI4OzigvHjx8PT07PYsvHx8QgKCkLM/ftITU3FmDFj0LtPH71lBQrqQ+T+lbh6bg9ys+VwcGuErp/MQZUaIq3bXD69E1fO7IQ0IxkAUM3eDa17fA63+q11nteYPnO27zWBy9SRsG5UD+b21XG57wSkHDhZ8jatm8F78XRU8nZHbuLfiFmwFknbwvSUuNCIgQ7o3qkGKlmWw427mVi64QGS/87VWt7UFBg2wAGdW1eDrdAM6ZI8HD2dim17knSede/RU9h+4BjEUhncnBwwZcQg1HV3Kbbs/oizOBL5Ox4kFtRdTxcnjBvUR2t5XQkPD8fekBBIntfjN2kn7sfEqNuJPr176zWvSqVC+K61OBcRipzsTLh6+mLwmO9Qw177tcS9W1dwfP9WJDy4A5kkDeO/WQrf5vq5ljgUvg/7QnZDIhFD5OyKMeMnwcPTS2v5C+cisT1oC1JTHsPevjaGjhiNJk2b6yWrsbUTxpYXML7MzKsfxtROAAXt8IFda3HuRFhBO+zlgyFv1A5vQ3zsbcgk6Rj/7VI0bN5Ob5mJygqOQCQAQO3atfHjjz/iypUruHz5Mtq3b49evXrh1q1bes3x9OlTvb5faUTs34LIIzswcLQfpv2wHRUEFlj9/TjkPVVo3UahyEEtkScGjPxOj0kLhIcE49jBPRgx4RsELP4F5uYW+HH2l3haQt7fz0UgeNMKfDRoJL5fHghHZ3f8OPsryKRinWY9c/YcNmzchCGDB2H1iuVwcXbGTL/ZkEqlxZZXKBSwq1kTI4Z9BlsbG51mK8nhsK04cXAXho6bAb9Fgahgbo6l8yaVXCdyc+Dg7I5Pxn6rx6TA+bOnsGXjGvQfPAyLV2yEyNkV/n5fQyqVFFv+7u2bWLrIHx06d8OSFZvQrOV7WDh/FuLjHuglb2RkJDZu2IDBQ4Zg5cqVcHF2ht+sWdrrRG4u7GrWxPDhw2FjoDrx29FNuHgyCB9+MhcjvtsNM4EFdiwbhfw87fXByqYG2vedilF+IRg1ay9EXi3w66rPkZp8X6dZje0zV66iJeTXo3Fz8rw3Km8hqo2mB9Yj48yfON+kFx6u3Ir66+ejaqf3dJxU06A+tfBRNzssWReLcdNvIFehxGI/b1Qw0z7x9uA+tdDrg5pYvukhhk6OwvqgeAzqXQt9P6yp06wRFy5ixdbdGPlxDwQunA13Jwd89f1yiGXyYsv/dSsand5rhlVzpmHD9zNQo4oNvpy/DKkZxbcpuhAZGYkNGzdiyODBWLlyJZxdXDDLz09rPc5VKFDTzs6g7cSxfYE4dXgHhoydiekLgiAwt8CKgAklnjeeKnJQW+SBQaNn6DEpcC7yNDZvXIcBg4di6cp1cHZxxVy/b7WeN+7cvoXFC+ejY+euWLZyPZq3bIUFAbMRH/dQL3mNrZ0wtryA8WVmXt0ztnYCAI6FBeLUoZ34ZNx3mPHjNggEFvg54PPXfqerLfLAYD23w8ZIpfpvvP6r2IFIAIAePXrgww8/hLu7Ozw8PPD999+jUqVK+OOPP4otHxcXBxMTE4SGhqJdu3awtLSEj48Pfv/9d41yISEhqFu3LgQCAUQiEZYsWaLxd5FIhICAAAwdOhRWVlYYM2YMAgMDIRQKcfDgQXh6esLS0hL9+vVDdnY2tm7dCpFIBBsbG0yePBnPnj3T2TEpSqVS4fThYHzw0Wg0aNoOtZw8MHTi95BJ0nDt0imt29Vt+D56DJwEn2Yd9JLzBZVKhaMHfkXv/sPQpEVrODq7YfxXsyEVp+PyH2e1bnd43060+6An2nbsjtqOzhg54RsIBAJEnjio07yhYfvQpcsH+KBTRzg5OmLyxAkQmAtw7PiJYst7enhg9MgRaNumNczMzHSaTRuVSoUT4TvRo/9INGreFg4id4z+wh8ScRr++vOM1u0aNG6FvkMmoHEL/f5qGR62B526dEOHTl3h4CjC2IlTIDA3x6njh4stf/BACBo2bobefQeitqMTBn86Es6u7jhyUD+/aoeFhaFL167o3LkzHJ2cMHHSJAgEAhw/frzY8h6enhg5ahTatG1rkDqhUqlwMWIb3u8+Dp4NO6CGgyd6jViITGkq7l6N0Lqdh297uDdogyo1RKhS0xntP/oKFQSWSH5wTad5je0zl3bsLO7NWY6U/dqPZVFOYwYi52ES7nyzEFl3HyB+zXY8DjkG5y+G6TboSz7uboegvUm4cEmCB/HZ+GHFfVSxrYD3mtlq3aauZ2VcuCjGH1ckeJymQOTvGbgUJYWXe2WdZt158AR6dngf3du9B2cHe3wz5hMIKlTAwVPniy0/74vR6PtBO3g4O0JUyw4zxg2DUqXC5Zt3dJqzqLCwMHTt0gWdO3eGk6MjJk2cWGI74enhgVEjR6JtmzYGaydOHtyOD/uNhm+zdqgt8sDwSQGQStIQdfG01u3qNXoPvQdPREM9jTp8YX/YXnTu8iE6du4CR0cRxk/8EgKBABHHjxZbPnx/KBo1boqP+g2Ag6MThgwdDhdXdxwK36eXvMbWThhbXsD4MjOv7hlbO6FSqRBxcAe6FW2HJwdAKk7D1RLa4fqN3kPvwZ+jYQv9tsNEZQ07EOkVz549w65du/DkyRO0bNmyxLIzZ87EtGnTEBUVBQ8PDwwaNAj5+fkAgCtXrqB///4YOHAgbty4gblz58LPzw+BgYEa+1i8eDF8fHxw9epV+Pn5AQCys7OxYsUK7Nq1C0ePHsWZM2fQp08fHD58GIcPH0ZQUBDWr1+PvXv36uQYvCwjNRlyaTq8GhTevmlhWRkit/qIu6fbL/r/RGrKI0glGajn21S9zrJiJbh6eOP+3ZvFbpOfl4eHMdGo51O4jampKer5NsX96OK3eRfy8vJwPyYGjXx9NN63oa8vbt+N1tn7vq20lGTIJBmo26CZel3BMa6HmOgbBkz2qry8PMTGRKOBb2P1OlNTUzTwbYzou7eL3ebe3Vsa5QGgYaNmWsu/S3l5eYi5fx++vr7qdaampvD19cXdO/rrnCgNaXoSsmRpcK7zP/U6c8vKqOXSAMmxUW+0D6XyGW5ePIS8p9mo7eqrm6Aw3s9caQhb+CL9lOYPWmknzsOmha/eMtjVEKCKTQVcuSZVr3uS/Qx37meirqf2zsBb0Zlo1MAate3MAQCuIkvUr1MZf17V3ci+vLx8RD+IR9MG3up1pqamaNqgDm7ee7NRx7lPnyI//xmsKlXUVUwNL+pxce3Enbt39ZKhtNJTCq4l6jQovFXPomJlOLvXx4PosnUtUXDeuAcf30bqdaampvDxbaT1PBB99zZ8Gr503mjcRC/njX+iLLQTpWFseQHjy8y8pWOM7YS6HfYpbIctK1aGs3s9PIi+rpcMRMaMcyCS2o0bN9CyZUvk5uaiUqVKCAsLg7e3d4nbTJs2Dd26dQMAzJs3D3Xr1kVMTAy8vLywdOlSdOjQQd0p6OHhgdu3b+Onn37CsGHD1Pto3749pk6dql4+d+4c8vLysHbtWri6ugIA+vXrh6CgIKSkpKBSpUrw9vZGu3btcPr0aQwYMKDYbAqFAgqF5lD0p0+BChUEpT42cmk6AKCydRWN9ZWtq0AuzSj1/nRNJinIZC3UHOViLbRV/+1lmXIplMpnsLZ5dZtHSfG6CQpALpdDqVRCKNS8ncxGKERiou7n/PqnZM//3a2EmnXCylr7MTaUTLns+THW/LcVCm2QnJhQ7DZSifiV8tZCG0glur2dHSisEy/fYii0sUFiUtmsE1myNABARSvN+lDRqiqyZOklbpuSFI0tCwYhP0+BCgJLfDxhFarZu+ksq7F+5kpDUKMqFCmax12Rkg4z68owNRdAmav9NqV3xVZYAQAgluVprJdI82BrU0HrdttDk2FpUQ5BKxtCqVTB1NQEm3YkIOJsyfXobUgzs/BMqYSttZXGeltrK8QnP36jfawJ3otqtkI0rV/ydcO7oq2dsBEKkZSYqJcMpfXiWqLY80YZu5aQvzhvvNwOC220Ht+C88ar5SV6OG/8E2WhnSgNY8sLGF9m5i0dY2wnCr/TaV7jWgmrQF7Grt+JyiJ2IJKap6cnoqKiIJPJsHfvXnz22WeIjIzEihUrEBwcrC6XlZWl/u8GDRqo/9vOzg4AkJqaCi8vL9y5cwe9emlOst+qVSssX74cz549Q7ly5QAATZo0eSWLpaWluvMQAGrUqAGRSIRKlSpprEtNTdX6/7NgwQLMm6c5h8gnY2di6Hi/Eo8DAFw6dwg7N/irl8fPWP3abQzp/Jlj+GX1QvXyN7MXGzDNv9PvkUewde0P6uUvZy03XBgyuBt/hONQ0Bz18qDJ6/7xvqrWdMaY2WFQ5GTi9pVjOLB5OoZ+E6TTTkR69zq2roqpYwvPW9O//2ejZdv9rwo6ta6GgGX3EJeYAzfnipg4QoR08VMcO5P2ruK+U9vCDuPEhYtYM+9rCCoYZlqJsujPs4ewff189fLE71YaMA0R0X/Pn5GHEVy0HZ65woBp/huUSkMnIF1iByKpVahQAW5uBV9YGzdujEuXLuHnn39GQEAApk2bVuw2RecQMjEpmBReWcpWo2LFV293enluIhMTk2LXlfReM2bMwJQpUzTWnXvDu/PqN2kLkXt99XJ+XsHDXTJlGbC2qaZenynLQG1R8U971KfGzd6Dm0fhqI/8vIIRLzKpGDa2VdXrZVIxnFyKf8pqZSshTE3LQfbSL4AyqRhCmyrFbvMuWFlZwdTU9JXJliVSqcEmuS+Ob7PWcPGop15+USfk0gwIixxjuUwMB+fij7GhVLayfn6MNf9tpVIJhDbFz8UmtLF9pbyshPLv0os6IZFo1gmpRGLQh+YU5eHbDrWcC39Ayc8vqA9P5BmoLKyuXv9Eno6aDtqfdA0A5cpXgG2Ngif/2Ynq4e+4m7gYsQ3dhvqXuN0/ZSyfubehSEmHoEZVjXWCGlWRJ8vU2YiMCxfFuHOv8Ac2s+cPSrG1NoNYUjgK0UZohpiHT7TuZ/xnImwPTcapCwUjIR4kZKNGNQGGfFRLZx2IwsqVUM7U9JUHpohlclQRWpe47fYDxxC07whWzJ4KNycHneQrjrZ2QiKVwsZW9+3Um/Bp2hbOxVxLyKWa1xJymRgOorJ13rB6cd54uR2WSrQe34LzRjHl9XDe+CcM0U68DWPLCxhfZuYtHWNoJ3yatYGzxvV7wfk4UyaG0LZIOyzNgIOz4b/TEZV1nAORtFIqlVAoFKhevTrc3NzUrzdVp04dXLhwQWPdhQsX4OHhoR59qEsCgQBWVlYarze9fdncoiKq1XRUv2rWdoWVsCqib/ypLpOTnYW4mBsQefiUsCf9sLCsiJr2DupXLUdnCG2q4Na1y+oy2dlPEHvvNty96hW7j/JmZnB288St64XbKJVK3Lp2Ge6exW/zLpiZmcHdzQ1XowrnHVEqlYiKugZvr7JzIrewqIgadg7ql72DC6xtquD29UvqMjnZWYi9dxNunvVL2JP+mZmZwdXNE9ej/lKvUyqVuB51BZ5exd9u6OFVFzeu/aWx7trVy1rLv0tmZmZwc3fHtago9bqCOhEFrzold8bpi8C8EmxrOKlf1ezdUMm6Gh7eKZyLSJGTheQH11GrlPMZqlRKdYekLhjLZ+5tSP+IQpX2LTTWVe3wP0j+iNLZe+bkKpH8OFf9ikvMQYbkKRo1EKrLWFqUQx33yrgVnal1PwKBKVQvPd7vxa3MumJmVh6eLk64fKNw1KRSqcTlG3dRz8NF63bB+49gy96DWDbzS9RxFeksX3Fe1OOoa4VzB75oJ+p4eek1izbmFhVR3c5R/bJzKLiWuHvjorpMTnYWHt6/ARdPw19LFFVw3vDA9WtX1esKzhtXtZ4HPL28Nc4zABB1Vft5xtAM0U68DWPLCxhfZuYtHWNoJ15th11gJayKO9c1v9M9vH8TLp4NStgTEQHsQKTnZsyYgbNnzyIuLg43btzAjBkzcObMGQwZMuQf73Pq1Kk4efIkAgICcO/ePWzduhWrVq3SOpqxLDMxMUG7Dz/B0dANuH75NJIT7iFo1UxY21SDT9PCp3Gt8B+FyKM71cuK3Gwkxd1FUlzBhO4ZqclIirsLcfrfOs/bpecAhP0aiCt/nkNCXAzWLvWH0LYqmrRorS73/cyJOHZwj3r5w96DcPrYAZw9eQjJiXHYvGYRcnNz0aZjd53m/ahPbxw5dgwnIk4iISERK1evQW5uLjp36ggAWLRkKTYHblWXz8vLQ2zsA8TGPkBefj4yMjIQG/sAyY8e6TRnUSYmJujUYxDC9/yCqxcjkRgXg43L58DGthoaNW+rLrfIbzwiDv2qXs7NyUbCg2gkPCgYDpuWmoyEB9HISHuzecb+qR59PkbEsYM4HXEUSQnxWL96GRS5uWjfqSsA4OclPyA4cIO6fPeefXH1ykXsD/0VSYnx2LV9C2JjotG1ex+d5nyhT58+OHr0KCJOnEBCQgJWr1oFhUKBTp06ASh4+NKWLVvU5QvqRCxiY2ORr64TsXikpzphYmKCZh2H4vyhdYiOOoWUpGjs++VbVBZWh1fDjupyQYuH4dKpwikhToYsQfy9S5CmJyElKRonQ5YgLvoi6jfvodO8xvaZK1fRElY+XrDyKegYsnSuDSsfL5g7FEyd4Tl/Cny2FE7jEL9hFyydHeC14GtU9HSB07jBsPu4Kx7+HKiXvC/sOfg3hvarjf81tYGLoyW+m+yGDPFTnL9YOLp36Vxv9OlaU7382yUJPulXGy0a26BmNQHeb26L/j3sce5P3c4PNah7Jxw4eRaHzlxAXNIjLNoYjFyFAt3btQIAzFv5C9ZsD1GXD9p3BBt27cfMCcNgV60qMiQyZEhkyM7J1WnOol60EyciIpCQkIBVq1eX+XaiQ/chOLx3I65dOoPk+PvYsmIWhDbV4Nusnbrc0rljcPrwLvVybk42Eh/eReLDgmuJ9NRkJD68C3Gabq8levXph+NHD+FUxDEkJsRj3erlyFXkomOnDwAAyxb/iG1bNqnL9+j1Ef66cgn7QncjKTEBO4O3Ivb+PXTr0VunOV8wtnbC2PIaY2bm1T1jaydMTEzQsftgHN67CVEXzyAp/j42r/CD0LYaGhZth+eMxalX2uFoJD4suH4vaIejkaHjdpiorOEtzASgYN7CoUOH4u+//4a1tTUaNGiAY8eOqS/C/4lGjRph9+7dmD17NgICAmBnZwd/f3+NB6gYk469hkOhyMHO9f7Iyc6Eq1dDTPhuLcyKjGpMT0lClrxwWH587C2smDdSvRy67ScAQPM2PfHp54XzcehCj76fQJGbg02rfkT2kyx4eDfA9HnLNEZhpjxORqZcpl5u+X5HyGUS7N2+CVJJBpxc3DF93rJXHqzyrrVt/T5kMhm2BW+HRCKBi4sLvvefp76dMi0tDaYmhaNvMsRiTJj8hXp5b2gY9oaGoUH9evjpxwU6zVrUh30+w9PcXASu+QHZTzLhUccXU2av0KgTqY+TkCWXqpfjYm5jod849fKuzcsAAK3adceoL+bqLOt7rdtDLpNiZ/AWSCViOLu4wc9/kfqW5PS0FI1j7OVdD1997YcdQb9g+9ZNsKtVC9/Omg8nkfbRSO9SmzZtIJfJEBQcDIlYDBdXV/gHBBTWidRUjbxisRiTJk5UL4eEhCAkJAT169fHwkWL9JL5f11GIU+Rg0PbZiM3Ww5H98YY/OVGlDcrrA+StARkZxa2EdmZYuz/5VtkydIgsKiMGrU9MeTLTXCp20qnWY3tM2fduB5angxSL3sv/g4AkLgtFNdHzoDArhosnn/BAoCcuCRc6jkW3ktmQDRpKHKTHuPG2FlIP3Fe51mL2hmWDAuBKaaNc0WliuVx444cXwfcxtO8whGG9jXNYW1VOEXHz5seYORgR3w1xgU2VuWRLsnDgeOPsXWPbh9w07FVM0jkWdj0635kSOVwFzlg2cwvYfv8FuaU9AyNOhF6/Azy8vPx3ZK1GvsZ+XEPjOqvOf+xrrRp0wYyuRzBQUEQSyRwdXFBgL+/uh6npqXBxLTwt3KxWIyJkyapl4u2E4sWLnxl/7rwQe9heJqbg+B1Ach+kgk3r4aY7LdG81ricSKyMjWvJZbOGa1e3hO4BADQsm0PDJsUoLOs77dpB7lchh1BgZBIJHB2ccUc/x+LnDdSNUbG1vGui6nfzETwts0ICtwM+1q1MMPPH04iZ51lLMrY2gljy2uMmZlX94ytnQCAD/oMg0KRg+B18wva4Tq++MJvtUY7nPY4UeP6PT72NpbMLtIOb3neDrfrgeGTdDPlDFFZZKJ6+T4Zon+xE9fK3vwlr2NroX2urLKoiqnunhSqC4/y7F5fqAyxNst6faEyxtw0x9ARSuX3ZP1dxL4L79ndN3SEUrtVR7cjLN+1RT22vL5QGRI295mhI5SKtKK9oSOUWkKOcWWuaWFcTxeN9epg6AhE/zmud08aOkKppOSWzflVtWlT19LQEfRi+YH/RvfSlz11N7VMWcZbmImIiIiIiIiIiEgrdiASERERERERERGRVuxAJCIiIiIiIiIiIq34EBUiIiIiIiIiInoryv/GFIj/WRyBSERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacUORCIiIiIiIiIiItKKD1EhIiIiIiIiIqK3ouJDVP7VOAKRiIiIiIiIiIiItGIHIhEREREREREREWnFDkQiIiIiIiIiIiLSinMgEhERERERERHRW1Ep/yuTIJoYOoBBcAQiERERERERERERacUORCIiIiIiIiIiItKKHYhERERERERERESkFTsQiYiIiIiIiIiISCs+RIWIiIiIiIiIiN7Kf+YZKv9RHIFIREREREREREREWrEDkYiIiIiIiIiIiLRiByIRERERERERERFpxTkQiYiIiIiIiIjorag4B+K/GjsQ6T9FBRNDRyg1E7AVJtInUyNrJlQmvJlA10yMrVKYGFleI2RiwnMzEZEhqVQ81xHpG791EBERERERERERkVbsQCQiIiIiIiIiIiKt2IFIREREREREREREWnEORCIiIiIiIiIieitKJecI/jfjCEQiIiIiIiIiIiLSih2IREREREREREREpBU7EImIiIiIiIiIiEgrzoFIRERERERERERvRcUpEP/VOAKRiIiIiIiIiIiItGIHIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBUfokJERERERERERG+FD1H5d+MIRCIiIiIiIiIiItKKHYhERERERERERESkFTsQiYiIiIiIiIiISCvOgUhERERERERERG9FyUkQ/9U4ApGIiIiIiIiIiIi0YgciERERERERERERacUORCIiIiIiIiIiItKKHYhERERERERERESkFR+iQgCAuXPnYt68eRrrPD09cffuXQMlKntUKhUO716N306GIOdJJpy9fDFglB+q2zlp3Sbm9mWcPBCIhIe3IZekYdS05fBp1kFvefdu34RTxw/gyZNMeNZpgBETvoadvUOJ2x0/FILw0O2QScRwdHbDsLFT4ObhrfO8Bw4ewt6QUIglErg4O2PCuLHw8vQotmxcfDy2BW9HTEwsUlJTMXb0KHzUu5fOM75MpVJh3871iDwRhuwnWXD38sGn46ajpr2j1m2ib/2FI2FBiI+9A6kkHZOmL0ajFm31kvfIwTDsC9kFqUQMkbMbRo2bDHfPOlrL/3buDHYG/4LUlMews6+NT4ePReOmLfSSFQDCw8MRsncvJBIJnF1cMH78eHh6ehZbNj4+HkFBQYi5fx+pqakYM2YMevfpo7esQEF9OLN/Jf46uwe52XI4uDVCt0/noEoNkdZtLp3eictndkKangwAqG7vhtY9P4d7/dY6z3sg/CD2hoRA8uIzN36c1uMbFx+PoKBg3I+JQWpqKsaOGY0+vXvrPOMLtu81gcvUkbBuVA/m9tVxue8EpBw4WfI2rZvBe/F0VPJ2R27i34hZsBZJ28L0lLjQ8AEO6N6xOipZlsfNaDmWbniI5Me5WsubmgLD+jug0/tVYSusgHTJUxw9k4qgvck6z7r3yClsP3AUYqkMbk4OmDJyMOq6uxRbdv+JSByJ/B0PEgtyebo4Ydzgj7SW15Xw8HCNevwm7cSLejxmzBi91mOgoJ04sGstzp0IQ052Jly9fDBkzHeoYa/9WuLerSs4vn8b4mNvQyZJx/hvl6Jh83Z6yXsofB/2heyGRCKGyNkVY8ZPgoenl9byF85FYnvQFqSmPIa9fW0MHTEaTZo210tWY2snjC0vYHyZmVc/jKmdAAra4fBda3EuIrSgHfb0xeA3aoe3IuHBHcgkaRj/zVL4Nm+vt8zGRKU0dALSJY5AJLW6devi77//Vr/Onz+v9wxPnz7V+3u+qYj9mxF5ZAcGjPbD1B+2QyCwwJrvxyLvqULrNgpFDmqJPNB/5Ew9Ji0QHhKMowf3YOSErxGweBME5ub4cfZXeFpC3t/PRSBo0wr0HTQCPyzfAidnN/w4+yvIpGKdZj1z9hw2bNyEIYMHYfWK5XBxdsZMv9mQSqXFllcoFLCrWRMjhn0GWxsbnWYryeGwrThxcBeGjpsBv0WBqGBujqXzJpVcJ3Jz4ODsjk/GfqvHpMD5s6ewZeMa9B88DItXbITI2RX+fl9DKpUUW/7u7ZtYusgfHTp3w5IVm9Cs5XtYOH8W4uMe6CVvZGQkNm7YgMFDhmDlypVwcXaG36xZ2utEbi7satbE8OHDYWOgOnHhyCb8GRGEbp/OxaiZu1FBYIHgpaOQn6e9PljZ1EDHvlMxZnYIxvjthahOC+xa+TlSk+/rNGtk5Fls3LgRnwwejFUrV8DFxRkz/fxK/MzVtKuJEcOHGeT4lqtoCfn1aNycPO/1hQFYiGqj6YH1yDjzJ8436YWHK7ei/vr5qNrpPR0n1TSotz36flgTSzc8wPjvbiBHocRPfnVQwcykhG1qoVfnGvj5l4f47MsobAiOx6BetfDRhzV1mjXiwkWs2PorRn7cE4GL5sBd5ICv5i+DWCYvtvxft6LR6b1mWDX3a2z44TvUqGqLLwOWIjWj+DZFFyIjI7Fh40YMGTwYK1euhLOLC2aVUI9zFQrUtLMzaDtxLCwQpw7txCfjvsOMH7dBILDAzwGfv/ZaorbIA4NHz9BjUuBc5Gls3rgOAwYPxdKV6+Ds4oq5ft9qPW/cuX0LixfOR8fOXbFs5Xo0b9kKCwJmIz7uoV7yGls7YWx5AePLzLy6Z2ztBAAc2xeIU4d3YMjYmZi+IAgCcwusCJhQYjv89Hk7PEjP7TBRWcMORFIrX748atasqX5VrVpVa9m4uDiYmJggNDQU7dq1g6WlJXx8fPD7779rlAsJCUHdunUhEAggEomwZMkSjb+LRCIEBARg6NChsHoB97oAAN/HSURBVLKywpgxYxAYGAihUIiDBw/C09MTlpaW6NevH7Kzs7F161aIRCLY2Nhg8uTJePbsmU6OxctUKhXOHA7GBx+NQYOm7VHLyROfTvwBMkkarl86pXW7ug3fR/eBk/U26vAFlUqFIwd2o0//YWjSojWcnN0w4avZkIjTcfmPs1q3O7RvF9p/0BNtO3ZHbUdnjJzwDSoIBDhz4qBO84aG7UOXLh/gg04d4eToiMkTJ0BgLsCx4yeKLe/p4YHRI0egbZvWMDMz02k2bVQqFU6E70SP/iPRqHlbOIjcMfoLf0jEafjrzzNat2vQuBX6DpmAxi30M3rkhfCwPejUpRs6dOoKB0cRxk6cAoG5OU4dP1xs+YMHQtCwcTP07jsQtR2dMPjTkXB2dceRg/r5VTssLAxdunZF586d4ejkhImTJkEgEOD48ePFlvfw9MTIUaPQpm1bg9QJlUqFPyO2oXX3cfBq2AE1HDzRe+RCZEpTcfevCK3befq2h3uDNqhSQ4QqNZ3R4aOvUEFgiaQH13SaNzQsDF26dEHnzp3g5OiISRMnQiAwxzEtx7fgMzcSbdu0McjxTTt2FvfmLEfKfu3HsiinMQOR8zAJd75ZiKy7DxC/ZjsehxyD8xfDdBv0Jf262SEoJAkXLknwID4bC1bGoKpNBbzXzFbrNvU8K+P8JQn++EuKx2kKRP4hxqVrUtRxq6TTrDvDj6Nnx9bo3v49ODvY45sxn0IgqICDp4r/MXHel2PQt0t7eDg7QlTLDjPGDYNSpcLlG3d0mrOosLAwdO3SBZ07dy5Sj7W3E54eHhhlwHqsUqkQcXAHuvUbDd9m7VBb5IHhkwMgFafh6sXTWrer3+g99B78ORq20O9ol/1he9G5y4fo2LkLHB1FGD/xSwgEAkQcP1ps+fD9oWjUuCk+6jcADo5OGDJ0OFxc3XEofJ9e8hpbO2FseQHjy8y8umds7YRKpcLJg9vxYdF2eFIApJI0RJXQDtdr9B56D56Ihhx1SP9x7EAktfv378Pe3h4uLi4YMmQIEhISXrvNzJkzMW3aNERFRcHDwwODBg1Cfn4+AODKlSvo378/Bg4ciBs3bmDu3Lnw8/NDYGCgxj4WL14MHx8fXL16FX5+fgCA7OxsrFixArt27cLRo0dx5swZ9OnTB4cPH8bhw4cRFBSE9evXY+/eve/8OBQnIzUJcmk6PBsU3r5pYVkZIrf6eHhPt1/0/4nUlEeQSjJQz7eJep1lxUpw9fDG/bs3i90mPy8PD2OiUc+ncBtTU1PU822K+9HFb/Mu5OXl4X5MDBr5+mi8b0NfX9y+G62z931baSnJkEkyULdBM/W6gmNcDzHRNwyY7FV5eXmIjYlGA9/G6nWmpqZo4NsY0XdvF7vNvbu3NMoDQMNGzbSWf5fy8vIQc/8+fH191etMTU3h6+uLu3f01zlRGtL0JGTJ0uDi/T/1OnPLyqjt0gCJsVFvtA+l8hlu/nkIeU+z4eDqq5ugKPzMNXzp+Db09cWdf8m0FcIWvkg/pfmDVtqJ87Bp4au3DHbVBahiUwFXrsvU655kP8Pt+1nw9qisdbub0ZloXN8Kte3MAQCuTpao71UZf16V6ixrXl4+oh/Eo2mDwikNTE1N0bS+N25Gx77RPnKfKpD/7BmsKlXUVUwNL+pxce1EWa3H6SnJkEvTUcen8FY9y4qV4exeDw+irxsw2asKzhv34OPbSL3O1NQUPr6NtJ4Hou/ehk/Dl84bjZvo5bzxT5SFdqI0jC0vYHyZmbd0jLGdULfDDQrbYYuKleHsXh8PosvedzqisoZzIBIAoHnz5ggMDISnpyf+/vtvzJs3D++//z5u3ryJypW1f9GZNm0aunXrBgCYN28e6tati5iYGHh5eWHp0qXo0KGDulPQw8MDt2/fxk8//YRhw4ap99G+fXtMnTpVvXzu3Dnk5eVh7dq1cHV1BQD069cPQUFBSElJQaVKleDt7Y127drh9OnTGDBgQLHZFAoFFArNoehPn5qgQgVBqY+PXJoBAKhsXUVjfWXrKpBL00u9P12TSQpuObYWao5ysRbaQiop/nZkuVwKpfIZrG1e3eZRUrxuggKQy+VQKpUQCjVvJ7MRCpGYmKSz931bsud1wkqoWSesrG0hk2QYIpJWmXLZ82Os+W8rFNogObH4HwqkEvEr5a2FNlrrz7v0ok68fIuh0MYGiUlls05kydIAABWtNOtDRauqeCIvuY1ISYrGLz8MQn6eAhUElhjw+SpUs3fTWVb1Z85GqLFeKBQiMTFRZ++rT4IaVaFI0TzuipR0mFlXhqm5AMpc7bcpvSu2NgUj3MTSPI31EtlT2Aq1j37bEZaMihblsO1nXyiVKpiammDTzgREnNPduUaamYlnSiVsra001tsKrRCf/Pcb7WNN8F5UsxGiaQPdz5kLaG8nbIRCJJXRevzieqGytWbbaiWsAnkZO2/IX5w3Xm6HhTZaj2/BeePV8hI9nDf+ibLQTpSGseUFjC8z85aOMbYTL9rhYq/fpWWrHSYqi9iBSACArl27qv+7QYMGaN68OZycnLB7925cunQJwcHB6r9nZWVplH3Bzs4OAJCamgovLy/cuXMHvXppPtiiVatWWL58OZ49e4Zy5coBAJo0aYKXWVpaqjsPAaBGjRoQiUSoVKmSxrrU1FSt/08LFix45cEwn4ydhU/H+2nd5oVL5w5i1wZ/9fK4Gatfu40hnT9zDJtWL1IvfzN7sQHT/Dv9HnkEW9f+oF7+ctZyw4Uhg7v+RzgObpujXh78xbp/vK+qNZ0xbk4YcnMycfvKMez7ZTqGfRuk005Eevc6vl8VU8cUPkBk+oJ/Ngqu3f+qoOP7VTH/5/t4mJgDN5ElJg4XIUOch2ORae8q7ju1LewwTly4iDVzv4GggmGmlSiL/ow8jOD189XLE2euMGAaIqL/nj/PHsL2ou3wdysNmOa/QaVSGToC6RA7EKlYQqEQHh4eiImJgb+/P6ZNm1ZsuaJzCJmYFEwKr1SW7tFLFSu+ervTy3MTmZiYFLuupPeaMWMGpkyZorHubLT2ieuLqt+kHUTuhZ2j+XkFD3fJlGXA2qaaen2mLAO1RNqfMqYvjZu9BzePuurlvOd5ZVIxbGwL57KUScUQubgXuw8rKyFMTcupRy8W3UZoo32+rrdlZWUFU1PTVyZblkilBpvkvji+zVrDxaOeevlFnZBLMyAscozlMjEcnIt/erShVLayfn6MNf9tpVKJ1n9boY3tK+VlJZR/l17UCYlEs05IJRKDPjSnKE+fdqg9p0gbkV9QH57IM1BZWF29/ok8HTUctD/pGgDKla8A2xoFT/6zF9XDo4c38UfENvQY6l/idv+U+jMnkWqsl0qlsLEtG8f3bSlS0iGooTmPr6BGVeTJMnU2IuPCJTHu3C/8gc2sfMH5xlZopjEK0ca6AmLinmjdz7hPnbBjXzJOXSgYCfEwIRs1qwkw5KNaOutAFFaujHKmpq88MEUslaOK0LrEbbfvP4qgsMNYMXsa3EQOOslXHG3thEQqhY2t7tupN+HTrA2cNc4bBfUgUyaG0LbwWkIuzYCDc/FPjjYUqxfnjZfbYalE6/EtOG8UU14P541/whDtxNswtryA8WVm3tIxhnbCp2lbOLvXVy8XvX4v+p1OLhPDQVS2rt+JyiLOgUjFysrKQmxsLOzs7FC9enW4ubmpX2+qTp06uHDhgsa6CxcuwMPDQz36UJcEAgGsrKw0Xm96+7K5RUVUq+moftWs7QorYVVE3/hTXSYnOwtxMTfg7OFTwp70w8KyImra11a/ajs6Q2hTBTevXVaXyc5+gth7t+HuVa/YfZQ3M4OzmyduXr+iXqdUKnHr2mW4exa/zbtgZmYGdzc3XI0qnP9JqVQiKuoavL3KzhcqC4uKqGHnoH7ZO7jA2qYKbl+/pC6Tk52F2Hs34eZZv4Q96Z+ZmRlc3TxxPeov9TqlUonrUVfg6VX87YYeXnVx49pfGuuuXb2stfy7ZGZmBjd3d1yLilKvK6gTUfCqU3JnnL4ILCrBtoaT+lXN3g2VrKvhwZ3CuYgUOVlIenC91PMZqlRKPMvT3RPpX3zmoq5Fqde9OL51vAz/g8i7IP0jClXat9BYV7XD/yD5I0pn75mTq0Ty41z1Ky4pBxmSp2hUv7ADztKiHLzdK+H2vUyt+xEITPHyb2PPlCqYvNnvX/+ImVl5eLo4aTwARalU4vKNO6jn6ap1u+B9R7Al5CCWzfoKddxEugtYjMJ6XDhnVVmrx+YWFVHdzlH9snNwgZWwKu5c17yWeHj/Jlw8G5SwJ/0rOG944Pq1q+p1BeeNq1rPA55e3hrnGQCIuqr9PGNohmgn3oax5QWMLzPzlo4xtBOvtsMF3+nu3rioLlPQDt+Ai6fhv9MRlXXsQCQABXMZRkZGIi4uDr/99hv69OmDcuXKYdCgQf94n1OnTsXJkycREBCAe/fuYevWrVi1apXW0YxlmYmJCdp++AmOha7Hjcun8SjhHoJWfQdrm2po0LTwaVwr/Uch8ugO9bIiNxtJcXeRFFdwK1tGajKS4u5CnP5mc0q9Td6uPftj369bcfnPc0iIi8Xapf6wsa2KJi1aq8vNnzkJxw4WPoimW++BOH3sACJPHkZyYhw2r/kJitxctOnYXad5P+rTG0eOHcOJiJNISEjEytVrkJubi86dOgIAFi1Zis2BW9Xl8/LyEBv7ALGxD5CXn4+MjAzExj5A8qNHOs1ZlImJCTr1GITwPb/g6sVIJMbFYOPyObCxrYZGzduqyy3yG4+IQ7+ql3NzspHwIBoJDwoeEJOWmoyEB9HISHus07w9+nyMiGMHcTriKJIS4rF+9TIocnPRvlPB9AU/L/kBwYEb1OW79+yLq1cuYn/or0hKjMeu7VsQGxONrt376DTnC3369MHRo0cRceIEEhISsHrVKigUCnTq1AlAwcOXtmzZoi5fUCdiERsbi3x1nYjFIz3VCRMTEzTvOBTnDq5DdNQppCRFI2zTt6gsrA6vRh3V5bb9NAwXTxZOCRERsgTx0ZcgTU9CSlI0IkKWIC76Iuq36KHTvB/16YMjR4/hREQEEhISsHL1auQqctH5+fH9afESbN4SqC7/8vFN1/PxLVfRElY+XrDyKegYsnSuDSsfL5g7FEyd4Tl/Cny2LFSXj9+wC5bODvBa8DUqerrAadxg2H3cFQ9/Dixu9zqz99Df+LRvbfyviQ2cHS3x3SQ3pEue4vzFwtG9S+Z4o0+Xmurl3y9L8GnfWmjRSIia1QR4r5kt+ne3x7mLup0falCPzjgQcRaHzlxAXNIjLNoYjFyFAt3btQIAzFuxCWu2h6jLB4UdxoZd+zBzwjDYVauKDIkMGRIZsnNydZqzqBftxIt6vGr16jLfTnTsPhiH925C1MUzSIq/j80r/CC0rYaGzdqpyy2dMxanDu9SL+fmZCPxYTQSHxacN9JTk5H4MBoZabq9lujVpx+OHz2EUxHHkJgQj3WrlyNXkYuOnT4AACxb/CO2bdmkLt+j10f468ol7AvdjaTEBOwM3orY+/fQrUdvneZ8wdjaCWPLa4yZmVf3jK2dMDExQYfuQ3B470Zcu3QGyfH3sWXFLAhtqsG3aDs8dwxOv9IO30Xiw4LvdAXt8F2IddwOE5U1vIWZAABJSUkYNGgQMjIyUK1aNbz33nv4448/UK1atddvrEWjRo2we/duzJ49GwEBAbCzs4O/v7/GA1SMScdeI/BUkYOd6+chJzsTLl4NMeG7dTArMqoxPSURT+RS9XJC7C2smDdCvRy27ScAQLM2PfHp59/rNG+Pvp9AkZuLTasWIvtJFjy9G2D6vKUaozBTHicjs0jelu93hFwmxd7tGyGViOHk4o7p85bq/LbVtq3fh0wmw7bg7ZBIJHBxccH3/vPUtzCnpaXBtMjwmwyxGBMmf6Fe3hsahr2hYWhQvx5++nGBTrMW9WGfz/A0NxeBa35A9pNMeNTxxZTZKzTqROrjJGQVOcZxMbex0G+cennX5mUAgFbtumPUF3N1lvW91u0hl0mxM3gLpBIxnF3c4Oe/SP1vm56WonGMvbzr4auv/bAj6Bds37oJdrVq4dtZ8+EkctH2Fu9UmzZtIJfJEBQcDIlYDBdXV/gHBBTWidRUjbxisRiTJk5UL4eEhCAkJAT169fHwkWLXtm/LrTqOgp5T3MQvnU2crPlcHRvjE++2ojyZoX1QZyWgOyswlt3nsjFCPvlW2TJ0iCwqIwatT3xyVeb4Fq3lU6ztmnTGjK5DEFBwerP3Hx/f/XxTU1Lg4mp5mfu80mT1cshIaEICQlF/fr18dPCH3WaFQCsG9dDy5NB6mXvxd8BABK3heL6yBkQ2FWDxfMvWACQE5eESz3HwnvJDIgmDUVu0mPcGDsL6SfO6zxrUTv3PYK5oBymjXVBpYrlceOuHN/Mv4OneYXzA9WqIYC1VeHl2M+/PMTIgY74crQLbKzMkC55ivATKdi6V7cPEOrYqhkk8kxs2rUPGVI53EUOWDbzK9g+v4U5JV0M0yJ1IvT4GeTl5+O7xWs19jPy454YNUBz/mNdadOmDWRyOYKDgiCWSODq4oKAV+px4W/lYrEYEydNUi8XbScWLVz4yv514YM+w6BQ5CB43XxkP8mEWx1ffOG3WuO8kfY4UeO8ER97G0tmj1Yv79myBADQsl0PDJ+km6kOAOD9Nu0gl8uwIygQEokEzi6umOP/Y5HzRqpGnajjXRdTv5mJ4G2bERS4Gfa1amGGnz+cRM46y1iUsbUTxpbXGDMzr+4ZWzsBAB/0HoanuTkIXhdQ0A57NcRkvzWa3+keJyIrs/B6LT72FpbOKdIOBz5vh9v2wLBJAXrLbgxKOZsZGRkTFWe5pP+Q49d0d1ugrlS10H6rW1lka2pcTzB7lGf3+kJliLVZ1usLlTHmpjmGjlAqfz7S30Xsu9DSLtbQEUrttlc3Q0colZ96BRo6QqmEznlm6AilIrU0rnYYABJzjStzDfOy+SRkbWK9Ohg6AtF/juvdk4aOUCqPc6q8vlAZ0raehaEj6MWcbXmvL/QvMG/of/OhcbyFmYiIiIiIiIiIiLRiByIRERERERERERFpxQ5EIiIiIiIiIiIi0ooPUSEiIiIiIiIiorfCR2z8u3EEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBXnQCQiIiIiIiIiorei5BSI/2ocgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFDkQiIiIiIiIiIiLSig9RISIiIiIiIiKit6LiU1T+1TgCkYiIiIiIiIiIiLRiByIRERERERERERFpxQ5EIiIiIiIiIiIi0opzIBIRERERERER0VtRcQrEfzWOQCQiIiIiIiIiIiKt2IFIREREREREREREWrEDkYiIiIiIiIiIiLRiByIRERERERERERFpxYeoEBERERERERHRW1Eq+RSVfzN2IBIRGREVTAwdgYiIiIiIiP5jeAszERERERERERGRAYnFYgwZMgRWVlYQCoUYOXIksrKyStymbdu2MDEx0XiNGzdOo0xCQgK6desGS0tLVK9eHV9//TXy8/NLnY8jEImIiIiIiIiIiAxoyJD/s3ffYU1dfRzAv0QhDIGAKEPZUxTFvfderaO1jmpV3FU7tK0LF+5VR617gqNWRMUNbn3dihNRUARcrIQhm+T9AwlEEpRqgrTfz/Pkebwn59z743ruucnJuecMwMuXLxEUFITs7GwMGTIEI0aMwM6dO4stN3z4cMyePVu+ra+vL/93bm4uunbtCgsLC/zvf//Dy5cvMWjQIGhra2PevHklio8diERERERERERE9FFkMs6B+E+Fhobi2LFjuHbtGurVqwcAWLVqFbp06YIlS5bAyspKZVl9fX1YWFgofe/EiRN48OABgoODYW5uDk9PT/j4+OC3337DzJkzoaOj88Ex8hFmIiIiIiIiIiKiD5CZmYnk5GSFV2Zm5kft89KlSxCJRPLOQwBo164dBAIBrly5UmzZHTt2wMzMDDVq1MDkyZORlpamsF8PDw+Ym5vL0zp27Ijk5GTcv3+/RDGyA5GIiIiIiIiIiOgDzJ8/H8bGxgqv+fPnf9Q+X716hcqVKyuklS9fHqampnj16pXKcv3794efnx9Onz6NyZMnw9fXF99++63Cfgt3HgKQbxe3X2X4CDMREREREREREdEHmDx5Mn7++WeFNKFQqDTvpEmTsHDhwmL3Fxoa+o9jGTFihPzfHh4esLS0RNu2bREREQFHR8d/vF9l2IFIRERERERERET0AYRCocoOw3dNmDABgwcPLjaPg4MDLCwsEBsbq5Cek5ODxMRElfMbKtOwYUMAQHh4OBwdHWFhYYGrV68q5Hn9+jUAlGi/ADsQiYiIiIiIiIjoI8mkpR3B56dSpUqoVKnSe/M1btwYEokEN27cQN26dQEAp06dglQqlXcKfoiQkBAAgKWlpXy/c+fORWxsrPwR6aCgIBgZGcHd3b1EfwvnQCQiIiIiIiIiIiol1apVQ6dOnTB8+HBcvXoVFy9exNixY9G3b1/5CszPnz+Hm5ubfERhREQEfHx8cOPGDURGRuLgwYMYNGgQWrRogZo1awIAOnToAHd3dwwcOBC3b9/G8ePHMW3aNHz//fcfPIoyHzsQiYiIiIiIiIiIStGOHTvg5uaGtm3bokuXLmjWrBnWr18vfz87OxthYWHyVZZ1dHQQHByMDh06wM3NDRMmTEDv3r0RGBgoL1OuXDkcOnQI5cqVQ+PGjfHtt99i0KBBmD17donj4yPMREREREREREREpcjU1BQ7d+5U+b6dnR1kMpl829raGmfPnn3vfm1tbXHkyJGPjo8diERERERERERE9FGkhTq36N+HjzATERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIiKkRERERERERE9FFkXETlX40jEImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpU4ByIREREREREREX0UqZRzIP6bsQORAAB2dnZ49uxZkfQxY8Zg9erVpRDR50cmk+HIntX430l/pL9Jgb2bJ74Z5o3KlrYqy4Q/uI6TB7ci6ukDJIvjMGzictRq0FZj8e7dsRGnThzEmzcpcK1WE0PH/AJLK+tiy5047I/AfTuQJE6Ejb0TBo/8GU4u7mqP9+Chw9jrvw+JYjEc7O0xZtRIuLm6KM0b+ewZtvvtQHh4BF7HxmLk8GHo1eNLtcf4LplMhv271uFsUADS3qTC2a0WBo6aBAsrG5Vlwu7fxNEAXzyLCIVEHI9xk5agTqNWGon36KEAHPDfDYk4EXb2jvAa9QOcXaupzP+/86exy28z4l6/gqVVFXw7ZBTq1m+kkVgBIDAwEP5790IsFsPewQGjR4+Gq6ur0rzPnj2Dr68vwh8/RmxsLEaMGIEePXtqLFYgrz6cObAKN8/9jYy0ZFg71UHXgTNQ0dxOZZlrp3fh+pldkMQ/BwBUtnJCiy++h7NHC7XHezDwEPb6+0Ocf82NHqXy/EY+ewZfXz88Dg9HbGwsRo4Yjp49eqg9xnymzerBYYIXjOvUgK5VZVzvPQavD54svkyLBnBfMgkV3J2REf0S4fPXIGZ7gIYiLjDkG2t0a1cZFfTL415YMpatf4rnrzJU5hcIgMF9rNG+uRlMRTqIF2fh2JlY+O59rvZY9x49hR0HjyFRkgQnW2v87NUf1Z0dlOY9EHQWR89ewpPovLhcHWwxqn8vlfnVJTAwUKEef0g7kV+PR4wYodF6DOS1Ewd3r8H5oACkp6XA0a0WBoyYAnMr1Z8lHt2/gRMHtuNZxAMkieMx+rdlqN2wtUbiPRy4H/v990D89r4xYvQ4uLi6qcx/8fxZ7PDdgtjXr2BlVRWDhg5HvfoNNRJrWWsnylq8QNmLmfFqRllqJ4C8djhw9xqcD96X1w67eqL/B7XD2xD1JBRJ4jiM/nUZPBu20VjMRJ8LPsJMAIBr167h5cuX8ldQUBAA4Ouvv9ZoHFlZWRo9XkkEH9iMs0d34pvh3pgwbweEQj38OXcksrMyVZbJzExHFTsX9PGaqsFI8wT6++HYob/hNeYX+CzZCKGuLhZM/wlZxcR76XwwfDeuRO9+QzFv+RbY2jthwfSfkCRJVGusZ86dx/oNGzGgfz+sXrkcDvb2mOo9HRKJRGn+zMxMWFpYYOjg72BqYqLW2IpzJGAbgg7txqBRk+G9aCt0dHWxbNa44utERjqs7Z3x7cjfNBgpcPHcKWzdsBp9+n+HxSs3wNbeET7eE5EkESvN//DBPfy+yAdtO3TBkpUb0KBxcyyaMxVRkU80Eu/Zs2exYf169B8wAKtWrYKDvT28p01TXScyMmBpYYEhQ4bApJTqxMWjG3El2BddB87EsKl7oCPUg9+yYcjJVl0fjEzM0a73BIyY7o8R3nthV60Rdq/6HrHPH6s11rNnz2HDhg34tn9//LFqJRwc7DHV27vYa87C0gJDhwwulfNbzkAfyXfCcG/8rA/Kr2dXFfUPrkPCmSu4UO9LPF21DR7r5sCsfTM1R6qoXw8r9O5igWXrn2D0lLtIz5RisXc16GhrFVOmCr7sYI4Vm57iux9DsN7vGfp9WQW9ulioNdbgi1excttf8Pr6C2xdNAPOdtb4ac7vSExKVpr/5v0wtG/WAH/M/AXr502BuZkpfvRZhtgE5W2KOpw9exbrN2zAgP79sWrVKtg7OGBaMfU4IzMTFpaWpdpOHA/YilOHd+HbUVMwecF2CIV6WOHz/Xs/S1S1c0H/4ZM1GClw/uxpbN6wFt/0H4Rlq9bC3sERM71/g0TFfSP0wX0sWTgH7Tp0xu+r1qFh46aY7zMdzyKfaiTestZOlLV4gbIXM+NVv7LWTgDA8f1bcerITgwYORWT5vtCqKuHlT5jim2Hs962w/003A4TfW7YgUgAgEqVKsHCwkL+OnToEBwdHdGyZUul+SMjI6GlpYV9+/ahdevW0NfXR61atXDp0iWFfP7+/qhevTqEQiHs7OywdOlShfft7Ozg4+ODQYMGwcjICCNGjMDWrVshEolw6NAhuLq6Ql9fH1999RXS0tKwbds22NnZwcTEBOPHj0dubq7azklhMpkMZ474oWOvEahZvw2q2Lpi4Nh5SBLH4c61UyrLVa/dHN36jtfYqMN8MpkMRw/uQc8+g1GvUQvY2jthzE/TIU6Mx/XL51SWO7x/N9p0/AKt2nVDVRt7eI35FTpCIc4EHVJrvPsC9qNTp47o2L4dbG1sMH7sGAh1hTh+IkhpflcXFwz3GopWLVtAW1tbrbGpIpPJEBS4C937eKFOw1awtnPG8B9mQ5wYh5tXzqgsV7NuU/QeMAZ1G2lm9Ei+wIA9aNepG9q07wJrGzuMHDsBQl1dnDxxRGn+wwf3onbdBujRux+q2tih30Av2Du64OghzfyqHRAQgE6dO6NDhw6wsbXF2HHjIBQKceLECaX5XVxd4TVsGFq2alUqdUImk+FK8Ha06DYKbrXbwtzaFT28FiJFEouHN4NVlnP1bAPnmi1R0dwOFS3s0bbXT9AR6iPmyW21xrsvIACdOnVChw7tYWtjg3Fjx0Io1MVxFec375rzQquWLUvl/MYdP4dHM5bj9QHV57Iw2xF9kf40BqG/LkTqwyd49ucOvPI/DvsfBqs30Hd81dUSvv4xuHhNjCfP0jB/VTjMTHTQrIGpyjI1XA1x4ZoYl29K8CouE2cvJ+LabQmqOVVQa6y7Ak/gi3Yt0K1NM9hbW+HXEQMhFOrg0KkLSvPP+nEEendqAxd7G9hVscTkUYMhlclw/W6oWuMsLCAgAJ07dUKHDh0K1WPV7YSriwuGlWI9lslkCD60E12/Gg7PBq1R1c4FQ8b7QJIYh1tXT6ss51GnGXr0/x61G2l2tMuBgL3o0KkL2nXoBBsbO4we+yOEQiGCTxxTmj/wwD7UqVsfvb76BtY2thgwaAgcHJ1xOHC/RuIta+1EWYsXKHsxM171K2vthEwmw8lDO9ClcDs8zgcScRxCimmHa9Rphh79x6I2Rx3Sfxw7EKmIrKws+Pn5YejQodDSUj1KAgCmTp2KiRMnIiQkBC4uLujXrx9ycnIAADdu3ECfPn3Qt29f3L17FzNnzoS3tze2bt2qsI8lS5agVq1auHXrFry9vQEAaWlpWLlyJXbv3o1jx47hzJkz6NmzJ44cOYIjR47A19cX69atw969e9VyDt6VEBuDZEk8XGsWPL6pp28IOycPPH2k3i/6/0Ts6xeQiBNQw7OePE3foAIcXdzx+OE9pWVysrPxNDwMNWoVlBEIBKjhWR+Pw5SX+RSys7PxODwcdTxrKRy3tqcnHjwMU9txP1bc6+dIEieges0G8rS8c1wD4WF3SzGyorKzsxER/gg1PevK0wQCAWp61sWjh/eVlnn08L5CfgDwrFMfYSryf0rZ2dkIf/wYnp6e8jSBQABPT088DNVc50RJSOJjkJoUBwf3JvI0XX1DVHWoieiIkA/ah1Sai3tXDiM7Kw3Wjp7qCRQF11ztd85vbU9PhD58qLbjapKokSfiTyn+oBUXdAEmjTw1FoNlZSEqmujgxp0kedqbtFw8eJwKdxdDleXuhaWgrocRqlrqAgAcbfXh4WaIK7ckaos1OzsHYU+eoX7NgikNBAIB6nu4415YxAftIyMrEzm5uTCqYKCuMBXk12Nl7cTnWo/jXz9HsiQe1WoVPKqnb2AIe+caeBJ2pxQjKyr/vlHLs448TSAQoJZnHYQ9fKC0TNjDB6hVW/G+UbtuPZX5S9vn0E6URFmLFyh7MTPekimL7YS8Ha5Z0A7rGRjC3tkDT8I+v+90RJ8bzoFIRezfvx8SiQSDBw9+b96JEyeia9euAIBZs2ahevXqCA8Ph5ubG5YtW4a2bdvKOwVdXFzw4MEDLF68WGHfbdq0wYQJE+Tb58+fR3Z2NtasWQNHR0cAwFdffQVfX1+8fv0aFSpUgLu7O1q3bo3Tp0/jm2++URpbZmYmMjMVh6JnZWlBR0dYktMBAEiWJAAADI0rKqQbGldEsiS+xPtTtyRx3iPHxiLFUS7GIlNIxMofR05OlkAqzYWxSdEyL2KKzo/5qSQnJ0MqlUIkUnyczEQkQnR0jNqO+7GS3tYJI5FinTAyNkWSOKE0QlIpJTkJUmlukXNsLDLB8+gopWUk4kQYv5NfJDJRWX8+pfw68e4jhiITE0THfJ51IjUpDgBgYKRYHwyMzPAmufg24nVMGDbN64ec7EzoCPXxzfd/oJKVk9pilV9zJiKFdJFIhOjoaLUdV5OE5mbIfK143jNfx0Pb2BACXSGkGaofU/pUTE3yRrglSrIV0sVJWTAVqR79tjPgOQz0ymH7Ck9IpTIIBFrYuCsKwefVd6+RpKQgVyqFqbGRQrqpyAjPnr/8oH386bcXlUxEqF9T/XPmAqrbCRORCDGfaT3O/7xgaKx4nzUSVUTyZ3bfSE5OettOFL0PqDq/EnFikfuMSGQCsQbuG//E59BOlERZixcoezEz3pIpi+1Efjus9PO75PNqh8sqGddQ+VdjByIVsWnTJnTu3BlWVlYAgFGjRsHPz0/+fmpqqvzfNWvWlP/b0tISABAbGws3NzeEhobiyy8VF7Zo2rQpli9fjtzcXJQrVw4AUK9ePbxLX19f3nkIAObm5rCzs0OFChUU0mJjY1X+HfPnz8esWYpziHw7choGjvZW/ce/de38IexeP1u+PWry572QzIUzx7Fx9SL59q/Tl5RiNP9Ol84exbY18+TbP05bXnrBUKm7czkQh7bPkG/3/2HtP96XmYU9Rs0IQEZ6Ch7cOI79myZh8G++au1EpE+vXXMzTBhRsIDIpPn/bBRc6yYV0a65GeaseIyn0elwstPH2CF2SEjMxvGzcZ8q3E9qe8ARBF28ij9n/gqhTulMK/E5unL2CPzWzZFvj526shSjISL677ly7jB2FG6Hp6wqxWiIyj52IJKCZ8+eITg4GPv27ZOnzZ49GxMnTlSav/AcQvmPO0ul0hId08Cg6ONO785NpKWlpTStuGNNnjwZP//8s0LaubDiH8nO51GvNeycCzpHc7LzFndJSUqAsUkleXpKUgKq2KleZUxT6jZoBieX6vLt7LfxJkkSYWJqJk9PkiTCzsFZ6T6MjEQQCMrJRy8WLiMyUT1f18cyMjKCQCAoMtmyWCIptUnulfFs0AIOLjXk2/l1IlmSAFGhc5yclAhre+WrR5cWQyNjCATlipzjJIlY5f+tyMS0yAIrkmLyf0r5dUIsfuf4YnGpLppTmGut1qg6o1AbkZNXH94kJ8BQVFme/iY5HubWqle6BoBy5XVgap638p+VXQ28eHoPl4O3o/ug2cWW+6fk15xYopAukUhgYvp5nN+Plfk6HkJzM4U0obkZspNS1DYi4+K1RIQ+LviBTbt83v3GVKStMArRxFgH4ZFvVO5n1EBb7Nz/HKcu5o2EeBqVBotKQgzoVUVtHYgiQ0OUEwiKLJiSKElGRZFxsWV3HDgG34AjWDl9IpzsrNUSnzKq2gmxRAITU/W3Ux+iVoOWsFe4b+TVg5SkRIhMCz5LJEsSYG2vfOXo0mJkZPy2nSh6H1B1fkUmpkXuMxKJGCYauG/8E6XRTnyMshYvUPZiZrwlUxbaiVr1W8He2UO+Xfjze+HvdMlJibC2+7w+vxN9jjgHIinYsmULKleuLH8sGQAqV64MJycn+etDVatWDRcvXlRIu3jxIlxcXOSjD9VJKBTCyMhI4fWhjy/r6hmgkoWN/GVR1RFGIjOE3b0iz5OelorI8Luwd6lVzJ40Q0/fABZWVeWvqjb2EJlUxL3b1+V50tLeIOLRAzi71VC6j/La2rB3csW9OzfkaVKpFPdvX4ezq/Iyn4K2tjacnZxwK6Rg/iepVIqQkNtwd/t8vlDp6RnA3NJa/rKydoCxSUU8uHNNnic9LRURj+7BydWjmD1pnra2NhydXHA3RPH/9k7ITbi4VVdaxsWtOu7cvqGQdufWdbiqyP8paWtrw8nZGbdDQuRpeXUiBG7Viu+M0xShXgWYmtvKX5WsnFDBuBKehBbMRZSZnoqYJ3dKPJ+hTCZFbrb6VqTPv+ZCbofI0/LPbzW30v9B5FOQXA5BxTaNFNLM2jaB+HKI2o6ZniHF81cZ8ldkTDoSxFmo41HQAaevVw7uzhXw4FGKyv0IhQK8+9tYrlSG90xJ/FG0tcvD1cFWYQEUqVSK63dDUcPVUWU5v/1HscX/EH6f9hOqOdmpL0AlCupxwZxVn1s91tUzQGVLG/nL0toBRiIzhN5R/Czx9PE9OLjWLGZPmpd/37hz+5Y8Le++cQuubsofU3d1c8edkJsKaSG3bqjMX9pKo534GGUtXqDsxcx4S6YstBNF2+G873QP716V58lrh+/CwbX0v9MRfe7YgUhyUqkUW7ZswXfffYfy5T9+cOqECRNw8uRJ+Pj44NGjR9i2bRv++OMPlaMZP2daWlpo1eVbHN+3Dnevn8aLqEfw/WMKjE0qoWb9gtW4Vs0ehrPHdsq3MzPSEBP5EDGReY+yJcQ+R0zkQyTGf9icUh8Tb+cv+mD/X9tw/cp5REVGYM2y2TAxNUO9Ri3k+eZMHYfjhwoWounaoy9OHz+IsyeP4Hl0JDb/uRiZGRlo2a6bWuPt1bMHjh4/jqDgk4iKisaq1X8iIyMDHdq3AwAsWroMm7duk+fPzs5GRMQTREQ8QXZODhISEhAR8QTPX7xQa5yFaWlpoX33fgj8exNuXT2L6MhwbFg+AyamlVCnYSt5vkXeoxF8+C/5dkZ6GqKehCHqSd4CMXGxzxH1JAwJca/UGm/3nn0QfPwwTgcfQ0xUJNavXobMjHS0ad8ZALBy6Vz4bV0vz9/1i68QcuMqDu77CzHRz/DXji2ICA9D52491Rpnvp49e+LYsWMIDgpCVFQUVv/xBzIzM9G+fXsAeYsvbdmyRZ4/r05EICIiAjnyOhGBFxqqE1paWmjYbhDOH1qLsJBTeB0ThoCNv8FQVBluddrJ821fPBhXTxZMCRHsvxTPwq5BEh+D1zFhCPZfisiwq/Bo1F2t8fbq2RNHjx1HUHAwoqKisGr1amRkZqDD2/O7eMlSbN6yVZ7/3fMbr+HzW85AH0a13GBUK69jSN++KoxquUHXOm/qDNc5P6PWloXy/M/W74a+vTXc5v8CA1cH2I7qD8uvO+Ppiq3Kdq82ew+/xMDeVdGkngnsbfQxZZwT4sVZuHC1YKT30hnu6NnJQr596boYA3tXQaM6IlhUEqJZA1P06WaF81fVOz9Uv+4dcDD4HA6fuYjImBdYtMEPGZmZ6Na6KQBg1sqN+HOHvzy/b8ARrN+9H1PHDIZlJTMkiJOQIE5CWnqGWuMsLL+dyK/Hf6xe/dm3E+269ceRvRsRcvUMYp49xuaV3hCZVkLtBq3l+ZbNGIlTR3bLtzPS0xD9NAzRT/PuG/GxzxH9NAwJcer9LPFlz69w4thhnAo+juioZ1i7ejkyMjPQrn1HAMDvSxZg+5aN8vzdv+yFmzeuYf++PYiJjsIuv22IePwIXbv3UGuc+cpaO1HW4i2LMTNe9Str7YSWlhbadhuAI3s34Pa1M3j+7DG2rJwGkUkleBZuh2eOwOki7fBDRD/N+06X1w4/RKKa2+GySCaV/Sde/1V8hJnkgt9+AB86dOgn2V+dOnWwZ88eTJ8+HT4+PrC0tMTs2bM/aHGWz1G7L4ciKzMdu9bNQnpaChzcamPMlLXQLjSqMf51NN4kS+TbURH3sXJWwfkM2L4YANCg5RcY+P1ctcbbvfe3yMzIwMY/FiLtTSpc3Wti0qxlCqMwX796jpRC8TZu3g7JSRLs3bEBEnEibB2cMWnWMrU/ttqqRXMkJSVhu98OiMViODg4YO7sWfJHmOPi4iAoNPwmITERY8b/IN/euy8Ae/cFoKZHDSxeMF+tsRbWped3yMrIwNY/5yHtTQpcqnni5+krFepE7KsYpBY6x5HhD7DQe5R8e/fm3wEATVt3w7AfZqot1qYt2iApSYLdfpshESfC3sEJ02Yvlv/fxsfFQkur4DclN/ca+PEXb+zy3YQd2zbAskpV/DptLmzsHFQd4pNq2bIlkpOS4OvnB3FiIhwcHTHbx6egTsTGKtSJxMREjBs7Vr7t7+8Pf39/eHh4YOGiRUX2rw5NOw9DdlY6ArdNR0ZaMmyc6+LbnzagvHZBfUiMi0JaasGjO2+SExGw6TekJsVBqGcI86qu+PanjXCs3lStsbZs2QJJyUnw9fWTX3NzZs+Wn9/YuDhoCRSvue/HjZdv+/vvg7//Pnh4eGDxwgVqjRUAjOvWQOOTvvJt9yVTAADR2/fhjtdkCC0rQe/tFywASI+MwbUvRsJ96WTYjRuEjJhXuDtyGuKDLqg91sJ27X8BXWE5TBzpgAoG5XH3YTJ+nROKrOyCD55VzIUwNir4OLZi01N49bXBj8MdYGKkjXhxFgKDXmPbXvUuINSuaQOIk1Owcfd+JEiS4Wxnjd+n/gTTt48wv45PhKBQndh34gyyc3IwZckahf14ff0Fhn2jOP+xurRs2RJJycnw8/VFolgMRwcH+BSpxwXtWmJiIsaOGyffLtxOLFq4sMj+1aFjz8HIzEyH39o5SHuTAqdqnvjBe7XCfSPuVbTCfeNZxAMsnT5cvv33lqUAgMatu2PIOPVMdQAAzVu2RnJyEnb6boVYLIa9gyNmzF6gcN8oXCequVfHhF+nwm/7Zvhu3QyrKlUw2Xs2bO3s1RZjYWWtnShr8ZbFmBmv+pW1dgIAOvYYjKyMdPit9clrh91qY7z3n4rf6V5FIzWl4PPas4j7WDajUDu89W073Ko7Bo/z0VjsRKVNSybjOjn033HitvoeC1QXMz3Vj7p9jkwFZWsFsxfZlu/P9Bkx0lY9d9rnSk+QVtohlMiVF5r7EPspNLaMKO0QSuyBW9f3Z/qMLP5ya2mHUCL7ZuSWdgglItEvW+0wAERnlK2YzXU/z5WQVYlwa1vaIRD95zg+PFnaIZTIq/SK78/0GWlVQ6+0Q9CIH1aUre+u/9SKHwxLO4RSwUeYiYiIiIiIiIiISCV2IBIREREREREREZFKnAORiIiIiIiIiIg+ipQz5P2rcQQiERERERERERERqcQORCIiIiIiIiIiIlKJHYhERERERERERESkEudAJCIiIiIiIiKijyKTcg7EfzOOQCQiIiIiIiIiIiKV2IFIREREREREREREKrEDkYiIiIiIiIiIiFRiByIRERERERERERGpxEVUiIiIiIiIiIjoo3ARlX83jkAkIiIiIiIiIiIildiBSERERERERERERCqxA5GIiIiIiIiIiIhU4hyIRERERERERET0UTgF4r8bRyASERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIiKkRERERERERE9FFkXEXlX40jEImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpU4ByIREREREREREX0UmYxzIP6bcQQiERERERERERERqcQORCIiIiIiIiIiIlKJHYhERERERERERESkEjsQiYiIiIiIiIiISCUuokJERERERERERB9FKuUiKv9mHIFIREREREREREREKrEDkYiIiIiIiIiIiFRiByIRERERERERERGpxDkQiYiIiIiIiIjoo8hknAPx34wjEImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqcREVIiIiIiIiIiL6KDIpF1H5N+MIRCIiIiIiIiIiIlKJHYhERERERERERESkEjsQiYiIiIiIiIiISCXOgUhERERERERERB+FcyD+u3EEIhEREREREREREanEEYj/AefOncPixYtx48YNvHz5EgEBAejRo4f8fZlMhhkzZmDDhg2QSCRo2rQp1qxZA2dn59IL+jMkk8lwZM9q/O+kP9LfpMDezRPfDPNGZUtblWXCH1zHyYNbEfX0AZLFcRg2cTlqNWirsXj37tiIUycO4s2bFLhWq4mhY36BpZV1seVOHPZH4L4dSBInwsbeCYNH/gwnF3e1x3vw0GHs9d+HRLEYDvb2GDNqJNxcXZTmjXz2DNv9diA8PAKvY2Mxcvgw9OrxpdpjfJdMJsP+XetwNigAaW9S4exWCwNHTYKFlY3KMmH3b+JogC+eRYRCIo7HuElLUKdRK43Ee/RQAA7474ZEnAg7e0d4jfoBzq7VVOb/3/nT2OW3GXGvX8HSqgq+HTIKdes30kisABAYGAj/vXshFoth7+CA0aNHw9XVVWneZ8+ewdfXF+GPHyM2NhYjRoxAj549NRYrkFcfzhxYhZvn/kZGWjKsneqg68AZqGhup7LMtdO7cP3MLkjinwMAKls5ocUX38PZo4Xa4z0YeAh7/f0hzr/mRo9SeX4jnz2Dr68fHoeHIzY2FiNHDEfPQvcRdTNtVg8OE7xgXKcGdK0q43rvMXh98GTxZVo0gPuSSajg7oyM6JcIn78GMdsDNBRxgSHfWKNbu8qooF8e98KSsWz9Uzx/laEyv0AADO5jjfbNzWAq0kG8OAvHzsTCd+9ztce69+gp7Dh4DImSJDjZWuNnr/6o7uygNO+BoLM4evYSnkTnxeXqYItR/XupzK8ugYGBCvX4Q9qJ/Ho8YsQIjdZjIK+dOLh7Dc4HBSA9LQWObrUwYMQUmFup/izx6P4NnDiwHc8iHiBJHI/Rvy1D7YatNRLv4cD92O+/B+K3940Ro8fBxdVNZf6L589ih+8WxL5+BSurqhg0dDjq1W+okVjLWjtR1uIFyl7MjFczylI7AeS1w4G71+B88L68dtjVE/0/qB3ehqgnoUgSx2H0r8vg2bCNxmIm+lxwBOJ/wJs3b1CrVi2sXr1a6fuLFi3CypUrsXbtWly5cgUGBgbo2LEjMjJUf8FRl+zsbI0f80MFH9iMs0d34pvh3pgwbweEQj38OXcksrMyVZbJzExHFTsX9PGaqsFI8wT6++HYob/hNeYX+CzZCKGuLhZM/wlZxcR76XwwfDeuRO9+QzFv+RbY2jthwfSfkCRJVGusZ86dx/oNGzGgfz+sXrkcDvb2mOo9HRKJRGn+zMxMWFpYYOjg72BqYqLW2IpzJGAbgg7txqBRk+G9aCt0dHWxbNa44utERjqs7Z3x7cjfNBgpcPHcKWzdsBp9+n+HxSs3wNbeET7eE5EkESvN//DBPfy+yAdtO3TBkpUb0KBxcyyaMxVRkU80Eu/Zs2exYf169B8wAKtWrYKDvT28p01TXScyMmBpYYEhQ4bApJTqxMWjG3El2BddB87EsKl7oCPUg9+yYcjJVl0fjEzM0a73BIyY7o8R3nthV60Rdq/6HrHPH6s11rNnz2HDhg34tn9//LFqJRwc7DHV27vYa87C0gJDhwwulfNbzkAfyXfCcG/8rA/Kr2dXFfUPrkPCmSu4UO9LPF21DR7r5sCsfTM1R6qoXw8r9O5igWXrn2D0lLtIz5RisXc16GhrFVOmCr7sYI4Vm57iux9DsN7vGfp9WQW9ulioNdbgi1excttf8Pr6C2xdNAPOdtb4ac7vSExKVpr/5v0wtG/WAH/M/AXr502BuZkpfvRZhtgE5W2KOpw9exbrN2zAgP79sWrVKtg7OGBaMfU4IzMTFpaWpdpOHA/YilOHd+HbUVMwecF2CIV6WOHz/Xs/S1S1c0H/4ZM1GClw/uxpbN6wFt/0H4Rlq9bC3sERM71/g0TFfSP0wX0sWTgH7Tp0xu+r1qFh46aY7zMdzyKfaiTestZOlLV4gbIXM+NVv7LWTgDA8f1bcerITgwYORWT5vtCqKuHlT5jim2Hs962w/003A4TfW7Ygfgf0LlzZ8yZMwc9lYzGkclkWL58OaZNm4Yvv/wSNWvWxPbt2/HixQvs379f5T7PnDkDLS0tnDx5EvXq1YO+vj6aNGmCsLAwhXxr1qyBo6MjdHR04OrqCl9fX4X3tbS0sGbNGnzxxRcwMDDA3LlzMXPmTHh6emLz5s2wsbFBhQoVMGbMGOTm5mLRokWwsLBA5cqVMXfu3E9yfj6ETCbDmSN+6NhrBGrWb4Mqtq4YOHYeksRxuHPtlMpy1Ws3R7e+4zU26jCfTCbD0YN70LPPYNRr1AK29k4Y89N0iBPjcf3yOZXlDu/fjTYdv0Crdt1Q1cYeXmN+hY5QiDNBh9Qa776A/ejUqSM6tm8HWxsbjB87BkJdIY6fCFKa39XFBcO9hqJVyxbQ1tZWa2yqyGQyBAXuQvc+XqjTsBWs7Zwx/IfZECfG4eaVMyrL1azbFL0HjEHdRpoZPZIvMGAP2nXqhjbtu8Daxg4jx06AUFcXJ08cUZr/8MG9qF23AXr07oeqNnboN9AL9o4uOHpIM79qBwQEoFPnzujQoQNsbG0xdtw4CIVCnDhxQml+F1dXeA0bhpatWpVKnZDJZLgSvB0tuo2CW+22MLd2RQ+vhUiRxOLhzWCV5Vw928C5ZktUNLdDRQt7tO31E3SE+oh5clut8e4LCECnTp3QoUN72NrYYNzYsRAKdXFcxfnNu+a80Kply1I5v3HHz+HRjOV4fUD1uSzMdkRfpD+NQeivC5H68Ame/bkDr/yPw/6HweoN9B1fdbWEr38MLl4T48mzNMxfFQ4zEx00a2CqskwNV0NcuCbG5ZsSvIrLxNnLibh2W4JqThXUGuuuwBP4ol0LdGvTDPbWVvh1xEAIhTo4dOqC0vyzfhyB3p3awMXeBnZVLDF51GBIZTJcvxuq1jgLCwgIQOdOndChQ4dC9Vh1O+Hq4oJhpViPZTIZgg/tRNevhsOzQWtUtXPBkPE+kCTG4dbV0yrLedRphh79v0ftRpod7XIgYC86dOqCdh06wcbGDqPH/gihUIjgE8eU5g88sA916tZHr6++gbWNLQYMGgIHR2ccDtyvkXjLWjtR1uIFyl7MjFf9ylo7IZPJcPLQDnQp3A6P84FEHIeQYtrhGnWaoUf/sajNUYf0H8cOxP+4p0+f4tWrV2jXrp08zdjYGA0bNsSlS5feW37q1KlYunQprl+/jvLly2Po0KHy9wICAvDDDz9gwoQJuHfvHkaOHIkhQ4bg9GnFxnnmzJno2bMn7t69Ky8fERGBo0eP4tixY9i1axc2bdqErl27IiYmBmfPnsXChQsxbdo0XLly5ROdieIlxMYgWRIP15oFj2/q6RvCzskDTx+p94v+PxH7+gUk4gTU8KwnT9M3qABHF3c8fnhPaZmc7Gw8DQ9DjVoFZQQCAWp41sfjMOVlPoXs7Gw8Dg9HHc9aCset7emJBw/DiilZuuJeP0eSOAHVazaQp+Wd4xoID7tbipEVlZ2djYjwR6jpWVeeJhAIUNOzLh49vK+0zKOH9xXyA4BnnfoIU5H/U8rOzkb448fw9PSUpwkEAnh6euJhqOY6J0pCEh+D1KQ4OLg3kafp6huiqkNNREeEfNA+pNJc3LtyGNlZabB29FRPoCi45mq/c35re3oi9OFDtR1Xk0SNPBF/SvEeFhd0ASaNPDUWg2VlISqa6ODGnSR52pu0XDx4nAp3F0OV5e6FpaCuhxGqWuoCABxt9eHhZogrtyRqizU7OwdhT56hfs2CKQ0EAgHqe7jjXljEB+0jIysTObm5MKpgoK4wFeTXY2XtxOdaj+NfP0eyJB7VahU8qqdvYAh75xp4EnanFCMrKv++UcuzjjxNIBCglmcdhD18oLRM2MMHqFVb8b5Ru249lflL2+fQTpREWYsXKHsxM96SKYvthLwdrlnQDusZGMLe2QNPwj6/73RlkVQm+0+8/qs4B+J/3KtXrwAA5ubmCunm5uby94ozd+5ctGzZEgAwadIkdO3aFRkZGdDV1cWSJUswePBgjBkzBgDw888/4/Lly1iyZAlaty4YfdW/f38MGTJEYb9SqRSbN2+GoaEh3N3d0bp1a4SFheHIkSMQCARwdXXFwoULcfr0aTRsqHzOjMzMTGRmKg5Fz8rSgo6O8L1/17uSJQkAAEPjigrphsYVkSyJL/H+1C1JnPfIsbFIcZSLscgUErHyx5GTkyWQSnNhbFK0zIuYZ+oJFEBycjKkUilEIsXHyUxEIkRHx6jtuB8r6W2dMBIp1gkjY1MkiRNKIySVUpKTIJXmFjnHxiITPI+OUlpGIk6E8Tv5RSITlfXnU8qvE+8+YigyMUF0zOdZJ1KT4gAABkaK9cHAyAxvkotvI17HhGHTvH7Iyc6EjlAf33z/BypZOaktVvk1ZyJSSBeJRIiOjlbbcTVJaG6GzNeK5z3zdTy0jQ0h0BVCmqH6MaVPxdQkb4RbokRxag5xUhZMRapHv+0MeA4DvXLYvsITUqkMAoEWNu6KQvB59d1rJCkpyJVKYWpspJBuKjLCs+cvP2gff/rtRSUTEerXVP+cuYDqdsJEJELMZ1qP8z8vGBor3meNRBWR/JndN5KTk962E0XvA6rOr0ScWOQ+IxKZQKyB+8Y/8Tm0EyVR1uIFyl7MjLdkymI7kd8OK/38Lvm82mGizxE7EOm9OnfujPPnzwMAbG1tcf9+wQikmjVryv9taWkJAIiNjYWNjQ1CQ0MxYsQIhX01bdoUK1asUEirV68e3mVnZwdDw4IRGubm5ihXrhwEAoFCWmxsrMq458+fj1mzFOcQ+XbkNAwc7a2yTL5r5w9h9/rZ8u1Rk5XPH/m5uHDmODauXiTf/nX6klKM5t/p0tmj2LZmnnz7x2nLSy8YKnV3Lgfi0PYZ8u3+P6z9x/sys7DHqBkByEhPwYMbx7F/0yQM/s1XrZ2I9Om1a26GCSMKFhCZNP+fjYJr3aQi2jU3w5wVj/E0Oh1OdvoYO8QOCYnZOH427lOF+0ltDziCoItX8efMXyHUKZ1pJT5HV84egd+6OfLtsVNXlmI0RET/PVfOHcaOwu3wlFWlGA1R2ccOxP84C4u8Sdlfv34t7wDM385/LGjjxo1IT08HgCJzBhXe1tLKmxReKpWWKAYDg6KPO717HC0tLaVpxR1r8uTJ+PnnnxXSzoWpnri+MI96rWHnXNA5mpOdBQBISUqAsUkleXpKUgKq2KleZUxT6jZoBieX6vLt7LfxJkkSYWJqJk9PkiTCzkH56tpGRiIIBOXkoxcLlxGZqJ6v62MZGRlBIBAUmWxZLJGU2iT3yng2aAEHlxry7fw6kSxJgKjQOU5OSoS1vfLVo0uLoZExBIJyRc5xkkSs8v9WZGJaZIEVSTH5P6X8OiEWv3N8sbhUF80pzLVWa1SdUaiNyMmrD2+SE2AoqixPf5McD3Nr1StdA0C58jowNc9b+c/KrgZePL2Hy8Hb0X3Q7GLL/VPya04sUUiXSCQwMf08zu/HynwdD6G5mUKa0NwM2UkpahuRcfFaIkIfp8q3tcvn3W9MRdoKoxBNjHUQHvlG5X5GDbTFzv3Pcepi3kiIp1FpsKgkxIBeVdTWgSgyNEQ5gaDIgimJkmRUFBkXW3bHgWPwDTiCldMnwsnOWi3xKaOqnRBLJDAxVX879SFqNWgJe4X7Rl49SElKhMi04LNEsiQB1vbKV44uLUZGxm/biaL3AVXnV2RiWuQ+I5GIYaKB+8Y/URrtxMcoa/ECZS9mxlsyZaGdqFW/FeydPeTbhT+/F/5Ol5yUCGu7z+vzO9HniHMg/sfZ29vDwsICJ0+elKclJyfjypUraNy4MQCgSpUqcHJygpOTE2xtVS9v/65q1arh4sWLCmkXL16Eu7tmHm8SCoUwMjJSeH3o48u6egaoZGEjf1lUdYSRyAxhdwvmXExPS0Vk+F3Yu9QqZk+aoadvAAurqvJXVRt7iEwq4t7t6/I8aWlvEPHoAZzdaijdR3ltbdg7ueLenRvyNKlUivu3r8PZVXmZT0FbWxvOTk64FVIw/5NUKkVIyG24u30+X6j09Axgbmktf1lZO8DYpCIe3Lkmz5OeloqIR/fg5OpRzJ40T1tbG45OLrgbovh/eyfkJlzcqist4+JWHXdu31BIu3PrOlxV5P+UtLW14eTsjNshIfK0vDoRArdqxXfGaYpQrwJMzW3lr0pWTqhgXAlPQgvmIspMT0XMkzslns9QJpMi9+0HXHXIv+ZCbofI0/LPbzW30v9B5FOQXA5BxTaNFNLM2jaB+HKI2o6ZniHF81cZ8ldkTDoSxFmo41HQAaevVw7uzhXw4FGKyv0IhQK8+9tYrlQGrQ/7/esf0dYuD1cHW4UFUKRSKa7fDUUNV0eV5fz2H8UW/0P4fdpPqOZkp74AlSioxwVzVn1u9VhXzwCVLW3kL0trBxiJzBB6R/GzxNPH9+DgWrOYPWle/n3jzu1b8rS8+8YtuLop/xzn6uaOOyE3FdJCbt1Qmb+0lUY78THKWrxA2YuZ8ZZMWWgnirbDed/pHt69Ks+T1w7fhYNr6X+n+zeQSWX/idd/FTsQ/wNSU1MREhKCkLdfxp8+fYqQkBBERUVBS0sLP/74I+bMmYODBw/i7t27GDRoEKysrNCjR4+POu4vv/yCrVu3Ys2aNXj8+DGWLVuGffv2YeLEiR//R2mYlpYWWnX5Fsf3rcPd66fxIuoRfP+YAmOTSqhZv2A1rlWzh+HssZ3y7cyMNMREPkRMZN6jbAmxzxET+RCJ8R82p9THxNv5iz7Y/9c2XL9yHlGREVizbDZMTM1Qr1ELeb45U8fh+KG98u2uPfri9PGDOHvyCJ5HR2Lzn4uRmZGBlu26qTXeXj174Ojx4wgKPomoqGisWv0nMjIy0KF93uI+i5Yuw+at2+T5s7OzERHxBBERT5Cdk4OEhARERDzB8xcv1BpnYVpaWmjfvR8C/96EW1fPIjoyHBuWz4CJaSXUadhKnm+R92gEH/5Lvp2RnoaoJ2GIepK3QExc7HNEPQlDQtz75xz9GN179kHw8cM4HXwMMVGRWL96GTIz0tGmfWcAwMqlc+G3db08f9cvvkLIjas4uO8vxEQ/w187tiAiPAyduxVdzV0devbsiWPHjiE4KAhRUVFY/ccfyMzMRPv27QEAS5YswZYtW+T58+pEBCIiIpAjrxMReKGhOqGlpYWG7Qbh/KG1CAs5hdcxYQjY+BsMRZXhVqdgkartiwfj6kk/+Xaw/1I8C7sGSXwMXseEIdh/KSLDrsKjUXe1xturZ08cPXYcQcHBiIqKwqrVq5GRmYEOb8/v4iVLsXnLVnn+d89vvIbPbzkDfRjVcoNRrbyOIX37qjCq5QZd67yR865zfkatLQvl+Z+t3w19e2u4zf8FBq4OsB3VH5Zfd8bTFVuV7V5t9h5+iYG9q6JJPRPY2+hjyjgnxIuzcOFqwUjvpTPc0bOThXz70nUxBvaugkZ1RLCoJESzBqbo080K56+qd36oft074GDwORw+cxGRMS+waIMfMjIz0a11UwDArJUb8ecOf3l+34AjWL97P6aOGQzLSmZIECchQZyEtPQMtcZZWH47kV+P/1i9+rNvJ9p1648jezci5OoZxDx7jM0rvSEyrYTaDQrmhl42YyROHdkt385IT0P00zBEP827b8THPkf00zAkxKn3s8SXPb/CiWOHcSr4OKKjnmHt6uXIyMxAu/YdAQC/L1mA7Vs2yvN3/7IXbt64hv379iAmOgq7/LYh4vEjdO3eQ61x5itr7URZi7csxsx41a+stRNaWlpo220AjuzdgNvXzuD5s8fYsnIaRCaV4Fm4HZ45AqeLtMMPEf007ztdXjv8EIlqboeJPjd8hPk/4Pr16wqLluQ/1vvdd99h69at+PXXX/HmzRuMGDECEokEzZo1w7Fjx6Crq/tRx+3RowdWrFiBJUuW4IcffoC9vT22bNmCVq1afdR+S0u7L4ciKzMdu9bNQnpaChzcamPMlLXQLjSqMf51NN4kS+TbURH3sXJWoZWpty8GADRo+QUGfj9XrfF27/0tMjMysPGPhUh7kwpX95qYNGuZwijM16+eI6VQvI2bt0NykgR7d2yARJwIWwdnTJq1TO2PrbZq0RxJSUnY7rcDYrEYDg4OmDt7lvwR5ri4OAgKDb9JSEzEmPE/yLf37gvA3n0BqOlRA4sXzFdrrIV16fkdsjIysPXPeUh7kwKXap74efpKhToR+yoGqYXOcWT4Ayz0HiXf3r35dwBA09bdMOyHmWqLtWmLNkhKkmC332ZIxImwd3DCtNmL5f+38XGx0NIq+E3Jzb0GfvzFG7t8N2HHtg2wrFIVv06bCxs7B1WH+KRatmyJ5KQk+Pr5QZyYCAdHR8z28SmoE7GxCnUiMTER48aOlW/7+/vD398fHh4eWLhoUZH9q0PTzsOQnZWOwG3TkZGWDBvnuvj2pw0or11QHxLjopCWWvDozpvkRARs+g2pSXEQ6hnCvKorvv1pIxyrN1VrrC1btkBSchJ8ff3k19yc2bPl5zc2Lg5aAsVr7vtx4+Xb/v774O+/Dx4eHli8cIFaYwUA47o10Pikr3zbfckUAED09n244zUZQstK0LMumIYjPTIG174YCfelk2E3bhAyYl7h7shpiA+6oPZYC9u1/wV0heUwcaQDKhiUx92Hyfh1Tiiysgt+ua5iLoSxUcHHsRWbnsKrrw1+HO4AEyNtxIuzEBj0Gtv2qncBoXZNG0CcnIKNu/cjQZIMZztr/D71J5i+fYT5dXwiBIXqxL4TZ5Cdk4MpS9Yo7Mfr6y8w7Jsv1RprvpYtWyIpORl+vr5IFIvh6OAAnyL1uKBdS0xMxNhx4+TbhduJRQsXFtm/OnTsORiZmenwWzsHaW9S4FTNEz94r1a4b8S9ila4bzyLeICl04fLt//eshQA0Lh1dwwZp56pDgCgecvWSE5Owk7frRCLxbB3cMSM2QsU7huF60Q19+qY8OtU+G3fDN+tm2FVpQome8+GrZ292mIsrKy1E2Ut3rIYM+NVv7LWTgBAxx6DkZWRDr+1PnntsFttjPf+U/E73atopKYUfF57FnEfy2YUaoe3vm2HW3XH4HE+GoudqLRpyWT/4TWo6T/nxG31PRaoLmZ6qh91+xyZCsrWCmYvsi3fn+kzYqSteu60z5WeIK20QyiRKy809yH2U2hsGVHaIZTYA7eupR1CiSz+cmtph1Ai+2bklnYIJSLRL1vtMABEZ5StmM11P8+VkFWJcGtb2iEQ/ec4Pjz5/kyfkVfpFd+f6TPSqoZeaYegEd9NV+9TVZ+LbbMt3p/pX4iPMBMREREREREREZFKfISZiIiIiIiIiIg+Ch9w/XfjCEQiIiIiIiIiIiJSiR2IREREREREREREpBI7EImIiIiIiIiIiEglzoFIREREREREREQfRSrlHIj/ZhyBSERERERERERERCqxA5GIiIiIiIiIiIhUYgciERERERERERERqcQORCIiIiIiIiIiIlKJi6gQEREREREREdFHkXERlX81jkAkIiIiIiIiIiIildiBSERERERERERERCqxA5GIiIiIiIiIiIhU4hyIRERERERERET0UWQyzoH4b8YRiERERERERERERKQSOxCJiIiIiIiIiIhIJXYgEhERERERERERkUrsQCQiIiIiIiIiIiKVuIgKERERERERERF9FJlUWtohkBpxBCIRERERERERERGpxA5EIiIiIiIiIiIiUomPMNN/inOFqNIOocTuSexKO4QSCc8yKe0QSmTVgoulHUKJBI2NKO0QSizGoWVph1AiFXTL1qMXEqmotEMoMceHJ0s7hBLZgozSDqFEcjMTSzuEEkmTGZR2CCVWM+daaYdQIpnZRqUdQok4PQwu7RBKTAat0g6B6KNEuLUt7RBKxCb0XGmHUEJ6pR0A0UdjByIREREREREREX0UqVRW2iGQGvERZiIiIiIiIiIiIlKJHYhERERERERERESkEjsQiYiIiIiIiIiISCV2IBIREREREREREZFKXESFiIiIiIiIiIg+ikzGRVT+zTgCkYiIiIiIiIiIiFRiByIRERERERERERGpxA5EIiIiIiIiIiIiUolzIBIRERERERER0UeRSTkH4r8ZRyASERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIiKkRERERERERE9FG4iMq/G0cgEhERERERERERkUrsQCQiIiIiIiIiIiKV2IFIREREREREREREKnEORCIiIiIiIiIi+ihSmbS0QyA14ghEIiIiIiIiIiIiUqlMdyBqaWlh//79xeYZPHgwevTooZF4PifvOzcymQwjRoyAqakptLS0EBISorHYAODMmTPQ0tKCRCLR6HGJiIiIiIiIiKhkSvQIc6tWreDp6Ynly5erKZySefnyJUxMTAAAkZGRsLe3x61bt+Dp6SnPs2LFCshkZXMpcVV/06dw7NgxbN26FWfOnIGDgwPMzMw+6f4LU1ZvmjRpgpcvX8LY2Fhtx/2UDgYewl5/f4jFYjjY22PM6FFwdXVVmjfy2TP4+vrhcXg4YmNjMXLEcPQshU5smUyG43v/wJXTe5H+JgX2LrXRa+h0VLK0VVnm5IENuHstCHEvnqK8ji7snD3Rtd/PqGxlr5F4TwWswvWzfyMjLQU2zrXxxaAZqGhhp7LM2UPrEXojCHEvn0BbWxfWTrXRoc8EVLJUf7z5vPrbont7C1QwKIe7D5OxdE04Yl5mqMwvEABD+tqiQ6vKqCjSRnxiFo6eeo1te6LVHuvuszew7eQVxCenwqVKZUz6ugM87KzeW+7o9QeYtPUAWtd0xvIRX6k9znyHAg/C338vxGIx7O0dMGr0GJXX3bNnkfDz9UV4+GPExsZi+IiR6NGjp8ZiBfLq8An/P3Dl9N9If5MCu/xrrpg6fOrAety9Hoy4F0/k11yXvhM0cs3lx/z3jo04dTwQb96kwLVaTXiNmQjLKtbFljt+yB+B+3YiSZwIG3snDBn5E5xc3dUe7+HA/djvvwdicSLs7B0xYvQ4uLi6qcx/8fxZ7PDdgtjXr2BlVRWDhg5HvfoN1R5nvrJ27/A/EoRd+48gUZIERztr/DRsENxdHJXmPXjiNI6duYAnUTEAAFdHe4wc8LXK/Opy9FAADvjvhuRtnfAa9QOcXaupzP+/86exy28z4l6/gqVVFXw7ZBTq1m+ksXj3HjsNv8ATSJQkwcm2KiYM7YfqTsqv9/3B53H03CU8iX4BAHB1sMHofj1V5leHgMPHsXt/IBLFSXC0s8EPI4agmouT0ryBJ07i+OlzePqsoE4MH9hXZX51OBx4AAFv2wh7e0eMGD222Dbiwvmz2OG79W0bUQXfabiNAMpeu8Z41a+sxGzarB4cJnjBuE4N6FpVxvXeY/D64Mniy7RoAPclk1DB3RkZ0S8RPn8NYrYHqD3Wwo4e2oeDb+8btvL7hurPMP87fxq7/TYp3Dfq1G+swYiJPh+ffASiTCZDTk7Op96tUhYWFhAKhcXmMTY2hkgk0kg8ZUlERAQsLS3RpEkTWFhYoHz5on3JWVlZaju+jo4OLCwsoKWlpbZjfCpnz57Dhg0b8G3//vhj1Uo4ONhjqre3ytGTmZmZsLC0wNAhg+Ud3KXhdOAmXDi+A72HzsB4n13Q0dXDhgUjkJ2VqbLMk9BraNq+H8bN3oWRkzcgNzcH6xcMR2ZGmtrjPX9kIy4H+eGL72Zi5PS/oCPUx7alw4uNN/LhNTRo0x8jvHfju182QZqbjW1LvJCVqf54AaB/r6ro3dUKS9Y8xshfQpCeIcXSmTWgo626Xg/oZY0enS2xfF04vh17A2u3R+btp9v7O/I+xrEbD7Ak4CRGdm6G3b8NhWsVc4xe/RcSUt4UW+55ggTL9p9CHcfiO5Q+tXNnz2LDhg3o3/9brFz1B+wdHODtPfW9193gIUNL7bo7c2gTLhz3Q68hMzBu9m7oCPWw8T3XXMTD62jSrh/GztqFEZM2Ijc3BxsWDEOWBq45ADjovwPHAvdi2Pe/YM7SDRDq6mL+9J+RVUzM/zsXDN+Nq/BVv6GYv2IzbO2dMH/6z0iSiNUa6/mzp7F5w1p8038Qlq1aC3sHR8z0/g0SFccNfXAfSxbOQbsOnfH7qnVo2Lgp5vtMx7PIp2qNM19Zu3ecvHAZf2zZiSHf9MSmpT5wsrPBz7MXQSxJUpr/1v1QtGveGKt8pmDdghkwNzPFz7MWIS4hUWMxXzx3Cls3rEaf/t9h8coNsLV3hI/3RJV18eGDe/h9kQ/aduiCJSs3oEHj5lg0ZyqiIp9oJN6g/13Diu1/Y9hX3bBt4TQ421rjx7krkJiUrDT/zQdhaN+0AVbPmIANc36DeUVT/DBnOWIT1Xut5Tt1/n9YvdkX333zFTYsmw9He1tMnDlfZZ0IufsAbZs3xfI53vhz0WxUMquIiTPnaaxOnD97Gps2rEXf/gPx+6q1sHNwwAzvSe9pI+aifYdOWL5qLRo2bop5PjM01kbkx1yW2jXGy5gLK2egj+Q7Ybg3ftYH5dezq4r6B9ch4cwVXKj3JZ6u2gaPdXNg1r6ZmiMtcPHcSWzbsBpf9x+MRSs3ws7eCXOKvW/cxfJFs9G2Q1csXrkR9TV83yD63HxwB+LgwYNx9uxZrFixAlpaWtDS0kJkZKT8UdSjR4+ibt26EAqFuHDhAiIiIvDll1/C3NwcFSpUQP369REcHKywTzs7O8ybNw9Dhw6FoaEhbGxssH79evn7WVlZGDt2LCwtLaGrqwtbW1vMnz9f/n7hx3Tt7fN+ja1duza0tLTQqlUredyFH2HOzMzE+PHjUblyZejq6qJZs2a4du2a/P38v+fkyZOoV68e9PX10aRJE4SFhak8N5GRkdDS0sKePXvQvHlz6OnpoX79+nj06BGuXbuGevXqoUKFCujcuTPi4uIUym7cuBHVqlWDrq4u3Nzc8Oeff8rfU/U3Xbt2De3bt4eZmRmMjY3RsmVL3Lx58z3/gwUGDx6McePGISoqClpaWrCzswOQN1Jw7Nix+PHHH2FmZoaOHTsCAJYtWwYPDw8YGBjA2toaY8aMQWpqqsI+L168iFatWkFfXx8mJibo2LEjxGLxe+tN4S9S/v7+qF69OoRCIezs7LB06VKFY7yvvqjLvoAAdOrUCR06tIetjQ3GjR0LoVAXx0+cUJrf1cUFw7280KplS2hra6s9PmVkMhnOH/NFux4jUaNeG1jZuKLv6PlIlsTi3nXVvwwOn7Qe9Vv2hEVVJ1jZuqHvqLmQxL9EzNMHao/30ontaPnFKFSr0xYW1q7oPXwBUsSxCL0ZrLLcdxM3oE7znjCv4gxLGzf0GjYfSQkv8SLyvlrjzdenexVs/zsKF64mIuJZGuYuD0NFUyGaN1I9oreGmyEuXEnApRtivIrNxJn/xePqLQncnQ3VGqvvqavo1aQWejSuCUdLM0zr2wm6OuWx/9IdlWVypVJM2XYQo7s0R1UzkVrje1dAwD506tQJ7Tt0gI2NLcaOHQddoRAnThxXmt/FxRVeXsPRsmWrUrnu8q657WjbYyRq1Gv79ppbgGRJLO7fKOaa+y3/mnOGla0bvhk5D5IE9V9z+TEfPbAHPb/5DvUaNYetvRO+/9kb4sR4XL90XmW5w/v/QpuO3dGqfVdUtbHHsO9/gY5QiDNBh9Qa74GAvejQqQvadegEGxs7jB77I4RCIYJPHFOaP/DAPtSpWx+9vvoG1ja2GDBoCBwcnXE4cL9a48xX1u4duw8eRff2rdC1bQvYW1fBL6OGQFcoxKGT55Tmn/HTGPTq3A7O9rawrWqF38YMg1QmxfU76q+7+QID9qBdp25o074LrG3sMHLsBAh1dXHyxBGl+Q8f3IvadRugR+9+qGpjh34DvWDv6IKjhzQz+mXXoSB82bYZurVuCvuqVvht+ADo6ujg0OmLSvPPHj8MX3VsBRc7a9hVscSUUYMglclw/e5DjcS758BhdOvQBl3atYKdTVVMGD0MukIdHAk+ozS/94Rx6NmlA5wd7GBbtQp+HTsSUqkMN27f00i8BwL8C7URthhTwjbi20FD4ODohMOBBzQSb17MZatdY7yMubC44+fwaMZyvD6g+rN6YbYj+iL9aQxCf12I1IdP8OzPHXjlfxz2PwxWb6CFvHvfGPH2vnHqxGGl+Y8c3AvPug3wpfy+MeztfWOfxmIua2RS2X/i9V/1wR2IK1asQOPGjTF8+HC8fPkSL1++hLV1wYiUSZMmYcGCBQgNDUXNmjWRmpqKLl264OTJk7h16xY6deqE7t27IyoqSmG/S5cuRb169XDr1i2MGTMGo0ePlnfWrVy5EgcPHsSePXsQFhaGHTt2yDu73nX16lUAQHBwMF6+fIl9+5Rf1L/++iv8/f2xbds23Lx5E05OTujYsSMSExV/HZ06dSqWLl2K69evo3z58hg6dOh7z9GMGTMwbdo03Lx5E+XLl0f//v3x66+/YsWKFTh//jzCw8Mxffp0ef4dO3Zg+vTpmDt3LkJDQzFv3jx4e3tj27Ztxf5NKSkp+O6773DhwgVcvnwZzs7O6NKlC1JSUt4bI5D3fzl79mxUrVoVL1++VOhA3bZtG3R0dHDx4kWsXbsWACAQCLBy5Urcv38f27Ztw6lTp/Drr7/Ky4SEhKBt27Zwd3fHpUuXcOHCBXTv3h25ubnvrTf5bty4gT59+qBv3764e/cuZs6cCW9vb2zdulUhX3H1RR2ys7PxODwctQs9Qi4QCFDb0xOhDzXzAf6fSIyNQYokHs41Ch7L0tM3hI1jTTx7fPuD95ORllen9Cuo91FzcVwMUpPi4ehe8DiArr4hqjrWRHRECeJNz4tXz0D9j8ZbmuuioqkOrt+WyNPepOUi9FEKqruq7gy89zAFdWuKYG2lBwBwtDNATXcjXL6pvhEa2Tm5CI1+hUauBY+9CQRaaORqhztPn6sst+7oBZhUMECvJrXUFpsy2dnZCA9/DE/P2vI0gUAAT8/aePgwVKOxfKjEuLfXXPWCOlxwzYV88H40dc0BQOzrF5CIE+DhWU+epm9QAU6u7nj0UPkX/pzsbDwND4OHZ315mkAggIdnPZVlPoXs7GxEhD9CLc86Cset5VkHYQ+Vd1iFPXyAWrXrKqTVrltPZf5PqazdO7Kzc/AoIhL1alWXpwkEAtSrWR33w8I/aB+ZWZnIyc2FUQUDdYWpIL9O1PQs+D8WCASo6VkXjx4q/xHp0cP7CvkBwLNOfYSpyP8pZefkIOxJFOp7FDxeLRAIUN+jGu4++rCRLBmZWcjN0cw5zqsTT1G3loc8TSAQoG4tD9wPe/RB+8jMzERObg6MDDURbzbCwx/BU0kb8VDFNf/w4QPUql1HIa1O3foq839qZbFdY7zqVRZjLglRI0/En7qkkBYXdAEmjTw1cvzs7Gw8CX+EmoU+9+R9hqmr8j6g/L7RQOV9hujf7oPnQDQ2NoaOjg709fVhYWFR5P3Zs2ejffv28m1TU1PUqlXwpdPHxwcBAQE4ePAgxo4dK0/v0qULxowZAwD47bff8Pvvv+P06dNwdXVFVFQUnJ2d0axZM2hpacHWVvXcbZUqVQIAVKxYUWl8APDmzRusWbMGW7duRefOnQEAGzZsQFBQEDZt2oRffvlFnnfu3Llo2bIlgLzO0a5duyIjIwO6uroqY5g4caJ81N4PP/yAfv364eTJk2jatCkAwMvLS6FDbMaMGVi6dCl69eoFIG/E4YMHD7Bu3Tp89913Kv+mNm3aKBx3/fr1EIlEOHv2LLp166YyvnzGxsYwNDREuXLlipwrZ2dnLFq0SCHtxx9/lP/bzs4Oc+bMwahRo+SjJRctWoR69eopjJ6sXr3gS0hx9SbfsmXL0LZtW3h7ewMAXFxc8ODBAyxevBiDBw+W5yuuvrwrMzMTmZmZRdLe99h7YcnJyZBKpRCZiBTSRSIRoqPVP2fdP5WSFA8AMDRWHAlXwbii/L33kUqlOOC7EHYutWFp7fzJYyws9W1MFYwrKqQbGJkhNSlOWZEipFIpjuycDxvnOjCv6vLJY3xXRZO8EUJiieKj/omSLJia6Kgs5+cfDX39cvBbXRdSqQwCgRY2+EUi6OyH/Z3/hDg1DblSGSoa6iukVzQywNPXCUrL3IyIRsClO9gz6f0/nnxqZfG6S5EUc81JPvyaO+i7AHYudWCh5msOACTivE5rY5GpQrqxyBQSifJ6kZwsgVSaq7TM85gopWU+heTkpLd1QvHRXpHIBDEq6oREnAiRqGh+sVj9j1OWtTqclJKCXKkUpu/MS2wqMsKz5y8+aB9/bv8LZiYmCp2Q6pSSnASpNLfI/7GxyATPo5XXRYk4EcZK6oREA3VCkpyad45FRgrpJiJDRL54+UH7WL3DH2amxgqdkOqSlJyMXKkUJiLFOmEiMkZUjOofngpbu30nzExNFDoh1aW4NuK5yjZCrKSNEGmkjQDKYrvGeNWtLMZcEkJzM2S+VvxMlPk6HtrGhhDoCiHNUD19yqeQf98oeh8wLfa+ISrymUcz9w2iz9EnmwOxXr16CtupqamYOHEiqlWrBpFIhAoVKiA0NLTICMSaNWvK/62lpQULCwvExsYCyHvUNiQkBK6urhg/fjxOqHjs50NFREQgOztb3qEHANra2mjQoAFCQxVHtRSOy9LSEgDkcalSuIy5uTkAwMPDQyEtfx9v3rxBREQEvLy8UKFCBflrzpw5iIiIKPY4r1+/xvDhw+Hs7AxjY2MYGRkhNTW1yLn9J+rWrVskLTg4GG3btkWVKlVgaGiIgQMHIiEhAWlpeXN05Y9A/BihoaEK/y8A0LRpUzx+/Bi5ubnytOLqy7vmz58PY2Njhdeates+Ks7P1c0LhzBlSD35Kzf34+chDdgyB6+iH+PbcUs+QYSKbv8vED4j68pfubnZH73PQ76zERvzGH1GL31/5n+gfctKOL67ifxVvtw/az7bNKuE9i0rY/ayMHj9fAvzVjxC3x5V0al15U8c8T/3JiMTU7cHYka/zjCpoP/+Av9BNy8GYurQuvLXJ7nmtvrgVcxjDBj76a85ALhw+ji++6qd/JWrofmK6d/P1z8QJy9cxrxJP0Coo/oHFPrntu8/iuCL17Bg4hgIdUpnepSS2LH3AE6d/x/mTJ7AOkFERPQvUaJVmItjYKD4eMLEiRMRFBSEJUuWwMnJCXp6evjqq6+KLMzx7jw/WlpakEqlAIA6derg6dOnOHr0KIKDg9GnTx+0a9cOe/fu/VRhq1Q4rvyFPvLjKkmZd9Py95E/h+CGDRvQsKHiKlnlypUr9jjfffcdEhISsGLFCtja2kIoFKJx48afZNGTd/8fIyMj0a1bN4wePRpz586FqakpLly4AC8vL2RlZUFfXx96enoffdwPVVx9edfkyZPx888/K6S9iCnZyA8jIyMIBAJIxBKFdIlEAhPT0lsg5V3udVvjZ6eCzuqcnLwOuZSkeBiZVJKnpyYlwMpW9Spu+fZtmYMHt85izPRtEFVUPXL0n3Kr3QZVHQs6g3NysuTxGYoKOtLeJMfDwub9Iy0O+fog7PZZDJvsC2PTTx8vAFy4mogHYQVzjWpr53Ugmoh0kCAu6AA1Feng8dPUIuXzjR5sjx3+0Th5Pm/E4ZNnaTCvJMS3X1nj2Onif6T4p0wq6KOcQAsJKYoLcyQkv4GZUYUi+aPjJXiRkITx6/6Wp0nfrmZfZ/wCHPAeCetK6qv/ZeG6c6/TBjZK6vA/veYCts5B6K2zGOO9XS3XHADUbdgMTq4Fo8Oys/NiTpIkwsS0YORkkiQRtvbKR0AaGYkgEJRDkkTxl/ckSSJEJqZKy3wKRkbGb+uE4iTnEokYJqbKjysyMS0y6bxEIoaJGuPMVxbqcGHGhoYoJxAgMUlxcYxESTIqvmchup37D2PHvkNYPus3ONnZqDFKRYZGxhAIyhX5P06SiFXWRZGJaZGJ8iXF5P+UREYV8s6xRHHBFLEkBRVFxU9ZsOPgCWzffwyrvH+Cs21VdYYpZ2xkhHICQZEFU8SSJJi+M7L2XbsDArFz3wEsnTUVjnaqnx76lIprI0QqrjmRiYmSNkKikTYCKIvtGuNVt7IYc0lkvo6H0FzxSQ2huRmyk1LUPvoQKLhvFL0PqP4Mk3d+3/3Mo5n7Rln1X54f8L+gRENodHR0FEaDFefixYsYPHgwevbsCQ8PD1hYWCAyMrLEARoZGeGbb77Bhg0b8Ndff8Hf37/IfIX5sQEoNj5HR0f5/H75srOzce3aNbi7q166XR3Mzc1hZWWFJ0+ewMnJSeGVv3iKqr/p4sWLGD9+PLp06SJfdCQ+/sMekSupGzduQCqVYunSpWjUqBFcXFzw4oXi40w1a9bEyZOqFwn4kHpTrVo1hf8XIO/vdHFxeW+HqipCoRBGRkYKr5I8vgzkdVg6Ozkh5HaIPE0qlSIkJATV3N7fKaApunoGMLOwlb/MqzjCUGSGx/evyPNkpKUiKuIObJ1Vz2cnk8mwb8sc3Lt+EqOmbkbFyur5oiLUM0BFc1v5q7KVEyoYm+HJg8sF8aanIibiDqwdi4/3kK8PHtwIxtBft8Ckkvq+WKWn5+L5qwz5KzI6DQmJWahbUyTPo69XDtVcDHE/TPV8pLo6Asje6fOWSmUQqHFBcu3y5VDN2gJXwiIVjnnl0TPUtK9SJL+9eUXsnTIMf03ykr9aeTijvrMt/prkBQsToyJlPmm82tpwcnJWet25uan/0b0PUfSac4KhyAzh9wvVYfk156lyPzKZDAFb5+De9WCMnLoZpmq65gBAT98AFlZV5a+qNvYQmVTEvZAb8jxpaW8QHvYALm41lO6jvLY27J1cce/2dXmaVCrFvds3VJb5FLS1teHo5II7t28pHPdOyC24uim/f7u6ueNOiOICYyG3bqjM/ymVlXtHPm3t8nBxtMONQgugSKVS3Lh7H9VdnVSW2xFwCNv+PoAl03+Bm5ODJkKVy68TdwvV37w6cRMubsofo3Zxq447t28opN25dR2uKvJ/Strly8PVwQbX7hXMgSmVSnHtXig8XFSfO98Dx7DZ/xCWT/kB1Rzt1B5nvrw6YY8bdwrmNpVKpbh55x6qu6qeJmTnvoPYvmcfFs2YDDdnR02ECiD/vuGC27cLrvn8NsJNxTXv5uaOOyG3FNJCbt1Qmf9TK4vtGuNVr7IYc0lILoegYptGCmlmbZtAfDlEI8fX1taGg5L7xt2QmyrvAy5u1XH3tuL5vX3rmsr7DNG/XYk6EO3s7HDlyhVERkYiPj6+2BF5zs7O2LdvH0JCQnD79m3079//vSP43rVs2TLs2rULDx8+xKNHj/D333/DwsICIiW/hleuXBl6eno4duwYXr9+jaR3fkUH8kbXjR49Gr/88guOHTuGBw8eYPjw4UhLS4OXl1eJYvsUZs2ahfnz52PlypV49OgR7t69iy1btmDZsmUAVP9Nzs7O8PX1RWhoKK5cuYIBAwaobRSgk5MTsrOzsWrVKjx58gS+vr7yxVXyTZ48GdeuXcOYMWNw584dPHz4EGvWrJF3an5IvZkwYQJOnjwJHx8fPHr0CNu2bcMff/yBiRMnquXvKolePXvi6LHjCAoORlRUFFatXo2MzAx0eDvn5+IlS7F5y1Z5/uzsbERERCAiIgI5OTmIT0hAREREkY5XddLS0kLzTgNxMmAd7t84hZdRj7BrzWQYiSqjRr2Cx83Xzh2KC8d3yLf3bfHBzYuHMGDsIgj19JEsiUOyJA7ZWRlqj7dxh0E4E7gWobdO4VX0I/ivnwRDk8qoVqedPN+WhUNwObgg3kO+s3H7f4H4etRi6OgaIEUShxQNxJtvT+BzfNfHGk0bmMLBVh/TfnRBQmImzl8u6NBfPtsDvbpYyrf/dy0RA7+2RuO6JrCoLETzRhXxzZdVce6y8jnnPpWBbRpg3/9CcPDyHTx5FY85fx1DemY2ejTKG0U3dXsgVhw4AwAQapeHs1UlhZehni4MdHXgbFUJ2uX/Wad+SfTs2QvHjx1FcHAQoqKisHr1KmRkZqB9+w4AgKVLFmPrls3y/O9edwkJ8Rq97vKuuUE4ub/gmtu9dhKMRJVRvW7BNbdu3hBcPFFQhwO2+uDmxUD0/34xhLoGGrvm8mPu/GUfBPy1DdevnEdUZAT+XOYDE1Mz1GvcXJ7PZ8p4HAssGPnftcc3OHU8EGdPHsHz6Ehs+nMJMjMy0LJdV7XG+2XPr3Di2GGcCj6O6KhnWLt6OTIyM9Cufd7cw78vWYDtWzbK83f/shdu3riG/fv2ICY6Crv8tiHi8SN07d5DrXHmK2v3jr5fdEZg0BkcPXUekdHPsWTdVqRnZKJr2xYAAJ8Va7HW9y95fr99h7Bxpz8mjx0Oy8pmSBBLkCCWIC1dM+0vAHTv2QfBxw/jdPAxxERFYv3qZcjMSEeb9nnzXK9cOhd+W9fL83f94iuE3LiKg/v+Qkz0M/y1YwsiwsPQuVtPjcTbr1t7HDx5HofP/A9PY15i0cYdyMjMQtdWeVO4zPpjM/7cWbAI4Pb9x7D+r4OYOvo7WFauiARJEhIkSUjL0Mw57vNlVxw+cQrHTp1FZPRzLFu7CekZmejcLm+O8Lm/r8b67bvk+Xf6H8DmHXvw27hRsKhcSeN14suevXHi2BGcDD6B6KhnWLN6BTIyM9C2fScAeW3ENiVtRMC+vxETHYWdftsQ/vgRunb/UiPx5sVctto1xsuYCytnoA+jWm4wqpX3w5i+fVUY1XKDrnXe517XOT+j1paF8vzP1u+Gvr013Ob/AgNXB9iO6g/Lrzvj6Yqtao81X9594xDOBB9FTFQkNqxeisyMdLRu3wVA3n1jx9aCKa+6fPEVQm5cwcF9u/E8+hn+2rEZT8LD0LlbL43FTPQ5KdEjzBMnTsR3330Hd3d3pKen4+nTpyrzLlu2DEOHDkWTJk1gZmaG3377DcnJySrzK2NoaIhFixbh8ePHKFeuHOrXr48jR45AICja71m+fHmsXLkSs2fPxvTp09G8eXOcOXOmSL4FCxZAKpVi4MCBSElJQb169XD8+HGYmGj+kaJhw4ZBX18fixcvxi+//AIDAwN4eHjIFy1R9Tdt2rQJI0aMQJ06dWBtbY158+apraOtVq1aWLZsGRYuXIjJkyejRYsWmD9/PgYNGiTP4+LighMnTmDKlClo0KAB9PT00LBhQ/Tr1w/Ah9WbOnXqYM+ePZg+fTp8fHxgaWmJ2bNnKyygUlpatmyBpOQk+Pr6QSwWw8HBAXNmz5bXmdi4OGgVGj6WkJiI78eNl2/7+++Dv/8+eHh4YPHCBRqLu3V3L2RlpmPvxplIT0uBvUsdDJ+0Dto6BaMwE15H402KRL59KTjvy+Ean8EK+/pm5BzUb6neL1jNuwxDdmY6Dm6ZgYy0ZNi41MGgCesV4k2MjUJaSsFjB1dP7QYAbF7wncK+enrNQ53m6v9CuHNfDPR0y+GXMc6oYFAed0OTMHHWfWRlFwzdt7LQhbFRwaP3v2+IwLD+tvh5lBNMjLURn5iFA8dfYutf6luAAgA61XWHODUNfx4+j/iUN3CtUhl/ft8HFY3ypi14lZgMgZYah0GWUIuWLZGUnAQ/X1/5dTd79hz5dRcXF6tw3SUmJmD8uO/l2/v8/bHP3x8eHh5YsHCxRmJu1e3tNbdpBjLSUmDnUgfDfluv5JorqMOXgvPq8No5inW4z4i5ar/mAOCL3gOQmZGODasWIe1NKlzda2LS7KXQKRTz61fPkZJc8KNckxbtkJwkwd9+GyERJ8LWwRmTZi9V++M8zVu2RnJyEnb6boVYLIa9gyNmzF4gP258XCwEhepENffqmPDrVPht3wzfrZthVaUKJnvPhq2dvapDfFJl7d7RtlkjSJJTsHG3PxLFSXCyt8HS6b/A9O3jta/jEhTaiP3HTiI7JwfTFq1U2M+Qb3rCq69mvlg1bdEGSUkS7PbbDIk4EfYOTpg2e7FCndDSKvjM6OZeAz/+4o1dvpuwY9sGWFapil+nzYWNnWZGT7ZvUh+S5BRs2HMQCZJkONtVxe9TxqPi24VVXsUnyqfAAYB9QWeRnZODKcsU52/2+qobhvf5Qu3xtmneBJLkZGze+TcSxRI42dti8YxJMH37Q35sfLzCNXfgWBCyc3IwfeHvCvsZ3Lc3hvT7Wu3xNm/ZGkmF2ggHB0fMnD3/nftGQX3IayOmYMf2LfI2Yor3LI21Efkxl6V2jfEy5sKM69ZA45O+8m33JVMAANHb9+GO12QILStBz7rgR/T0yBhc+2Ik3JdOht24QciIeYW7I6chPuiC2mPN17RFWyQXum/YOThh6uwlhc7va4V7nZu7B374ZTp2+27EzlK4bxB9brRkMhkfUqf/jKcR4aUdQondk9iVdgglkp71ydZm0ohVCy6+P9NnJGhs8YssfY5iHFqWdggl8kCsuXncPgVrY/H7M31m9ASaG6X2KQhRtuKtkFm2Vod8rVO2rjkAqPImrLRDKJFMoXqnnvjUkrTN3p/pMyPD5/MjHNE/EeH2cYtiappN6LnSDqFEPJzMSzsEjegx5lFph6AR+/9UPZ3Hv9knW0SFiIiIiIiIiIj+mzg+7d+tbA0VIiIiIiIiIiIiIo1iByIRERERERERERGpxA5EIiIiIiIiIiIiUolzIBIRERERERER0UeRSqWlHQKpEUcgEhERERERERERkUrsQCQiIiIiIiIiIiKV2IFIREREREREREREKrEDkYiIiIiIiIiIiFTiIipERERERERERPRRZFJZaYdAasQRiERERERERERERKQSOxCJiIiIiIiIiIhIJXYgEhERERERERERkUqcA5GIiIiIiIiIiD6KTCYt7RBIjTgCkYiIiIiIiIiIiFRiByIREREREREREVEpSkxMxIABA2BkZASRSAQvLy+kpqaqzB8ZGQktLS2lr7///lueT9n7u3fvLnF8fISZiIiIiIiIiIioFA0YMAAvX75EUFAQsrOzMWTIEIwYMQI7d+5Umt/a2hovX75USFu/fj0WL16Mzp07K6Rv2bIFnTp1km+LRKISx8cORCIiIiIiIiIiolISGhqKY8eO4dq1a6hXrx4AYNWqVejSpQuWLFkCKyurImXKlSsHCwsLhbSAgAD06dMHFSpUUEgXiURF8pYUH2EmIiIiIiIiIqKPIpPK/hOvzMxMJCcnK7wyMzM/6txdunQJIpFI3nkIAO3atYNAIMCVK1c+aB83btxASEgIvLy8irz3/fffw8zMDA0aNMDmzZshk8lKHCM7EImIiIiIiIiIiD7A/PnzYWxsrPCaP3/+R+3z1atXqFy5skJa+fLlYWpqilevXn3QPjZt2oRq1aqhSZMmCumzZ8/Gnj17EBQUhN69e2PMmDFYtWpViWPkI8xEREREREREREQfYPLkyfj5558V0oRCodK8kyZNwsKFC4vdX2ho6EfHlJ6ejp07d8Lb27vIe4XTateujTdv3mDx4sUYP358iY7BDkQiIiIiIiIiIqIPIBQKVXYYvmvChAkYPHhwsXkcHBxgYWGB2NhYhfScnBwkJiZ+0NyFe/fuRVpaGgYNGvTevA0bNoSPjw8yMzM/+O8A2IFI/zGWYadKO4QSS3PpXtohlMjRO+alHUKJHJrxcXNVaFzMm9KO4F9v0awLpR1CiYyd3KK0QygxC6OM0g6hROqlBpV2CCUi/V/ZuteV+/KX0g6hxO6Wr/f+TJ8R2/IxpR1CicRnmpR2CCWWIytbM0PJZFqlHQJ9ZmxCz5V2CCUSVa1sff7xyA4r7RColFSqVAmVKlV6b77GjRtDIpHgxo0bqFu3LgDg1KlTkEqlaNiw4XvLb9q0CV988cUHHSskJAQmJiYl6jwE2IFIREREREREREQfSSYt+cIclKdatWro1KkThg8fjrVr1yI7Oxtjx45F37595SswP3/+HG3btsX27dvRoEEDednw8HCcO3cOR44cKbLfwMBAvH79Go0aNYKuri6CgoIwb948TJw4scQxsgORiIiIiIiIiIioFO3YsQNjx45F27ZtIRAI0Lt3b6xcuVL+fnZ2NsLCwpCWlqZQbvPmzahatSo6dOhQZJ/a2tpYvXo1fvrpJ8hkMjg5OWHZsmUYPnx4ieNjByIREREREREREVEpMjU1xc6dO1W+b2dnB5ms6CjPefPmYd68eUrLdOrUCZ06dfok8ZWtyTqIiIiIiIiIiIhIozgCkYiIiIiIiIiIPopUJi3tEEiNOAKRiIiIiIiIiIiIVGIHIhEREREREREREanEDkQiIiIiIiIiIiJSiR2IREREREREREREpBIXUSEiIiIiIiIioo8ik8pKOwRSI45AJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIciERERERERERE9FFkUmlph0BqxBGIREREREREREREpBI7EImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpW4iAoREREREREREX0UmVRW2iGQGnEEIhEREREREREREanEDsRS1KpVK/z444+lcuyZM2fC09OzVI5NRERERERERERlBx9hplKzdetW/Pjjj5BIJKUdynvtvnAL205dR3zKG7hYVcKkXm3gYWv53nJHbz7EJN/DaF3DEcu9eqg/0MLHPhSA/f67IREnws7eCcNGjYezazWV+f93/gx2+W1C7OtXsLSqioFDRqJu/UYai1cmk+FG8Co8vPY3stJTYG5bG816zICxmd0HlQ85swHXji9DjSYD0bj7FPUGC+DvE2fhFxiMhKRkONtUwcTBfVDdyU5p3v0nL+Lw+St4EvMCAOBmb4Mx33yhMr+67L54G9vO3kR8ShpcLM0wqUdLeNhYvLfc0ZBHmLTjGFpXd8Dywd00EGmeQ4EH4e+/F2KxGPb2Dhg1egxcXV2V5n32LBJ+vr4ID3+M2NhYDB8xEj169NRYrPm8BtihewcLGBqUx93QZCz58zFiXqarzC8QAEP72aFD68qoKNJBfGIWjpx8hW1/RWkkXplMhtP7V+HG2b+RkZYMG+c66DZwBipa2Kksc+7QOoTeCEL8qyfQ1taFtVNttP96AswsHTQSb+DuNTgfvA/paSlwdPVE/xFTYG5lq7LMo/s3cOLANkQ9CUWSOA6jf10Gz4Zt1B4rAOwJvojtR88iISkFztaW+PXbHqjhaKM076nrd7E58BSiY+ORk5MLGwszfNupJbo2rauRWAFAu1YzCOu1gZaBIaRxL5B+2h/SV8XURaEedJt2QXmnmtDSNYA0JRGZZwKQ8zRUYzEfCdyPAP+/3t7rHDF89Di4FHOvu3j+DHb6bpHf6wYNHY56Gr7XHdy9FueDApCWlgInt1oYMGIKzK2U1wsgrw4fP7AdzyJCkSSOx5jflqJ2w9YaiffgocP42z8AiWIxHOzt8f2oEXBzdVGaN/JZFLb77cDj8Ai8jo3FqOFe6NXjS43EWZhMJsP+XWtxLjgAaW9S4eRWC4NGTi72HIfdv4lj+7cj8u05HjtpCepo6Bzn1Yk1OB8UkNeuyevE+9q17XgW8QBJ4niM/m2ZxupEWWuHy2LMZS3eo4f24eDb7xy29o7wGvUDnF3dVeb/3/nT2O23CXGvX8HSqgq+HTIKdeo31kisps3qwWGCF4zr1ICuVWVc7z0Grw+eLL5MiwZwXzIJFdydkRH9EuHz1yBme4BG4iX63HAEIpV5ubm5kEqlatv/sVsPsWT/WYzs2Bi7JwyEq1UljF7nj4SUtGLLPU9MwrKDZ1HHoYraYlPlwrlT2LLhT/TpPxhLVm6Anb0jZnv/AolErDT/wwf3sGzRbLTt0BVLV25Eg8bNsHDONDyLfKKxmG+f24j7//NDsx4z8eWYv6Cto4+jm4cjJzvzvWXjou8i9OpfMLVQ3rn0qQVduoHlvvswrHcXbJ83Cc62VTF+wR9ITEpRmv9G6CN0bFIPa6b9gE2zJsK8ognGzf8DsYkSjcQLAMdCHmFJ4HmMbN8Qu3/sC1crM4zeeAAJqe+rx8lYdug86thbaSjSPOfOnsWGDRvQv/+3WLnqD9g7OMDbe6rKHxwyMzNhYWmBwUOGwsTERKOx5hvQ2xpfdauCJX8+xoiJt5CekYtlsz2go61VTBkb9Ohihd/XhmPAmGtYs/UJBvSyxlfdNdNuXDiyEVeCfNF90EwM994DbR09+C4bhuxirrtnYdfQoG1/DJ/2FwZN3Izc3BxsXzoMWZnF16VP4fj+rTh1ZCcGjJyKSfN9IdTVw0qfMcjOUh1vVmY6qtq5oN/wyWqPr7ATV0KwbFcgRnzZHjtm/QgXayuMXbIRicmpSvMbGehjaPc22Oo9Frvn/Izuzetj1sY9+N/dMI3EW96lNnRb9kDm5WN447cEuXHPYdBrFLT0KigvICgHg96joWVkivRDW5G6dR4ygv6CNCVJI/ECwIWzp7F5wxr07T8Iy1atg52DI2Z5/1bsvW7pwjlo16Ezlq1aj4aNm2KBz3Q8i3yqsZiPBWzDycO78O2oKZiyYBt0hHpY7vN9sXU4MzMDVe1c0H/4JI3FCQBnzp3Hug2b8G3/vvhz5e9wsLfDFO8ZEBfXDltYYOjgQTAtpXYYAI4GbEPw4d0YNHIKpi3cBqFQD0tnjy3+HGekw9rOBd+O+E2DkeY5HrAVp97WickLtkMo1MOK99aJ9Ld1QrPtGlC22uF8ZS3mshTvxXMnsW3DanzdfzAWrdwIO3snzPGeiCSV7fBdLH/7nWPxyo2o37g5Fs2ZiigNfecoZ6CP5DthuDd+1gfl17OrivoH1yHhzBVcqPclnq7aBo91c2DWvpmaIy27ZDLpf+L1X8UOxFKWk5ODsWPHwtjYGGZmZvD29oZMVjDxqK+vL+rVqwdDQ0NYWFigf//+iI2Nlb9/5swZaGlp4eTJk6hXrx709fXRpEkThIUpfuFYsGABzM3NYWhoCC8vL2RkZLw3tvv376Nbt24wMjKCoaEhmjdvjoiICPn7GzduRLVq1aCrqws3Nzf8+eef8vciIyOhpaWFffv2oXXr1tDX10etWrVw6dIledxDhgxBUlIStLS0oKWlhZkzZwLI+wA6ceJEVKlSBQYGBmjYsCHOnDkj3/fWrVshEolw8OBBuLu7QygUIipKfaN1fM/cQK/GHujRsAYcLSpi2tftoaujjf1X7qoskyuVYorvEYzu1ARVK4rUFpsqgQF/o32nrmjbvjOsbewwcuzPEOrq4tSJI0rzHzroj9p1G6BH776oamOL/gO9YO/ojKOHNPPrmkwmw72L21G79SjYubdFRUtXtOqzAGkpsXj2ILjYstmZb3Dqr1/QotdsCPWMNBLvzsMn0aNNE3Rv1RgOVS0xyasvdHV0EHjmktL8PmOH4KsOLeBiZw27KhaYOmIAZDIZrt3TTMcAAPieu4VeDWugR313OJpXxLRebaCrXR77rz5QWSZXKsWUnccxukMjVDU11lisABAQsA+dOnVC+w4dYGNji7Fjx0FXKMSJE8eV5ndxcYWX13C0bNkK2traGo0139dfVMH2Pc9w4UoCIiLfYM7vD1HRVIjmjcxUlqlRzQgXLsfj0vVEvIrNxJn/xeNqiBjVnA3VHq9MJsPloO1o0X0U3Oq0hYW1K3oNX4gUcSwe3lR93Q2csBG1m/VC5SrOsLBxQ0+v+UhKeIEXkffVHu/JQzvQ5avh8GzQGlXtXDBknA8k4jiEXD2tslyNOs3Qo/9Y1NbgaBcA8Dt2Dj1bNsQXLerDoYo5pgzuBV0dbRw4d1Vp/nrVHNGmngfsrcxhbW6G/h2aw8naEiGPNNO5JazbCtn3LiH7/lVIE18jI/hvyHKyoF2jodL82jUaQktXH+kHNyH3xVPIkhORGxMBafwLjcQLAAcC/kaHTl3QtkPevW702J8gFApx8sRRpfkDD+xDnboN0POrvrC2scWAQUPh4OiMI4H7NRJvXh3eia5fDYNng1aoaueCoeNnQ5IYh1tXz6gs51GnKXr2/x51Gmm2DvsHHEDnTh3QsX072NrY4IexYyDUFeL4CeXtg6uLM0Z4DUHrli1KrR2WyWQIOrQT3b/2Qu2GrWBt54xhP8yCJDEON6+cUVmuZt2m6DVgDOpq+BzLZDIEH9qJroXbtfE+b+uE6nbNo04z9Oj/PWqXQrxlqR0Gyl7MZS3ewIA9aNepG9q07wJrGzuMGDvh7XeOw0rzHzm4F551G+DL3v1Q1cYO/QYOg72jC44e2qeReOOOn8OjGcvx+kDx3y/y2Y7oi/SnMQj9dSFSHz7Bsz934JX/cdj/MFi9gRJ9ptiBWMq2bduG8uXL4+rVq1ixYgWWLVuGjRs3yt/Pzs6Gj48Pbt++jf379yMyMhKDBw8usp+pU6di6dKluH79OsqXL4+hQ4fK39uzZw9mzpyJefPm4fr167C0tFTo7FPm+fPnaNGiBYRCIU6dOoUbN25g6NChyMnJAQDs2LED06dPx9y5cxEaGop58+bB29sb27ZtKxLXxIkTERISAhcXF/Tr1w85OTlo0qQJli9fDiMjI7x8+RIvX77ExIkTAQBjx47FpUuXsHv3bty5cwdff/01OnXqhMePH8v3m5aWhoULF2Ljxo24f/8+KleuXOJz/yGyc3IRGvMajVwKHnsRCLTQyNkGd569VFlu3fFLMDHUR69GHmqJqzjZ2dmICA9DTc+Cx94EAgFqetZF2EPlnUWPHt5XyA8Ates0UJn/U0sRxyA9JR5VnAoeX9DRNUQl65p4HXW72LIXD/jAxq0lqjg1UXeYAIDsnBw8fBqN+jXc5GkCgQD1a7jh7uMP+/U0IzMLOTm5MKqgr64wFWTn5CL0eSwaOVvL0/LqsXXx9TjoKkwq6KFXg+qaCFMuOzsb4eGP4elZW54mEAjg6VkbDx9q7tHIkrAy14WZqRDXQgp+cX+TlosHj5JRw011x/a90GTUrWUCays9AICTnQFqVjPG5RuJao9ZHBeD1KQ4OFQvuHZ09Q1RxbEmosNDPng/Gel5I2/1DNTbyRz/+jmSJfGoVrOgQ0vPwBD2zh54ElZ8O6Fp2Tk5eBj5HA2qO8vTBAIBGlR3xt3wZ+8tL5PJcPX+Yzx7GYs6rup/NByCchCYV0XOs0eFo0DOs0coZ2mntEh5xxrIeRkJ3TZfocJIHxgM+g06DdoBWqpH3H5Kefe6R0XudbWKudeFPXyAmrXrKKTVrlsfYQ/V2/mdL/71cyRJ4lGtVkEd1jcwhINzDTwJu6ORGD5UdnY2HoeHo3ah+bIFAgFqe9ZC6MOHpRfYe8S9fo4kcQLclZzjiM/sHAOF2rV34rX/DOsEULba4XxlLeayFG92djaehD9CTc968jSBQAAPz7oq21Vl3zk86zTAIw21wyUlauSJ+FOKAwTigi7ApJFn6QREVMo4B2Ips7a2xu+//w4tLS24urri7t27+P333zF8+HAAUOgIdHBwwMqVK1G/fn2kpqaiQoWCx4rmzp2Lli1bAgAmTZqErl27IiMjA7q6uli+fDm8vLzg5eUFAJgzZw6Cg4OLHYW4evVqGBsbY/fu3fJfkV1cCua8mTFjBpYuXYpevXoBAOzt7fHgwQOsW7cO3333nTzfxIkT0bVrVwDArFmzUL16dYSHh8PNzQ3GxsbQ0tKChUXBHGxRUVHYsmULoqKiYGVlJd/HsWPHsGXLFsybNw9A3g3rzz//RK1atVT+DZmZmcjMVBzqL8vOhrAEv4qL36QjVypDRUMDhfSKhvp4Gqv8C/7NJzEIuHIPeyYO/ODjfEopyUmQSqUQiUwV0kUiEzyPVj5SUyJOLJLfWGQCiVj9nRgAkJ4SDwDQq1BRIV2vghnSU+JUlou4fRjxLx6gx/d/qzW+wiTJqciVSmFqrDhCzNTYEM9evPqgffyxcz/MTIzRoFAnpDrJ6/E7HZYVK+jjaazyR0xuPn2BgGv3seen/poIUUFycnJeHTYRKaSLRCJER0drPJ4PYWqiAwAQS7IV0sWSLPl7yvjtjYKBfjnsWFMfUqkMAoEW1vs+RdDZWJVlPpXUpLxrq4KR4nVXwcgMqUnxH7QPqVSKY7vmwca5DsyrKp8X7VNJluTFZCRSjNfI2BRJkgS1HrukJClvkCuVoqKx4uO/FY0rIPKl6v/blLR0dP5xDrJyclBOIMCkQT3RqIZ6zysAaOkZQEtQDrI0xWkYZGkpKGdqrrSMwLgiBNbOyH54A2kB6yAQVYJu268AQTlkXVY+UvhTkt/r3nlU1lhkgphi73VF84vFytvBTy2/nhoZK95vDUUVkST+sGtOU/LbYRORSCHdRCRCdPTz0gnqAySrOMdGos+vnQAK2jXDIvFWRLL48423LLTD+cpazGUp3rx2OBfG77SrIpHpZ/udo6SE5mbIfK3YPme+joe2sSEEukJIM94/1RLRvwk7EEtZo0aNoFXo1/rGjRtj6dKlyM3NRbly5XDjxg3MnDkTt2/fhlgsls/1FxUVBXf3gslpa9asKf+3pWXe4h6xsbGwsbFBaGgoRo0apXDcxo0b4/Rp1cPgQ0JC0Lx5c6WPoLx58wYRERHw8vKSd3QCeY9jGxsrjkBRFZebm/KOk7t37yI3N1ehsxLI6wysWLHgRqqjo6Owb2Xmz5+PWbMU57eY2r8bpg3oXmy5j/EmIwtTdxzFjG86wERDo8vKovBbgTi/f6Z8u9N3a0q8j1TJS1w6NB+dh25CeW3hJ4xOvbYdOIGgSzewxvtHCHVK5xGv93mTkYWpu05gxldtYWKgV9rhfJbat6yMX74vaKd+na16SoPitGlWCe1bVsasJaF4GpUGZwcDjB/mhPjELBw79fpThQsAuHMpEIHbZsi3B/y49qP3edhvNmJjHmPolJ0fva93XTl3GDvWzZFvj52y6pMf43NjoCvELp+fkJaRiasPwrFsVyCqVKqIetUcSzu0orS0IEtLRUbQX4BMBmlsDLIqGEOnXmuNdCCWBZfPHoHfurny7XFTV5ZiNP9Ol84ewfa18+TbP05dUYrRvN+Vs0fgV7hd+8zrRFlsh8tazGUtXiL6b2MH4mfszZs36NixIzp27IgdO3agUqVKiIqKQseOHZGVlaWQt3BHX36H5McsLKKnp7rTIDU1bwL4DRs2oGFDxbmRypUr91FxpaamyjtO391X4RGXenp6Ch2vykyePBk///yzQprstG+xZd5lYqCHcgItJKS8UUhPSEmDmZFBkfzRCRK8SEzG+I0FcwdK385pWWfCMhyYPBTWZqISxVBShkbGEAgEkEgUf8mTSMQQmZgqLSMyMS2SP6mY/B/Lxr0NelkXdADn5ubV5/TUBOgbFTyOnp4aj4qWylfTjH9+H+mpCQj4o7c8TSbNxcvI67h/eSeG+tyGQFBOadmPITKqgHICQZEFUxKTUlBRVPwcjH6HgrHt4An8MWUcnG01t7iOvB6/s2BKQmoazAyLdnRHJyThhTgZ47cEytPk9fi3VTjwy0C11mMjI6O8OiyWKKRLJBKYmJbexPyFXbiagAePrsu3dbTzZgQxEWkjQVzQPpuIdBD+RPmiGQAwZogDduyNxsnzeaMBnzx7A4tKuhj4tc0n70B09WyNKg6FrrucvDhTkxNgKCq47lKT42FhrXoV23yHfWfjUcgZDJ3sB2PT96/mXVK16reCvXPBNBA52XnxJksSYGxSSZ6enJQIazv1j9IrCZGhAcoJBEhIUvy/T0hKhZmx6vktBQIBrM3z5sx0ta2Cpy9iseXQKbV3IMrS30AmzYWWvmJsWvqGkL5JVl7mTTJkublAoXmbpYmvIahgDAjKAdJctcYsv9e9M3owSSKGiWlx9zol+dW04Idng5ZwcKkh387OzhuhnJyUCJFpQR1OkSTA2l4zi4B9qPx2+N0FU8QSCUzfGR1emvLOsZJ24p1znCxJhI196bcTtRq0hH2hOpHztk6kFIn386gTZbEdLmsxl7V4C8trh8sVWTBFIkn8bL5zfKzM1/EQmivOZS00N0N2UgpHH6oglcren4nKLHYglrIrV64obF++fBnOzs4oV64cHj58iISEBCxYsADW1nlzl12/fl3ZbopVrVo1XLlyBYMGDVI4TnFq1qyJbdu2ITs7u8goRHNzc1hZWeHJkycYMGBAiePJp6Ojg9xcxS8YtWvXRm5uLmJjY9G8efN/vG8AEAqFEAoVR6ZllHBSb+3y5VCtqjmuPIpCG4+8uaykUhmuPI5C32aeRfLbVzbF3l+/U0hbfeQC3mRm49eerWEhUv/CCNra2nB0csWdkJto2Lj525iluBNyA1269VRaxsWtOu7evonuPb6Wp92+dR2ubu5K838sHaEBdIQFHbAymQx6hmZ4HnEZFa3yOi6yMlIRF30H7g37Kt2HlVNj9P7hgELa2b1TIapkj1oth6ml8xAAtMuXh5u9Na7dC0Or+nmP0EulUly/H4avO7RUWW77wSBs2X8MKyePhbujrVpiU0W7fDlUq1IZV8Kj0aZGXkeEVCrDlfBo9G1SdBoA+8om2DtB8dpefewS3mRm4dcvW6q9Hmtra8PJyRkht0PQuEmTt/FKERISgm7d1TeCuCTS03PxPF2x/YpPzES9WiYIf5r3g4O+Xjm4uxhh/xHVi0roCsvJO2fz5UplEKhhGjmhXgUIC62oK5PJUMG4Ep48uARLm7zrLiM9Fc8j7qB+634q9yOTyXDEzwehN4Mx5LftMKlU9dMHC0BXzwC6eorthJHIDA/vXoW1fd4o9vS0VDx9fBctO36tajelQrt8ebjZVcG1B+FoXTevs0AqleLag3D0affh87XKZDJkv517WK2kuZC+jkF5G2fkROSPptVCeRsXZIWcV1ok9/lTaLvVBaAFIK8OC0wqQZqapPbOQyD/XueCO7dvolGTvNUw8+51N9Glew+lZVzd3HEn5Ca+6PGVPC3k1nW4uqlnnldlddhYZIaHd67C5m3nUHpaKp48voeWnT6zOqytDWcnJ4SE3EbTxo0A5LfDd/BFt66lHF0BPT0D6L17jk0q4oGSc9y601eqdqMxqtq10DtX5B2Gee3a51EnymI7XNZiLmvxFqatrQ0HJxfcDbmBBoW+c9wNuYnO7/nO0a1HH3na7VvX4KKmdvhjSS6HoFLnFgppZm2bQHw5pHQCIipl7EAsZVFRUfj5558xcuRI3Lx5E6tWrcLSpUsBADY2NtDR0cGqVaswatQo3Lt3Dz4+PiU+xg8//IDBgwejXr16aNq0KXbs2IH79+/DwUH1xOxjx47FqlWr0LdvX0yePBnGxsa4fPkyGjRoAFdXV8yaNQvjx4+HsbExOnXqhMzMTFy/fh1isbjIqD9V7OzskJqaipMnT6JWrVrQ19eHi4sLBgwYgEGDBmHp0qWoXbs24uLicPLkSdSsWVM+n6ImDWxVF947j6G6tQVq2FrA7+xNpGdlo0fDvC+FU3ccRWXjCvihW3MItcvD2VLxVypDPV0AKJKuTt17fo1Vy+bDydkVzi7VEHhgLzIzMtCmfWcAwIql81Cxohm+HTwCANDti97wnvQDDuz7C3XrN8KFc6cQER6GUeMmaCReLS0t1Gg6CLdOrYVxRVsYmlbF9aCV0DesDFv3dvJ8hzcOgZ17O1RvMgA6QgOYWij+EqutowddfVGR9E+tf9e2mLVmO6o52KC6kx12Hz2F9MxMdGuZ9yVrxp/bUNlEhO/7fQkA2HbwBNb/fRg+YwfDspIp4iVJAAB9XSH0dXXVGmu+gS1qw/uvIFSvao4a1ubwOx+C9Kwc9Kif10k8ddcJVDY2wA9dmubVYwvFuXcMdfM6499NV5eePXth2bIlcHZ2houLKw4cCEBGZgbat+8AAFi6ZDEqVqyIwUPy5onNzs6Wr8aek5ODhIR4REREQE9PTz6fqrr9ffA5vvvGBtEv0vHydQaGfWuHhMRMnL9cMHfO8jk1ce5SPPYdzutUvHgtAYP62OJ1XCaeRr2Bi0MFfNOjKo4Efdh8mh9DS0sLjdoPwrnAtahobgcTsyo4FbAShiaV4Van4LrbumgwqtVph4btvgWQN/Lw7uVD6Dd+NXT0DJDydi5FXT1DaOuorz5raWmhbbcBOLJ3Aypb2sCschUc2LUaIpNK8GzQWp5v2cwRqN2gDVp3yfvxISM9DXGvCuZiio99juinD2FQwRimlSzVFu+3nVpgxoa/UM2+Kmo4WGPn8fNIz8zCF83rAwCmr9uFSibGGNenCwBgc+ApuNtXRdXKFZGdk4MLtx/i8P9uYPKgXmqLsbDMG2eg16k/cl9HI/dVFHTqtISWtg6y7+f90KnbaQBkqUnIvHAIAJB1+//t3XlUlHXfx/HPDIiAimCKoiGgYGpibqlpaZqVWmrZk5YZKlq55L5ki2uuLS6VSbmAWlnmUtqdZi654L5TablD3aK5ICkS2zx/cDs5DqMQwjVj79c5nqPXNed+3vGMgF9+1+8XK49aD8iz2ZNK27tJZr8y8qj/sNL2biyUXklq9+TTmj5l0v++1lXViq+XKPWvVD30cEtJ0rR3JuqOO0rr+W7Z2620adder78yUF8tXaR69zbUpg3rdPTwr+pdiF/rHnq8k/6zeHb2e7hseX29cKZ8S5VR7foPWl/37qiXVLtBMzW/5j18JvHv/V/Pnvld8cd/UbHiPrqjAN/DTz3ZTm9PmaawsFBVrVJFS79ertTUVD368EOSpLfenao77iil7l2zf3Ca/Xk4uzM9I0Nnz53X0aPH5OnlqQqF9HnYZDLp4cc76Zsv56hsQEWVKVteyz7L/hjXafCg9XVvj+ypOg2b6aHWHSXl8DE+/d9C+RibTCa1eLyTvrW+Jyro64Uf/u89cc3ntVEvqdZ174k/rntPJBz/Rd6F0OtKn4ddsdnVets82UEfTJmoymF3KbRKNf3n6y/1V+oVNXs4+2vbe++O1x13lNZzXV+SJLVu+38aNbyfli/9XHXvvU+bN67VsSO/qGffoQXWeC23Yt4qFvr34ZjeIXfK556qSjt/UakJp3TXuEHyrFBW+7u9Ikk6+fHnCur9nKpOHKqEmCUq3ayhAp5upZ1tXyqUXsDZMEA0WEREhK5cuaL69evLzc1N/fv314svZg91ypQpo5iYGL322mt67733VKdOHb3zzjtq27Ztnv5vdOzYUUePHtWwYcOUmpqqp556Sr169dJ33zneo+iOO+7QunXrNHToUDVt2lRubm6qVauWGjduLEnq0aOHvL299fbbb2vo0KEqVqyYwsPDNWDAgFx3NWrUSD179lTHjh117tw5jRo1SqNHj1Z0dLTGjRunwYMH6/fff1fp0qXVsGFDPf7443n6775VWtauqguXrujDVbE6m5yiuyqU0YcvPWU9WCXxQrLMhXTqZG7d36S5ki8maeEn0Uq6cF4hlUI1Yuxb1scDzv5x2qa5avUaGjh0hD5bMEefzputgAoV9Mob4xQUXAinf/7PPU16KCPtijYtG6W01GSVDaqjlt0+ttnfMPlcvFJTCmez+xt5+L66upD8pz5e/I3OJf2pKkEVNH14H+sjzKfPXrD5+C79fpPSMzI0fNpsm/+dHk+11ov/VzhD8Za1qujC5Sv68LttOvvnZd1Vvow+7NFOd/zvEebEpD+d6n3cpGlTXUy+qE8WLNCFCxdUqVIljR07zvqo4R9/nJHpmmV658+fU7++fax/XrpkiZYuWaLw8HBNmvx2oTR/uiRBnp5uGvZyFRUv5q64ny9q8Kg4paX/vcKwQjkv+fr8vRJ66kdH9MJzwRrcK0x+JYvo7Pk0LV91StGf3/yk3lvh/tY9lJ52RStiRio1JVkVq9RV50GzVOSav3cXzsQr5dLff+92rl8oSYqeHGHzv/VE9wmqfX/BDrsefaKr0lKv6JOoN5Vy+U+FVq2tfiM+VBGPv3vPJibo0p9/9548+pOmjPp7v94vY7J/SHffg23UtW/efyiXW480qKULyZcVtfQ7nbv4p6pULK/3h/TQHf97hDnxfJLNezj1rzRNmr9MZ84nqahHEQUH+GvcS8/qkQa1CqzxWhm/7lWqdzEVbdRKJm8fZf3xu1KWfiRLSvZj2OYSfjarZS2XkpSyNEpFH3xCxSKGyXLpotL2blDazrWF0itJ9zdtpovJSVq4IFoXLlxQSKXKGjV2svVrXfbnCbP19VWr19CgYa/r0/lz9UnMHJWvUEHDR4xVUHBIoTW3fLKL0v66ogVR45Ry+U+FVaul/iM+sHkP/5H4my4lJ1n/fPLoz3pn5IvWPy+KniJJuq9ZG0X2td3r+VZ6sMkDunjxouZ/8pn18/D4saOtn4fP/PGHzXYy586fV69+A6x/Xrx0mRYvXaaa4TX0zqQJKiytnuyiv1KvaN7M8daP8aAR79t8jM8k/qY/r/kYnzj6s94a8fdA4PP/fYwbN3tc3fsV3MdYkh59sqv++uuKPvnfeyK0Wi31HzHjuvdEgt174t2R13xei/7f57VmbdSt79iC7XWhz8Ou2uxKvY2bPKTki0n6/JO5SrpwXsGVQvX62Hdu8G+OcPUfOlKfL5itz+bNUkCFOzXsjfGqWEj/5ihZt4buW/v3llbV33lNkpQwf6kOdH9VRQPKyCvw74HrlRO/aWfbl1T93VcV3DdCqb8lKu6lN3T2+82F0gs4G5PFYuEhdfxrpH77sdEJeXa0inM8splbKw/kfGKns3oheJ3RCXlS9LdfjE7Is9/ubm10Qp50HZDzyYHO6uVXm9z8RU6mnE+q0Ql5Uu/S90Yn5EnWFtf6vPZ7u8JZeXIr/ZHqa3RCngQV/c3ohDz5La3w9gm+VTIs5pu/yIlYLM7zQ0M4hzs8c97z1lnFV3Ot738eS3e97+H/iQf/b6vRCYXih8X3GZ1gCNf6SgcAAAAAAACgUDFABAAAAAAAAOAQA0QAAAAAAAAADjFABAAAAAAAAOAQpzADAAAAAAAgXyxZnNF7O2MFIgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACH2AMRAAAAAAAA+WKxZBmdgALECkQAAAAAAAAADjFABAAAAAAAAOAQA0QAAAAAAAAADjFABAAAAAAAAOAQh6gAAAAAAAAgXyxZFqMTUIBYgQgAAAAAAADAIQaIAAAAAAAAABxigAgAAAAAAADAIfZABAAAAAAAQL5YsrKMTkABYgUiAAAAAAAAAIcYIAIAAAAAAABwiAEiAAAAAAAAAIcYIAIAAAAAAABwzAIgX1JTUy2jRo2ypKamGp2Sa67WTG/Bc7VmeguWq/VaLK7XTG/Bc7VmeguWq/VaLK7XTG/Bc7VmeoHbi8lisViMHmICriw5OVklS5bUxYsX5ePjY3ROrrhaM70Fz9Wa6S1YrtYruV4zvQXP1ZrpLViu1iu5XjO9Bc/VmukFbi88wgwAAAAAAADAIQaIAAAAAAAAABxigAgAAAAAAADAIQaIQD4VLVpUo0aNUtGiRY1OyTVXa6a34LlaM70Fy9V6JddrprfguVozvQXL1Xol12umt+C5WjO9wO2FQ1QAAAAAAAAAOMQKRAAAAAAAAAAOMUAEAAAAAAAA4BADRAAAAAAAAAAOMUAEAAAAAAD/GhaLRfHx8UpNTTU6BXAZHKIC/ENpaWk6c+aMsrKybK5XrFjRoCLg9vPjjz+qRo0aRmcAAADgNpKVlSVPT0/99NNPCgsLMzoHcAnuRgcArubw4cOKjIzUli1bbK5bLBaZTCZlZmYaVJazdevW6eWXX9a2bdvk4+Njc+/ixYtq1KiRoqKi9MADDxhUiMLSvn17xcTEyMfHR+3bt7/ha5cuXVpIVTdWs2ZN3XvvverRo4eeeeYZlShRwuikXMnIyNCECRMUGRmpO++80+gcOJndu3fr4MGDkqTq1aurTp06BhcBAHBrHD58WOvXr89xocXIkSMNqrJnNpsVFhamc+fOMUAEcokBIpBHXbt2lbu7u7755hsFBATIZDIZnXRD06ZN0wsvvGA3PJSkkiVL6qWXXtKUKVMMHyAmJyfn+rU5/bcYYfny5WrVqpWKFCmi5cuX3/C1bdu2LaQqx0qWLGl9v5YsWdLgmtzZsGGDoqOjNXjwYA0cOFBPPfWUevToYfj79Wbc3d319ttvKyIiwuiUf43U1FR5enoanXFDZ86c0TPPPKMffvhBvr6+kqSkpCQ1a9ZMn3/+ucqUKWNs4G1k165d1iFttWrVVK9ePYOLbg8Wi0WLFy92OBxwlh8+XeVqvYCrmzVrlnr16qXSpUurXLlyNv9OMplMTjVAlKRJkyZp6NChmjlzJk+8ALnAI8xAHhUrVky7d+9W1apVjU7JlaCgIK1atUrVqlXL8f6hQ4f0yCOPKD4+vpDLbJnN5psOY51tlafZbFZiYqL8/f1lNjveUtaZmseOHashQ4bI29vb6JQ8uXz5shYtWqSYmBht2rRJoaGh6t69u7p06aJy5coZnZejdu3aqX379urSpYvRKXmydu1arV27Nsd/bM+dO9egqpxlZWVp/PjxioqK0unTp/Xrr7+qUqVKGjFihIKDg9W9e3ejE2107NhRx44d0/z5862fk3/++Wd16dJFoaGhWrhwocGF2UqVKqVff/1VpUuXlp+f3w0/N58/f74Qy27ut99+07PPPqvY2FibIW2jRo30+eefO+WK4KSkJM2ZM8c68Lz77rsVGRnplD/o6d+/vz766CM1a9ZMZcuWtXtvREdHG1SWM1frlVxv6Elv4di5c6fD5ilTphhUZS8oKEi9e/fWK6+8YnRKrvj5+SklJUUZGRny8PCQl5eXzX1n+xoHGI0ViEAeVa9eXWfPnjU6I9dOnz6tIkWKOLzv7u6uP/74oxCLcrZ+/fpcvS4uLq6AS3Lv2m/grv9mzlmNGTNGPXv2dLkBYrFixdStWzd169ZNR44cUXR0tGbMmKERI0aoZcuWN10BaoRWrVpp+PDhiouLU926dVWsWDGb+86wKvV6Y8aM0dixY1WvXj2XWGE9btw4zZs3T2+99ZZeeOEF6/UaNWpo2rRpTjdAXLVqldasWWPzA53q1atrxowZeuSRRwwsszV16lTrdgFTp051+vfBtXr06KH09HQdPHhQd911lyTpl19+Ubdu3dSjRw+tWrXK4EJbu3bt0qOPPiovLy/Vr19fUvYwYPz48Vq9erXTPd6+YMECLV26VK1btzY6JVdcrVeSBgwYcMOhp7Oht+BNmDBBb7zxhu666y67Zmfrv3Dhgp5++mmjM3Jt2rRpRicArsUC4KYuXrxo/bV27VrLfffdZ1m/fr3l7NmzNvcuXrxodKqdSpUqWZYtW+bw/pIlSywhISGFF/QPJCcnWz766CPLvffeazGbzUbn2NiyZYtlxYoVNtfmzZtnCQ4OtpQpU8bywgsvWFJTUw2qs2cymSynT582OiPfLl26ZPnoo48spUqVcrr3xFUmk8nhL2dtLleunGX+/PlGZ+Ra5cqVLWvWrLFYLBZL8eLFLUePHrVYLBbLwYMHLb6+vkam5ah48eKWvXv32l3fs2ePpUSJEoUfdBvy9PS07Nmzx+76rl27LF5eXgYU3dj9999v6dq1qyU9Pd16LT093dKlSxfLAw88YGBZzoKDgy0HDx40OiPXXK3XYrFY/Pz8LP/5z3+Mzsg1eguev7+/JTo62uiMXImMjLTMnDnT6AwABYQViEAu+Pr62vyEz2Kx6KGHHrJ5jcXJHq+9qnXr1tZVWtfvD3blyhWNGjVKjz/+uEF1N7Zx40bNmTNHS5YsUfny5dW+fXvNmDHD6CwbY8eO1YMPPmj9GMbFxal79+7q2rWrqlWrprffflvly5fX6NGjjQ29hrP9tDovNm7cqLlz52rJkiUym83q0KGD060yu8pVVqVeKy0tTY0aNTI6I9d+//13hYaG2l3PyspSenq6AUU31rx5c/Xv318LFy5U+fLlJWX/NwwcONDua4rRcrOthMlkUkZGRiEV5U5gYGCO/7/PzMy0fsydya5duzRr1iy5u//9Lbm7u7uGDRvmlPs2jh49WmPGjNHcuXPtHvVzRq7WK2XvUVypUiWjM3KN3oJnNpvVuHFjozNyJTQ0VCNGjNC2bdsUHh5u9xRUv379DCpz7OjRo4qOjtbRo0c1ffp0+fv7a+XKlapYsaLuvvtuo/MAp8IeiEAubNiwIdevbdq0aQGW5N3p06dVp04dubm56eWXX7Y+0nXo0CHNmDFDmZmZ2rNnj8qWLWtwabbExETFxMRozpw5Sk5OVocOHRQVFaX9+/erevXqRufZCQgI0IoVK6z/0Hv99de1YcMGbd68WZL05ZdfatSoUfr555+NzLQym802h6k44kx7vvz3v/9VTEyMYmJidOTIETVq1Ejdu3dXhw4d7B4LdgaufPL5K6+8ouLFi2vEiBFGp+RK3bp1NXDgQHXu3FklSpTQ/v37ValSJY0dO1bff/+9Nm3aZHSijYSEBLVt21Y//fSTAgMDrddq1Kih5cuXO9X+fF9//bXDe1u3btV7772nrKwspaamFmLVzX399deaMGGCZsyYYf28vGvXLvXt21evvPKKnnjiCWMDr1O2bFktWLDA7hH27777ThERETp9+rRBZTm7cuWKnnzyScXGxio4ONhuOLBnzx6DynLmar2SNG/ePK1atcplhp70Fry33npL//3vf13icduQkBCH90wmk44dO1aINTe3YcMGtWrVSo0bN9bGjRt18OBBVapUSZMmTdKuXbu0ePFioxMBp8IKRCAXrh0KxsfHKzAw0G4AY7FYlJCQUNhpN1W2bFlt2bJFvXr10quvvqqrPzMwmUx69NFHNWPGDKcZHrZp00YbN27UY489pmnTpqlly5Zyc3NTVFSU0WkOXbhwwebjd/Ubkavuvfdep3tfjBkzxik3589Jq1attGbNGpUuXVoRERGKjIy0DsGdlaucfJ6T1NRUffzxx1qzZo1q1qxp949tZ9qoXZJGjhypLl266Pfff1dWVpaWLl2qX375RfPnz9c333xjdJ6dwMBA7dmzR2vWrNGhQ4ckZZ8Q3KJFC4PL7LVr187u2i+//KLhw4drxYoVeu655zR27FgDyuxdf9DL5cuX1aBBA+uqvoyMDLm7uysyMtLpBogdO3ZU9+7d9c4771hX/8bGxmro0KF69tlnDa6z16VLF+3evVudO3d2if3jXK1Xkjp06KCFCxfK39/fJYae9Ba8IUOG6LHHHlPlypVVvXp1u2ZnOvjl+PHjRifkyfDhwzVu3DgNGjTIuvevlP3EwAcffGBgGeCcGCACeRQSEqJTp07J39/f5vr58+cVEhLidI8wS9knon377be6cOGCjhw5IovForCwMPn5+RmdZmPlypXq16+fevXqpbCwMKNzcqVs2bI6fvy4AgMDlZaWpj179mjMmDHW+3/++ecND7ExwjPPPGP3/nVWRYoU0eLFi/X444/Lzc3N6Jxc2b9/vyZPnuzw/iOPPKJ33nmnEIty78CBA6pVq5Yk6ccffzQ25gaOHTumkJAQtWvXTitWrNDYsWNVrFgxjRw5UnXq1NGKFSv08MMPG51pdf2q1Icfftjad/HiRd19991OuypVyl4FPGrUKM2bN0+PPvqo9u3bpxo1ahidZeUKq3Iceeedd2QymRQREaGMjAxZLBZ5eHioV69emjRpktF5dv7zn//ou+++0/333290Sq64Wq/kekNPegtev379tH79ejVr1kx33HGHSzRLslm04Kzi4uL02Wef2V339/d3qUMzgcLCABHIo6t7HV7v0qVLdnsMOhs/Pz/de++9Rmc4tHnzZs2ZM0d169ZVtWrV9Pzzz+uZZ54xOuuGWrdureHDh2vy5Mn66quv5O3tbTMEOHDggCpXrmxgoS1n/iYuJ854uvLNuMrJ5znJ7WnoRgsLC7P+IOeBBx5QqVKlFBcX5zSrqa/nqqtSL168qAkTJuj9999XrVq1tHbtWqdrlLIHAq7Kw8ND06dP18SJE3X06FFJUuXKleXt7W1wWc4CAwNzfB87K1frlVxv6ElvwZs3b56WLFmixx57zOiUXJk/f77efvttHT58WJJUpUoVDR06VM8//7zBZfZ8fX116tQpu0ev9+7dqwoVKhhUBTgvBohALg0aNEhS9gBmxIgRNt/cZ2Zmavv27daVO/hnGjZsqIYNG2ratGn64osvNHfuXA0aNEhZWVn6/vvvFRgYaPN4gTN488031b59ezVt2lTFixfXvHnz5OHhYb0/d+5cu72tjMS2twWvQoUK+vHHH3M83EPKHioHBAQUctWNRUZG3vQ1JpNJc+bMKYSam7v+fbxy5UpdvnzZoJqbc8VVqW+99ZYmT56scuXKaeHChTk+0uxMXO3Ql9z8nZOyv4Y4k3fffVfDhg1TVFSUgoODjc65KVfrlVxv6ElvwStVqpRT/TD6RqZMmaIRI0bo5Zdfth78snnzZvXs2VNnz57VwIEDDS609cwzz+iVV17Rl19+KZPJpKysLMXGxmrIkCGKiIgwOg9wOhyiAuRSs2bNJGXvcXfffffZDIk8PDwUHBysIUOGuMyjt67il19+0Zw5c7RgwQIlJSXp4YcfdspVaRcvXlTx4sXtHrM9f/68ihcvbvN+we2tb9+++uGHH7Rz584cTz6vX7++mjVrpvfee8+gQntms1lBQUGqXbv2DYfMy5YtK8Qqx8xmsxITE62P4l97gIoz8vT0vOFQ+ciRIwoPD9eVK1cKucwxs9ksLy8vtWjR4obbBzjL3ltfffWVwwGiMx764mp/567y8/NTSkqKMjIy5O3tbbfa2pkO4JJcr1fKXiH3/vvvu8zQk96CFx0drVWrVik6OtppVydfFRISojFjxtgN3+bNm6fRo0c73R6JaWlp6tOnj2JiYpSZmSl3d3dlZmaqU6dOiomJcZntc4DCwgARyKNu3bpp+vTpLvfTS1eXmZmpFStWaO7cuU45QASucrWTzyWpT58+WrhwoYKCgtStWzd17txZpUqVMjrLITc3NyUmJqpMmTKSsgeIBw4cuOHpj0aqXLmy3n33XYcHeCxdulRDhgxxqtMpu3btmqstD6Kjowuh5p/J6dCXoKAgo7Mkud7fuavmzZt3w/vO9ji5q/VKrjf0pLfg1a5dW0ePHpXFYnH6g18c/cDs8OHDCg8Pd5of4lwvISFBcXFxunTpkmrXrs2CEMABBogAANxiJ0+eVK9evfTdd9/lePK5Mw66/vrrLy1dulRz587Vli1b9Nhjj6l79+565JFHnG7vTLPZrFatWqlo0aKSpBUrVqh58+YqVqyYzeucZXWcK65KdWXXH/oyceJEpzr05SpX+jsnSenp6XrppZc0YsQIp/wcdj1X673K1Yae9Ba8aw/ny8moUaMKqeTmatSooU6dOum1116zuT5u3Dh98cUXiouLM6gsZ2PHjtWQIUPsVnZeuXJFb7/9tkaOHGlQGeCcGCACedS+ffscr5tMJnl6eio0NFSdOnWyrjoC8O/l7CefO3Ly5EnFxMRo/vz5ysjI0E8//aTixYsbnWXVrVu3XL3OWVbHueKqVFd0/aEvkydPdspDX3Li7H/nripZsqT27dvnMgM5V+t1taEnvQUvIyNDEyZMUGRkpO68806jc25qyZIl6tixo1q0aGHdAzE2NlZr167VokWL9OSTTxpcaMvNzc16KNu1zp07J39/f2VmZhpUBjgnBohAHnXt2lVfffWVfH19VbduXUnZjw4kJSXpkUce0f79+3XixAmtXbvW+oUTAFxJQkKCoqOjFRMTo7S0NB06dMgphxmuxBVXpbqSaw99mTBhgtMf+nI9V/k716VLF9WqVcvpDkJwxNV6JdcbetJb8EqUKKG4uDiX2bNx9+7dmjp1qg4ePChJqlatmgYPHqzatWsbXGbPbDbr9OnT1i1Rrlq3bp06duyoP/74w6AywDkxQATyaPjw4UpOTtYHH3wgs9ksScrKylL//v1VokQJjR8/Xj179tRPP/2kzZs3G1wLALlz7eOUmzdv1uOPP65u3bqpZcuW1s91yD9XXZXq7Fzt0BfJNf/OjRs3Tu+++64eeugh1a1b127bgH79+hlUljNX65Vcb+hJb8Fr166d2rdv75SPV7sqPz8/mUwmXbx4UT4+PjbbRmRmZurSpUvq2bOnZsyYYWAl4HwYIAJ5VKZMGcXGxqpKlSo213/99Vc1atRIZ8+eVVxcnB544AElJSUZEwkAedC7d299/vnnCgwMVGRkpJ577jmVLl3a6Cwg11zt0BdX/Tt3o1VbJpPJqQ4CklyvV3K9oSe9BS8qKkpjxozRc889l2Nz27ZtDSrLlpycbD1cMjk5+YavdZZDKOfNmyeLxaLIyEhNmzZNJUuWtN7z8PBQcHCw7rvvPgMLAefEABHIIz8/P82bN8/ui/Xy5cvVpUsXXbhwQYcPH1b9+vV14cIFgyoBIPfMZrMqVqyo2rVr33AI40yrtwBXxt85OOJqQ096C96NViSbTCbD9+m7dh9Bs9mc4+c0i8XiFK3X27Bhgxo1amR3sjWAnLkbHQC4mueff17du3fXa6+9pnvvvVeStHPnTk2YMEERERGSsr8Y3X333UZmAkCuRUREOOWpr8Dt6nb4O3ftXp6uwFV6jx8/bnRCntBb8LKysoxOuKF169apVKlSkqT169cbXJM3TZs2VVZWln799VedOXPG7mPdpEkTg8oA58QKRCCPMjMzNWnSJH3wwQc6ffq0JKls2bLq27evXnnlFbm5uSk+Pl5ms9klTksDAADIrfnz5+vtt9/W4cOHJUlVqlTR0KFD9fzzzxtcljNX672Wqww9r6IX8fHxCgwMtPuYWiwWJSQkqGLFigaV5Wzbtm3q1KmTTp48qevHIs64YhIwmnPu0Aw4MTc3N73++us6deqUkpKSlJSUpFOnTum1116zbtxesWJFhocAAOC2MmXKFPXq1UutW7fWokWLtGjRIrVs2VI9e/bU1KlTjc6z42q9V82fP1/h4eHy8vKSl5eXatasqQULFhid5RC9BW/Dhg1q06aNQkNDFRoaqrZt22rTpk1GZ9kJCQnJ8eTi8+fPO+XJ1z179lS9evX0448/6vz587pw4YL11/nz543OA5wOKxABAAAA3FRISIjGjBlj3bLlqnnz5mn06NFO93ioq/VK2UPPESNG6OWXX1bjxo0lSZs3b9aMGTM0btw4pzs9mN6C98knn6hbt25q3769tTk2NlbLli1TTEyMOnXqZHDh38xms06fPq0yZcrYXD958qSqV6+uy5cvG1SWs2LFimn//v0KDQ01OgVwCQwQgTw6ffq0hgwZorVr1+rMmTN2y91Z6g4AAG5Hnp6e+vHHH+3+sX348GGFh4crNTXVoLKcuVqv5HpDT3oLXrVq1fTiiy/aDTenTJmiWbNm6eDBgwaV/W3QoEGSpOnTp+uFF16Qt7e39V5mZqa2b98uNzc3xcbGGpWYo+bNm2vYsGFq2bKl0SmAS+AQFSCPunbtqvj4eI0YMUIBAQHsmwIAAP4VQkNDtWjRIr322ms217/44guFhYUZVOWYq/VK0qlTp9SoUSO7640aNdKpU6cMKLoxegvesWPH1KZNG7vrbdu2tXtvG2Xv3r2Ssvc6jIuLk4eHh/Weh4eH7rnnHg0ZMsSoPIf69u2rwYMHKzExUeHh4XanMdesWdOgMsA5MUAE8mjz5s3atGmTatWqZXQKAABAoRkzZow6duyojRs32jxKuXbtWi1atMjgOnuu1iu53tCT3oIXGBiotWvX2q2kXbNmjQIDAw2qsnX19OVu3bpp+vTp8vHxMbgod5566ilJUmRkpPWayWSSxWLhEBUgBwwQgTwKDAy0e2wZAADgdvfUU09p+/btmjp1qr766itJ2Y9X7tixQ7Vr1zY2Lgeu1iu53tCT3oI3ePBg9evXT/v27bOunoyNjVVMTIymT59ucJ2tadOmKSMjw+76+fPn5e7u7nSDRWd8ZB1wZuyBCOTR6tWr9e677+qjjz5ScHCw0TkAAAC4jezevVtTp0617m1XrVo1DR482GmHnvQWvGXLlundd9+1aR46dKjatWtncJmtVq1aqU2bNurdu7fN9aioKC1fvlzffvutQWUAbgUGiEAe+fn5KSUlRRkZGfL29rbbK+P8+fMGlQEAABSsrKwsHTlyRGfOnFFWVpbNvSZNmhhU5Zir9QKurFSpUoqNjVW1atVsrh86dEiNGzfWuXPnDCpzbMGCBYqKitLx48e1detWBQUFadq0aQoJCXG6AS1gNB5hBvJo2rRpRicAAAAUum3btqlTp046efKk3XYuzrhfmKv1XuVqQ096C0daWlqOzRUrVjSoyN5ff/2V4yPM6enpunLligFFNzZz5kyNHDlSAwYM0Pjx462fE3x9fTVt2jQGiMB1WIEIAAAA4KZq1aqlKlWqaMyYMQoICJDJZLK5X7JkSYPKcuZqvZLrDT3pLXiHDx9WZGSktmzZYnPdGQ/6aNasmWrUqKH333/f5nqfPn104MABbdq0yaCynFWvXl0TJkzQE088oRIlSmj//v2qVKmSfvzxRz344IM6e/as0YmAU2EFIvAPHD16VNHR0Tp69KimT58uf39/rVy5UhUrVtTdd99tdB4AAMAtd/jwYS1evNjuNFhn5Wq9ktSzZ0/Vq1dP//nPf3Icejobegte165d5e7urm+++cbpm8eNG6cWLVpo//79euihhyRJa9eu1c6dO7V69WqD6+wdP348x70vixYtqsuXLxtQBDg3BohAHm3YsEGtWrVS48aNtXHjRo0fP17+/v7av3+/5syZo8WLFxudCAAAcMs1aNBAR44ccZmBnKv1Sq439KS34O3bt0+7d+9W1apVjU65qcaNG2vr1q16++23tWjRInl5ealmzZqaM2eOwsLCjM6zExISon379ikoKMjm+qpVq+z2cQTAABHIs+HDh2vcuHEaNGiQSpQoYb3evHlzffDBBwaWAQAAFJy+fftq8ODBSkxMVHh4uN1BcjVr1jSoLGeu1iu53tCT3oJXvXp1l3qUtlatWvr000+NzsiVQYMGqU+fPkpNTZXFYtGOHTu0cOFCTZw4UbNnzzY6D3A67IEI5FHx4sUVFxenkJAQm70yTpw4oapVqyo1NdXoRAAAgFvObDbbXTOZTE65F5vker2StGzZMr3xxhsaOnSoSww96S1469at0xtvvKEJEybk2Ozj42NQ2Y2lpqYqLS3N5poztn766acaPXq0jh49KkkqX768xowZo+7duxtcBjgfBohAHt15551atGiRGjVqZDNAXLZsmYYMGWL94gMAAHA7OXny5A3vX/8YoNFcrVdyvaEnvQXvavP1ex86Y3NKSoqGDRumRYsW6dy5c3b3nan1eikpKbp06ZL8/f2NTgGcFo8wA3n0zDPP6JVXXtGXX34pk8mkrKwsxcbGasiQIYqIiDA6DwAAoEA448DtRlytV8o+1MGV0Fvw1q9fb3RCrg0dOlTr16/XzJkz9fzzz2vGjBn6/fff9dFHH2nSpElG59k5fvy4MjIyFBYWJm9vb3l7e0vK3iuzSJEiCg4ONjYQcDKsQATyKC0tTX369FFMTIwyMzPl7u6uzMxMderUSTExMXJzczM6EQAAoED5+Pho3759qlSpktEpueJqvYArqlixoubPn68HH3xQPj4+2rNnj0JDQ7VgwQItXLhQ3377rdGJNpo2barIyEh16dLF5vonn3yi2bNn64cffjAmDHBS9mu4AThksViUmJio9957T8eOHdM333yjTz75RIcOHdKCBQsYHgIAgH8FV1uD4Gq9UvbQ89ixY0Zn5Bq9BS88PFwJCQlGZzh0/vx565Dex8dH58+flyTdf//92rhxo5FpOdq7d68aN25sd71hw4bat29f4QcBTo5HmIE8sFgsCg0N1U8//aSwsDAFBgYanQQAAIDbkKsNPekteCdOnFB6errRGQ5VqlRJx48fV8WKFVW1alUtWrRI9evX14oVK+Tr62t0nh2TyaQ///zT7vrFixeder9GwCisQATywGw2KywsLMdNgQEAAP4tOnfu7JQnqjriar2AK+rWrZv2798vSRo+fLhmzJghT09PDRw4UEOHDjW4zl6TJk00ceJEm2FhZmamJk6cqPvvv9/AMsA5sQIRyKNJkyZp6NChmjlzpmrUqGF0DgAAQIE7e/as5s6dq61btyoxMVGS9MILL6hRo0bq2rWrypQpY3Dhjc2cOdPohDxztaEnvQXvgQcekJeXl9EZDg0cOND6+xYtWujQoUPavXu3QkNDVbNmTQPLcjZ58mQ1adJEd911lx544AFJ0qZNm5ScnKx169YZXAc4Hw5RAfLIz89PKSkpysjIkIeHh90X8at7fQAAANwOdu7cqUcffVTe3t5q0aKFypYtK0k6ffq01q5dq5SUFH333XeqV6+ewaV/u3Llinbv3q1SpUqpevXqNvdSU1O1aNEiRUREGFSXs4MHD2rbtm267777VLVqVR08eFDvvfee/vrrL3Xu3FnNmzc3OtGhy5cva9GiRTpy5IgCAgL07LPP6o477jA6y6pv377q0KGDdUiEWy89PV0tW7ZUVFSUwsLCjM7Jtf/+97/64IMPtH//fnl5ealmzZp6+eWXVapUKaPTAKfDABHIo5iYGJlMJof3rz/FCwAAwJU1bNhQ99xzj6Kiouy+B7JYLOrZs6cOHDigrVu3GlRo69dff9Ujjzyi+Ph4mUwm3X///Vq4cKHKly8vKXvwWb58eafa42zVqlVq166dihcvrpSUFC1btkwRERG65557lJWVpQ0bNmj16tVOM0SsXr26Nm/erFKlSikhIUFNmjRRUlKSwsLCdPToUbm7u2vbtm0KCQkxOlVS9jZEJpNJlStXVvfu3dWlSxeVK1fO6KybSktL01dffWWz8rdcuXJq1KiR2rVrJw8PD4MLbZUpU0ZbtmxxqQEigNxjgAgAAADAIS8vL+3du1dVq1bN8f6hQ4dUu3ZtXblypZDLcvbkk08qPT1dMTExSkpK0oABA/Tzzz/rhx9+UMWKFZ1ygNioUSM1b95c48aN0+eff67evXurV69eGj9+vCTp1Vdf1e7du7V69WqDS7OZzWYlJibK399fnTt31vHjx/Xtt9+qZMmSunTpkp588kmVKVNGn332mdGpkrJ7v//+e61YsUKffvqpLl68qFatWumFF15Q69atZTY739EAR44c0aOPPqr//ve/atCggc3K3+3bt+vOO+/UypUrFRoaanDp3wYOHKiiRYtq0qRJRqcAKAAMEIE8cnNz06lTp+Tv729z/dy5c/L393eqb0YBAADyKyQkRGPGjHH4yO/8+fM1cuRInThxonDDHChbtqzWrFmj8PBwSdmrJHv37q1vv/1W69evV7FixZxugFiyZEnrXnFZWVkqWrSoduzYodq1a0uSfvzxR7Vo0cK6Cs1o1w4QK1eurKioKD388MPW+1u2bNEzzzyj+Ph4Ayv/dm1venq6li1bprlz52rNmjUqW7asunbtqm7dujnVMO7hhx9WsWLFNH/+fLu9GpOTkxUREaErV67ou+++M6jQXt++fTV//nyFhYWpbt26KlasmM39KVOmGFQG4FbgEBUgjxzN3P/66y+ne4wAAAAgv4YMGaIXX3xRu3fv1kMPPWS3B+KsWbP0zjvvGFz5tytXrsjd/e9/5phMJs2cOVMvv/yymjZt6jSr4q539fFws9ksT09PlSxZ0nqvRIkSunjxolFpObram5qaqoCAAJt7FSpU0B9//GFE1k0VKVJEHTp0UIcOHRQfH6+5c+cqJiZGkyZNcqqhcmxsrHbs2JHjQS8+Pj5688031aBBAwPKHPvxxx9Vp04dSdlbCVzrRltAAXANDBCBXHrvvfckZX/xmz17tooXL269l5mZqY0bNzp8tAcAAMBV9enTR6VLl9bUqVP14YcfWocsbm5uqlu3rmJiYtShQweDK/9WtWpV7dq1S9WqVbO5/sEHH0iS2rZta0TWDQUHB+vw4cOqXLmyJGnr1q2qWLGi9X58fLzdkM5oDz30kNzd3ZWcnKxffvlFNWrUsN47efKkUx2i4kjFihU1evRojRo1SmvWrDE6x4avr69OnDhh83G91okTJ+Tr61u4UTk4cOCAatSoIbPZrPXr1xudA6AAMUAEcmnq1KmSslcgRkVFyc3NzXrPw8NDwcHBioqKMioPAACgwHTs2FEdO3ZUenq6zp49K0kqXbq0ihQpYnCZvSeffFILFy7U888/b3fvgw8+UFZWltN9z9arVy+b1W/XD41WrlzpNAeoSNKoUaNs/nztD9YlacWKFU514nFQUJDN9+7XM5lMNo9gO4MePXooIiJCI0aMyHHl77hx49S3b1+DK6XatWtbt3eqVKmSdu7c6RLDYwB5xx6IQB41a9ZMS5culZ+fn9EpAAAAAG5TkydP1vTp05WYmGh9BNhisahcuXIaMGCAhg0bZnChdMcdd+jbb79VgwYNZDabdfr0aZUpU8boLIdq166d68ep9+zZU8A1gGthgAjkU2ZmpuLi4hQUFMRQEQAAAMAtdfz4cesBOuXKlVNISIjBRX978cUXNX/+fAUEBCg+Pl533nmnw9Wex44dK+Q6e2PGjLH+PjU1VR9++KGqV6+u++67T5K0bds2/fTTT+rdu7cmTpxoVCbglBggAnk0YMAAhYeHq3v37srMzFSTJk20detWeXt765tvvtGDDz5odCIAAACA21hCQoJGjRqluXPnGp2iVatW6ciRI+rXr5/Gjh2rEiVK5Pi6/v37F3LZjfXo0UMBAQF68803ba6PGjVKCQkJTvGxBZwJA0QgjypUqKCvv/5a9erV01dffaU+ffpo/fr1WrBggdatW6fY2FijEwEAAADcxvbv3686deo41cnR3bp103vvvedwgOhsSpYsqV27diksLMzm+uHDh1WvXj2nO/kcMBqHqAB5dO7cOZUrV06S9O233+rpp59WlSpVFBkZqenTpxtcBwAAAMDVLV++/Ib3neFx4OtFR0cbnZAnXl5eio2NtRsgxsbGytPT06AqwHkxQATyqGzZsvr5558VEBCgVatWaebMmZKklJSUG57uBgAAAAC58cQTT8hkMulGDwzm9jAQ5GzAgAHq1auX9uzZo/r160uStm/frrlz52rEiBEG1wHOhwEikEfdunVThw4dFBAQIJPJpBYtWkjK/mJTtWpVg+sAAAAAuLqAgAB9+OGHateuXY739+3bp7p16xZy1e1l+PDhqlSpkqZPn65PPvlEklStWjVFR0erQ4cOBtcBzoc9EIF/YPHixUpISNDTTz+tO++8U5I0b948+fr6OvwiDwAAAAC50bZtW9WqVUtjx47N8f7+/ftVu3ZtZWVlFXIZgH8rBogAAAAAADiRTZs26fLly2rZsmWO9y9fvqxdu3apadOmhVx2+0lLS9OZM2fshrEVK1Y0qAhwTgwQAQAAAABAnt3ssJdrtW3btgBL8u7w4cOKjIzUli1bbK5bLBaZTCanOuEacAYMEAEAAAAAQJ6ZzeZcvc4ZB3KNGzeWu7u7hg8fbt3f/lr33HOPQWWAc2KACAAAAAAA/lWKFSum3bt3cxAmkEu5+3EBAAAAAADAbaJ69eo6e/as0RmAy2AFIpALycnJuX6tj49PAZYAAAAAgHO6fPmyNmzYoPj4eKWlpdnc69evn0FVOVu3bp3eeOMNTZgwQeHh4SpSpIjNff5dB9higAjkgtlsttsTwxFn29sDAAAAAAra3r171bp1a6WkpOjy5csqVaqUzp49K29vb/n7++vYsWNGJ9q4un/j9f/O4xAVIGfuRgcArmD9+vXW3584cULDhw9X165ddd9990mStm7dqnnz5mnixIlGJQIAAACAYQYOHKg2bdooKipKJUuW1LZt21SkSBF17txZ/fv3NzrPzrX/xgNwc6xABPLooYceUo8ePfTss8/aXP/ss8/08ccf64cffjAmDAAAAAAM4uvrq+3bt+uuu+6Sr6+vtm7dqmrVqmn79u3q0qWLDh06ZHQigHxgBSKQR1u3blVUVJTd9Xr16qlHjx4GFAEAAACAsYoUKWJ9LNjf31/x8fGqVq2aSpYsqYSEBIPrHEtJSclxz8aaNWsaVAQ4JwaIQB4FBgZq1qxZeuutt2yuz549W4GBgQZVAQAAAIBxateurZ07dyosLExNmzbVyJEjdfbsWS1YsEA1atQwOs/OH3/8oW7dumnlypU53mcPRMAWA0Qgj6ZOnaqnnnpKK1euVIMGDSRJO3bs0OHDh7VkyRKD6wAAAACg8E2YMEF//vmnJGn8+PGKiIhQr169FBYWpjlz5hhcZ2/AgAFKSkrS9u3b9eCDD2rZsmU6ffq0xo0bp3fffdfoPMDpsAci8A8kJCRo5syZ1n08qlWrpp49e7ICEQAAAABcQEBAgL7++mvVr19fPj4+2rVrl6pUqaLly5frrbfe0ubNm41OBJwKKxCBfyAwMFATJkwwOgMAAAAAnELz5s21dOlS+fr62lxPTk7WE088oXXr1hkT5sDly5fl7+8vSfLz89Mff/yhKlWqKDw8XHv27DG4DnA+DBCBXDhw4ECuX8tmuwAAAAD+bX744Qe7g0gkKTU1VZs2bTKg6Mbuuusu/fLLLwoODtY999yjjz76SMHBwYqKilJAQIDReYDTYYAI5EKtWrVkMpl0syf+TSYTm+0CAAAA+Ne4drHFzz//rMTEROufMzMztWrVKlWoUMGItBvq37+/Tp06JUkaNWqUWrZsqU8//VQeHh6KiYkxNg5wQuyBCOTCyZMnc/3aoKCgAiwBAAAAAOdhNptlMpkkKccFF15eXnr//fcVGRlZ2Gl5kpKSokOHDqlixYoqXbq00TmA02GACAAAAAAA/pGTJ0/KYrGoUqVK2rFjh8qUKWO95+HhIX9/f7m5uRlYeHNXxyJXB6EA7JmNDgBc0YIFC9S4cWOVL1/eujpx2rRp+vrrrw0uAwAAAIDCExQUpODgYGVlZalevXoKCgqy/goICHDq4eGcOXNUo0YNeXp6ytPTUzVq1NDs2bONzgKcEgNEII9mzpypQYMGqXXr1kpKSrLueejr66tp06YZGwcAAAAABslpocXUqVOdcqHFyJEj1b9/f7Vp00ZffvmlvvzyS7Vp00YDBw7UyJEjjc4DnA4DRCCP3n//fc2aNUuvv/66zU/T6tWrp7i4OAPLAAAAAMAYjhZa+Pn5OeVCi5kzZ2rWrFmaOHGi2rZtq7Zt22rixIn6+OOP9eGHHxqdBzgdBohAHh0/fly1a9e2u160aFFdvnzZgCIAAAAAMJarLbRIT09XvXr17K7XrVtXGRkZBhQBzo0BIpBHISEh2rdvn931VatWqVq1aoUfBAAAAAAGc7WFFs8//7xmzpxpd/3jjz/Wc889Z0AR4NzcjQ4AXM2gQYPUp08fpaamymKxaMeOHVq4cKEmTpzIhrsAAAAA/pWuLrQICgqyue5MCy0GDRpk/b3JZNLs2bO1evVqNWzYUJK0fft2xcfHKyIiwqhEwGkxQATyqEePHvLy8tIbb7yhlJQUderUSeXLl9f06dP1zDPPGJ0HAAAAAIXOFRZa7N271+bPdevWlSQdPXpUklS6dGmVLl1aP/30U6G3Ac7OZLFYLEZHAK4qJSVFly5dkr+/v9EpAAAAAGCoTz/9VKNHj7YO5MqXL68xY8aoe/fuBpcByC8GiAAAAAAA4JZhoQVw+2GACORCnTp1tHbtWvn5+al27doymUwOX7tnz55CLAMAAAAAAChY7IEI5EK7du1UtGhR6+9vNEAEAAAAgH+bc+fOaeTIkVq/fr3OnDmjrKwsm/vnz583qAzArcAKRAAAAAAAkC+tW7fWkSNH1L17d5UtW9Zu0UWXLl0MKgNwKzBABPKoS5cu6t69u5o0aWJ0CgAAAAA4hRIlSmjz5s265557jE4BUADMRgcArubixYtq0aKFwsLCNGHCBP3+++9GJwEAAACAoapWraorV64YnQGggDBABPLoq6++0u+//65evXrpiy++UHBwsFq1aqXFixcrPT3d6DwAAAAAKHQffvihXn/9dW3YsEHnzp1TcnKyzS8Aro1HmIF82rNnj6KjozV79mwVL15cnTt3Vu/evRUWFmZ0GgAAAAAUisOHD6tTp07as2ePzXWLxSKTyaTMzEyDygDcCpzCDOTDqVOn9P333+v777+Xm5ubWrdurbi4OFWvXl1vvfWWBg4caHQiAAAAABS45557TkWKFNFnn32W4yEqAFwbKxCBPEpPT9fy5csVHR2t1atXq2bNmurRo4c6deokHx8fSdKyZcsUGRmpCxcuGFwLAAAAAAXP29tbe/fu1V133WV0CoACwApEII8CAgKUlZWlZ599Vjt27FCtWrXsXtOsWTP5+voWehsAAAAAGKFevXpKSEhggAjcpliBCOTRggUL9PTTT8vT09PoFAAAAABwCl9++aVGjx6toUOHKjw8XEWKFLG5X7NmTYPKANwKDBABAAAAAEC+mM1mu2smk4lDVIDbBI8wAwAAAACAfDl+/LjRCQAKECsQAQAAAAAAADhkv8YYAAAAAAAAAP6HASIAAAAAAAAAhxggAgAAAAAAAHCIASIAAAAAAAAAhziFGQAAAAAA3BJpaWk6c+aMsrKybK5XrFjRoCIAtwIDRAAAAAAAkC+HDx9WZGSktmzZYnPdYrHIZDIpMzPToDIAtwIDRAAAAAAAkC9du3aVu7u7vvnmGwUEBMhkMhmdBOAWMlksFovREQAAAAAAwHUVK1ZMu3fvVtWqVY1OAVAAOEQFAAAAAADkS/Xq1XX27FmjMwAUEAaIAAAAAAAgXyZPnqxhw4bphx9+0Llz55ScnGzzC4Br4xFmAAAAAACQL2Zz9vqk6/c+5BAV4PbAISoAAAAAACBf1q9fb3QCgALECkQAAAAAAAAADrECEQAAAAAA5FtSUpLmzJmjgwcPSpLuvvtuRUZGqmTJkgaXAcgvViACAAAAAIB82bVrlx599FF5eXmpfv36kqSdO3fqypUrWr16terUqWNwIYD8YIAIAAAAAADy5YEHHlBoaKhmzZold/fshx0zMjLUo0cPHTt2TBs3bjS4EEB+MEAEAAAAAAD54uXlpb1796pq1ao213/++WfVq1dPKSkpBpUBuBXMRgcAAAAAAADX5uPjo/j4eLvrCQkJKlGihAFFAG4lBogAAAAAACBfOnbsqO7du+uLL75QQkKCEhIS9Pnnn6tHjx569tlnjc4DkE+cwgwAAAAAAPLlnXfekclkUkREhDIyMiRJRYoUUa9evTRp0iSD6wDkF3sgAgAAAACAWyIlJUVHjx6VJFWuXFne3t4GFwG4FRggAgAAAAAAAHCIR5gBAAAAAECetW/fXjExMfLx8VH79u1v+NqlS5cWUhWAgsAAEQAAAAAA5FnJkiVlMpkkZZ/CfPX3AG4/PMIMAAAAAAAAwCGz0QEAAAAAAMC1NW/eXElJSXbXk5OT1bx588IPAnBLsQIRAAAAAADki9lsVmJiovz9/W2unzlzRhUqVFB6erpBZQBuBfZABAAAAAAA/8iBAwesv//555+VmJho/XNmZqZWrVqlChUqGJEG4BZiBSIAAAAAAPhHzGaz9fCUnMYLXl5eev/99xUZGVnYaQBuIQaIAAAAAADgHzl58qQsFosqVaqkHTt2qEyZMtZ7Hh4e8vf3l5ubm4GFAG4FBogAAAAAAAAAHGIPRAAAAAAAkGfLly9Xq1atVKRIES1fvvyGr23btm0hVQEoCKxABAAAAAAAeXbtyctms9nh60wmkzIzMwuxDMCtxgARAAAAAAAAgEOOf0QAAAAAAADwDyUlJRmdAOAWYYAIAAAAAADyZfLkyfriiy+sf3766adVqlQpVahQQfv37zewDMCtwAARAAAAAADkS1RUlAIDAyVJ33//vdasWaNVq1apVatWGjp0qMF1APKLU5gBAAAAAEC+JCYmWgeI33zzjTp06KBHHnlEwcHBatCggcF1APKLFYgAAAAAACBf/Pz8lJCQIElatWqVWrRoIUmyWCycwAzcBliBCAAAAAAA8qV9+/bq1KmTwsLCdO7cObVq1UqStHfvXoWGhhpcByC/GCACAAAAAIB8mTp1qoKDg5WQkKC33npLxYsXlySdOnVKvXv3NrgOQH6ZLBaLxegIAAAAAAAAAM6JFYgAAAAAACDfDh8+rPXr1+vMmTPKysqyuTdy5EiDqgDcCqxABAAAAAAA+TJr1iz16tVLpUuXVrly5WQymaz3TCaT9uzZY2AdgPxigAgAAAAAAPIlKChIvXv31iuvvGJ0CoACwAARAAAAAADki4+Pj/bt26dKlSoZnQKgAJiNDgAAAAAAAK7t6aef1urVq43OAFBAOEQFAAAAAADkS2hoqEaMGKFt27YpPDxcRYoUsbnfr18/g8oA3Ao8wgwAAAAAAPIlJCTE4T2TyaRjx44VYg2AW40BIgAAAAAAAACH2AMRAAAAAAAAgEPsgQgAAAAAAPLtt99+0/LlyxUfH6+0tDSbe1OmTDGoCsCtwAARAAAAAADky9q1a9W2bVtVqlRJhw4dUo0aNXTixAlZLBbVqVPH6DwA+cQjzAAAAAAAIF9effVVDRkyRHFxcfL09NSSJUuUkJCgpk2b6umnnzY6D0A+cYgKAAAAAADIlxIlSmjfvn2qXLmy/Pz8tHnzZt19993av3+/2rVrpxMnThidCCAfWIEIAAAAAADypVixYtZ9DwMCAnT06FHrvbNnzxqVBeAWYQ9EAAAAAACQLw0bNtTmzZtVrVo1tW7dWoMHD1ZcXJyWLl2qhg0bGp0HIJ94hBkAAAAAAOTLsWPHdOnSJdWsWVOXL1/W4MGDtWXLFoWFhWnKlCkKCgoyOhFAPjBABAAAAAAA/1hmZqZiY2NVs2ZN+fr6Gp0DoAAwQAQAAAAAAPni6empgwcPKiQkxOgUAAWAQ1QAAAAAAEC+1KhRQ8eOHTM6A0ABYQUiAAAAAADIl1WrVunVV1/Vm2++qbp166pYsWI29318fAwqA3ArMEAEAAAAAAD5Yjb//YCjyWSy/t5ischkMikzM9OILAC3iLvRAQAAAAAAwLWtX7/e6AQABYgBIgAAAAAAyJeQkBAFBgbarD6UslcgJiQkGFQF4FbhEWYAAAAAAJAvbm5uOnXqlPz9/W2unzt3Tv7+/jzCDLg4TmEGAAAAAAD5cnWvw+tdunRJnp6eBhQBuJV4hBkAAAAAAPwjgwYNkpR9cMqIESPk7e1tvZeZmant27erVq1aBtUBuFUYIAIAAAAAgH9k7969krJXIMbFxcnDw8N6z8PDQ/fcc4+GDBliVB6AW4Q9EAEAAAAAQL5069ZN06dPl4+Pj9EpAAoAA0QAAAAAAAAADnGICgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACH/h8TXPRSo9iOJAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "IKE3q36IGyCH" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "#Basic regression models" + ], + "metadata": { + "id": "plFM37mpjSeu" + } + }, + { + "cell_type": "code", + "source": [ + "# baseline in performance with support vector regression model\n", + "from sklearn.datasets import make_regression\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVR\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.metrics import r2_score\n", + "from sklearn.ensemble import HistGradientBoostingRegressor\n", + "from sklearn.ensemble import AdaBoostRegressor\n", + "from sklearn.ensemble import GradientBoostingRegressor\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "X = df.drop('yield strength', axis=1)\n", + "\n", + "y = df['yield strength']\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)" + ], + "metadata": { + "id": "ZtRcFSUujIPC" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "X" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 478 + }, + "id": "5LTOKdu4sZC0", + "outputId": "b9a34165-7f05-4dac-e8a7-0fdf1ae9c043" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " C Al Si Ti V Cr Mn \\\n", + "0 0.000953 0.003180 0.001020 0.018499 0.000112 0.000110 0.000521 \n", + "1 0.008542 0.000845 0.000203 0.000000 0.005151 0.147026 0.000104 \n", + "2 0.000000 0.008123 0.000200 0.006692 0.000110 0.093630 0.000102 \n", + "3 0.000478 0.002772 0.001021 0.017611 0.000113 0.000111 0.000523 \n", + "4 0.000474 0.002740 0.001010 0.018400 0.000112 0.000109 0.000518 \n", + ".. ... ... ... ... ... ... ... \n", + "307 0.017600 0.000620 0.000198 0.000000 0.010500 0.077900 0.001830 \n", + "308 0.000000 0.000629 0.001010 0.001060 0.000111 0.056101 0.000618 \n", + "309 0.017401 0.000628 0.000201 0.000000 0.011601 0.056505 0.001750 \n", + "310 0.019106 0.000623 0.000199 0.000000 0.010103 0.075322 0.001941 \n", + "311 0.012505 0.000619 0.000198 0.000000 0.000765 0.004392 0.002741 \n", + "\n", + " Fe Co Ni Nb Mo 0-norm 2-norm \\\n", + "0 0.619964 0.145992 0.191989 0.000062 0.017599 12 0.665728 \n", + "1 0.623112 0.188034 0.000097 0.000061 0.017903 13 0.667621 \n", + "2 0.625199 0.132042 0.129041 0.000060 0.004802 11 0.658681 \n", + "3 0.634395 0.146091 0.173108 0.000062 0.023715 12 0.674276 \n", + "4 0.635985 0.143997 0.187995 0.000061 0.008600 12 0.678952 \n", + ".. ... ... ... ... ... ... ... \n", + "307 0.822998 0.046300 0.000095 0.000060 0.021900 11 0.828517 \n", + "308 0.823012 0.000096 0.098401 0.000061 0.018900 11 0.830987 \n", + "309 0.825070 0.046804 0.000096 0.005540 0.034403 11 0.829324 \n", + "310 0.858251 0.000190 0.000095 0.000060 0.034110 11 0.862498 \n", + "311 0.860334 0.036914 0.078631 0.000060 0.002841 11 0.864819 \n", + "\n", + " 3-norm 5-norm 7-norm 10-norm transition metal fraction \\\n", + "0 0.628687 0.620407 0.619992 0.619965 0.994847 \n", + "1 0.631442 0.623514 0.623136 0.623112 0.988780 \n", + "2 0.629663 0.625307 0.625202 0.625199 0.991677 \n", + "3 0.641216 0.634669 0.634409 0.634395 0.995729 \n", + "4 0.643829 0.636347 0.636005 0.635985 0.995776 \n", + ".. ... ... ... ... ... \n", + "307 0.823287 0.822999 0.822998 0.822998 0.981582 \n", + "308 0.823571 0.823017 0.823012 0.823012 0.998361 \n", + "309 0.825232 0.825070 0.825070 0.825070 0.981769 \n", + "310 0.858466 0.858252 0.858251 0.858251 0.980072 \n", + "311 0.860576 0.860335 0.860334 0.860334 0.986678 \n", + "\n", + " band center \n", + "0 4.120851 \n", + "1 4.045671 \n", + "2 4.066023 \n", + "3 4.113411 \n", + "4 4.119559 \n", + ".. ... \n", + "307 4.043178 \n", + "308 4.046132 \n", + "309 4.046924 \n", + "310 4.034904 \n", + "311 4.089606 \n", + "\n", + "[312 rows x 20 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CAlSiTiVCrMnFeCoNiNbMo0-norm2-norm3-norm5-norm7-norm10-normtransition metal fractionband center
00.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.1459920.1919890.0000620.017599120.6657280.6286870.6204070.6199920.6199650.9948474.120851
10.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.1880340.0000970.0000610.017903130.6676210.6314420.6235140.6231360.6231120.9887804.045671
20.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.1320420.1290410.0000600.004802110.6586810.6296630.6253070.6252020.6251990.9916774.066023
30.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.1460910.1731080.0000620.023715120.6742760.6412160.6346690.6344090.6343950.9957294.113411
40.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.1439970.1879950.0000610.008600120.6789520.6438290.6363470.6360050.6359850.9957764.119559
...............................................................
3070.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.0463000.0000950.0000600.021900110.8285170.8232870.8229990.8229980.8229980.9815824.043178
3080.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.0000960.0984010.0000610.018900110.8309870.8235710.8230170.8230120.8230120.9983614.046132
3090.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.0468040.0000960.0055400.034403110.8293240.8252320.8250700.8250700.8250700.9817694.046924
3100.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.0001900.0000950.0000600.034110110.8624980.8584660.8582520.8582510.8582510.9800724.034904
3110.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.0369140.0786310.0000600.002841110.8648190.8605760.8603350.8603340.8603340.9866784.089606
\n", + "

312 rows × 20 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "X", + "summary": "{\n \"name\": \"X\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005088563568682925,\n \"min\": 0.0,\n \"max\": 0.020105653709823198,\n \"num_unique_values\": 286,\n \"samples\": [\n 0.00047699823510653,\n 0.00046767024570975,\n 0.0018905108160224894\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Al\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.007022409097348201,\n \"min\": 0.00020785917540866065,\n \"max\": 0.03761387952154345,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.00496659291725876,\n 0.0008360611996798165,\n 0.00061102260783649\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Si\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011228752706333433,\n \"min\": 0.00019683316421001556,\n \"max\": 0.08997806496916724,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0008036057510185505,\n 0.00020101471427708505,\n 0.02940108784025009\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ti\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.006606511803469801,\n \"min\": 0.0,\n \"max\": 0.029509422358559086,\n \"num_unique_values\": 195,\n \"samples\": [\n 0.0023498634729322222,\n 0.002420134801508444,\n 0.024088386988632776\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"V\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.004991944168276904,\n \"min\": 0.0,\n \"max\": 0.0474201013809754,\n \"num_unique_values\": 309,\n \"samples\": [\n 0.00011094557010330734,\n 0.005310388720454336,\n 0.00010800399614785747\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cr\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.058074181251770926,\n \"min\": 0.00010208857204510633,\n \"max\": 0.1859655777715545,\n \"num_unique_values\": 310,\n \"samples\": [\n 0.04957567817228868,\n 0.1580115664466639,\n 0.13400495818345282\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.003994275428386101,\n \"min\": 9.904104260805677e-05,\n \"max\": 0.03000857645114974,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0007186474315700719,\n 0.00010300754015193911,\n 0.00010000370013690507\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146692352022514,\n \"min\": 0.6199642900568927,\n \"max\": 0.860333809518093,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735131699655,\n 0.6480474370723937,\n 0.6770250499268474\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Co\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05968062978906907,\n \"min\": 9.027832547518227e-05,\n \"max\": 0.18984015458983536,\n \"num_unique_values\": 311,\n \"samples\": [\n 9.575302356663823e-05,\n 0.1490109075984362,\n 0.12900477317660755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ni\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06121709210362406,\n \"min\": 9.489972479079811e-05,\n \"max\": 0.2028409524092159,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.09803274953381981,\n 9.610703503496455e-05,\n 0.008810325982061338\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Nb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0009819534237412472,\n \"min\": 0.0,\n \"max\": 0.0152009576603326,\n \"num_unique_values\": 310,\n \"samples\": [\n 6.077018614667645e-05,\n 6.070444356526897e-05,\n 0.00047401753864893\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mo\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010889034334196392,\n \"min\": 0.00011109638722555688,\n \"max\": 0.057567370814222495,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.011292253514089334,\n 0.028802108314328605,\n 0.011300418115470272\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 10,\n \"max\": 13,\n \"num_unique_values\": 4,\n \"samples\": [\n 13,\n 10,\n 12\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.04427563902277603,\n \"min\": 0.6586807276305723,\n \"max\": 0.8648190235908033,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7815878887528689,\n 0.6841464463613443,\n 0.7029343890609197\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0502036084544961,\n \"min\": 0.6286870284058237,\n \"max\": 0.8605762694650622,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7687571292960343,\n 0.6537736176672051,\n 0.6803406503478145\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"5-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05142045677636951,\n \"min\": 0.6204065864012965,\n \"max\": 0.8603349319303369,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674879845946792,\n 0.6482423499881135,\n 0.6771002024176017\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"7-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146484306447001,\n \"min\": 0.6199920325968773,\n \"max\": 0.8603338160979437,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674737095769911,\n 0.6480553263549956,\n 0.6770270831463305\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"10-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.051466897588403095,\n \"min\": 0.619964825439261,\n \"max\": 0.8603338095215936,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735135375647,\n 0.6480475119780384,\n 0.6770250604470499\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"transition metal fraction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011952777170137955,\n \"min\": 0.8939169623565406,\n \"max\": 0.9987510327998004,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.9921144095150726,\n 0.989442227171029,\n 0.960827550619373\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"band center\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03576132884772068,\n \"min\": 3.9737310841836684,\n \"max\": 4.183584674157245,\n \"num_unique_values\": 312,\n \"samples\": [\n 4.025966262189159,\n 4.028123275178089,\n 4.056867709895318\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.preprocessing import RobustScaler\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.linear_model import Ridge\n", + "from xgboost import XGBRegressor\n", + "from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n", + "from sklearn.pipeline import Pipeline\n", + "from sklearn.kernel_ridge import KernelRidge\n", + "from lightgbm import LGBMRegressor\n", + "from sklearn.linear_model import BayesianRidge\n", + "\n", + "\n", + "\n", + "models = [RandomForestRegressor(random_state=42),\n", + " LinearRegression(),\n", + " Ridge(random_state=42),\n", + " XGBRegressor(random_state=42),\n", + " HistGradientBoostingRegressor(random_state=42),\n", + " AdaBoostRegressor(random_state=42),\n", + " GradientBoostingRegressor(learning_rate=0.01, n_estimators=1000,\n", + " subsample=1.0, criterion='friedman_mse',\n", + " min_samples_split=2, min_samples_leaf=1,\n", + " min_weight_fraction_leaf=0.0, max_depth=5),\n", + " SVR(),\n", + " KernelRidge(),\n", + "\n", + " BayesianRidge(),\n", + "\n", + "\n", + " ]\n", + "\n", + "model_names = ['Random Forest', 'Linear Regression',\n", + " 'Ridge', 'XGBoost', 'HistGradientBoosting', 'AdaBoost',\n", + " 'GradientBoosting', 'SVR', 'KernelRidge','BayesianRidge']\n", + "\n", + "def model_test(models, model_names, X_train, y_train, X_test, y_test, norm=True):\n", + " #utilizing for-loop to quickly analyze all 5 models\n", + " mae = {}\n", + " rmse = {}\n", + " r2 = {}\n", + " for model, name in zip(models, model_names):\n", + " if norm:\n", + " model = Pipeline([('scaler', RobustScaler()), ('model', model)])\n", + " else:\n", + " model = Pipeline([('model', model)])\n", + " model.fit(X_train, y_train)\n", + " y_pred = model.predict(X_test)\n", + "\n", + " mae[name] = mean_absolute_error(y_test, y_pred)\n", + " rmse[name] = mean_squared_error(y_test, y_pred, squared=False)\n", + " r2[name] = r2_score(y_test, y_pred)\n", + " # print(f'{name} \\n R-Squared: {r2:.5f} \\n MAE: {mae:.5f} \\n RMSE: {rmse:.5f}')\n", + " return mae, rmse, r2\n", + "\n", + "res_noclust = [0]*1\n", + "\n", + "res_noclust[0] = model_test(models, model_names, X_train, y_train, X_test, y_test)\n" + ], + "metadata": { + "id": "XyFo13gbr8Qs" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "res_noclust[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sCT9h16AJ5Ub", + "outputId": "9fa96d4a-0065-4fa3-f5c6-ac8b66de2714" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "({'Random Forest': 101.67031746031735,\n", + " 'Linear Regression': 154.33825676714517,\n", + " 'Ridge': 155.62634299184003,\n", + " 'XGBoost': 109.286921812996,\n", + " 'HistGradientBoosting': 110.59885613241298,\n", + " 'AdaBoost': 128.15915510481574,\n", + " 'GradientBoosting': 97.97207327577024,\n", + " 'SVR': 246.6394792314533,\n", + " 'KernelRidge': 171.38895043089343,\n", + " 'BayesianRidge': 238.25470726953395},\n", + " {'Random Forest': 139.2945539573979,\n", + " 'Linear Regression': 212.98635368804023,\n", + " 'Ridge': 220.47967409300014,\n", + " 'XGBoost': 148.68420534170488,\n", + " 'HistGradientBoosting': 159.44170998201767,\n", + " 'AdaBoost': 157.81219978064576,\n", + " 'GradientBoosting': 132.76270771545163,\n", + " 'SVR': 328.2090895489837,\n", + " 'KernelRidge': 240.4757370428366,\n", + " 'BayesianRidge': 307.4891482817299},\n", + " {'Random Forest': 0.8062720190494954,\n", + " 'Linear Regression': 0.5470736001611378,\n", + " 'Ridge': 0.5146431149017716,\n", + " 'XGBoost': 0.7792738692467237,\n", + " 'HistGradientBoosting': 0.746178757864505,\n", + " 'AdaBoost': 0.7513404030172695,\n", + " 'GradientBoosting': 0.8240147453707464,\n", + " 'SVR': -0.0755368308413158,\n", + " 'KernelRidge': 0.42261352409575736,\n", + " 'BayesianRidge': 0.055974631157888366})" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "-s-mdrCmIYVp" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import make_scorer\n", + "from sklearn.model_selection import KFold\n", + "from sklearn.model_selection import cross_validate\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, explained_variance_score, mean_pinball_loss\n", + "\n", + "def cross_val_test(model, dataX, dataY, model_type='regression', n_cv=10):\n", + "\n", + " # Розбиття для подальшої крос-валідації\n", + " cv = KFold(n_splits=n_cv, shuffle=True)\n", + " # Визначення набору метрик\n", + " if model_type == 'regression':\n", + " scorer = {'r2':make_scorer(r2_score),\n", + " 'mae': make_scorer(mean_absolute_error),\n", + " 'mse': make_scorer(mean_squared_error),\n", + " 'mape': make_scorer(mean_absolute_percentage_error)}\n", + " if model_type == 'classification':\n", + " pass\n", + "\n", + " # Оцінка якості моделі на різних наборах даних\n", + " scores = cross_validate(model, dataX, dataY, scoring=scorer, cv=cv, return_train_score=True)\n", + " return scores" + ], + "metadata": { + "id": "BgPeinX2kK22" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "model_cv = models[6]\n", + "model_cv" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "QMPC1r_XjlAu", + "outputId": "27467877-e7d0-4629-9e4d-55d99e46f45a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "GradientBoostingRegressor(learning_rate=0.01, max_depth=5, n_estimators=1000)" + ], + "text/html": [ + "
GradientBoostingRegressor(learning_rate=0.01, max_depth=5, n_estimators=1000)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scores = cross_val_test(model_cv, X, y)\n", + "\n", + "print(scores['train_r2'])\n", + "print(scores['test_r2'])\n", + "\n", + "print(scores.keys())\n", + "# Порівняння метрик тренування-тест\n", + "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_r2']), np.mean(scores['test_r2'])))\n", + "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_mae']), np.mean(scores['test_mae'])))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZhnZA4AXkbvW", + "outputId": "cbe33b10-099b-4f88-d43f-03f5f18b897d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[0.99737661 0.99750453 0.99766506 0.9972478 0.99711882 0.9974906\n", + " 0.99793645 0.99743527 0.99690617 0.99787398]\n", + "[0.62602027 0.81881496 0.86247895 0.84311412 0.90390446 0.89535361\n", + " 0.50485765 0.72969038 0.74478517 0.86701499]\n", + "dict_keys(['fit_time', 'score_time', 'test_r2', 'train_r2', 'test_mae', 'train_mae', 'test_mse', 'train_mse', 'test_mape', 'train_mape'])\n", + "Train(metric), Test(metric): 0.997, 0.780\n", + "Train(metric), Test(metric): 12.061, 88.429\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from mlxtend.regressor import StackingRegressor\n", + "from mlxtend.regressor import StackingCVRegressor" + ], + "metadata": { + "id": "Jf_NVjQ_zykt" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# stregr = StackingRegressor(regressors=[models[6], models[0], models[3],\n", + "# models[4], models[5]],\n", + "# meta_regressor=models[1])\n", + "\n", + "# stregr = StackingRegressor(regressors=[models[6], models[0]],\n", + "# meta_regressor=models[1])\n", + "\n", + "stregr = StackingRegressor(regressors=[models[6], models[0], models[3]],\n", + " meta_regressor=models[2])\n", + "\n", + "\n", + "# Training the stacking classifier\n", + "\n", + "\n", + "scores = cross_val_test(stregr, X, y)\n", + "\n", + "print(scores['train_r2'])\n", + "print(scores['test_r2'])\n", + "\n", + "print(scores.keys())\n", + "# Порівняння метрик тренування-тест\n", + "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_r2']), np.mean(scores['test_r2'])))\n", + "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_mae']), np.mean(scores['test_mae'])))\n", + "\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "szyIeFTy0Ail", + "outputId": "6d638f4b-eb4b-4786-c052-5b3c636f359a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[0.9999998 0.99999921 0.99999948 0.99999948 0.99999905 0.99999932\n", + " 0.99999908 0.99999933 0.99999905 0.99999942]\n", + "[0.80692657 0.89454576 0.84141704 0.60314347 0.69797768 0.56175097\n", + " 0.68157385 0.92563621 0.49173431 0.86374305]\n", + "dict_keys(['fit_time', 'score_time', 'test_r2', 'train_r2', 'test_mae', 'train_mae', 'test_mse', 'train_mse', 'test_mape', 'train_mape'])\n", + "Train(metric), Test(metric): 1.000, 0.737\n", + "Train(metric), Test(metric): 0.180, 96.374\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "\n", + "stregr.fit(X_train, y_train)\n", + "yhat_stregr = stregr.predict(X_test)\n", + "\n", + "score_stregr = r2_score(y_test, yhat_stregr)\n", + "print(score_stregr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WBVCaIFR3Dcw", + "outputId": "ef001c6a-f451-455e-83d1-56f0b67158cf" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0.7758914299142441\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Apply StackNetRegressor" + ], + "metadata": { + "id": "dKzMO5T0ecrs" + } + }, + { + "cell_type": "code", + "source": [ + "\n" + ], + "metadata": { + "id": "xK0eX5QhZl_R" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# models_sn = [[models[0], models[3], models[4], models[5], models[6]], [models[1]]]\n", + "\n", + "# models_sn = [[models[0], models[5], models[6]], [models[6]]] # 0.85 87\n", + "\n", + "models_sn = [[models[0], models[5], models[6]], [models[6]]] #\n", + "\n", + "stack_net = StackNetRegressor(models_sn, metric=\"r2\", folds=5,\n", + "\trestacking=True, use_retraining=False,\n", + "\trandom_state=42, n_jobs=1, verbose=1)\n", + "\n", + "stack_net.fit(X_train,y_train)\n", + "y_pred = stack_net.predict(X_test)\n", + "\n", + "r2_sn = r2_score(y_test, y_pred)\n", + "print('************************\\n', r2_sn)\n", + "\n", + "mae_sn = mean_absolute_error(y_test, y_pred)\n", + "print('************************\\n', mae_sn)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Rc0b_cNIaYGp", + "outputId": "5b7c09b8-ed73-4837-bed4-9d7e3fe86858" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "====================== Start of Level 0 ======================\n", + "Input Dimensionality 20 at Level 0 \n", + "3 models included in Level 0 \n", + "Fold 1/5 , model 0 , r2===0.467926 \n", + "Fold 1/5 , model 1 , r2===0.607910 \n", + "Fold 1/5 , model 2 , r2===0.713114 \n", + "=========== end of fold 1 in level 0 ===========\n", + "Fold 2/5 , model 0 , r2===0.735262 \n", + "Fold 2/5 , model 1 , r2===0.696357 \n", + "Fold 2/5 , model 2 , r2===0.781318 \n", + "=========== end of fold 2 in level 0 ===========\n", + "Fold 3/5 , model 0 , r2===0.776923 \n", + "Fold 3/5 , model 1 , r2===0.732796 \n", + "Fold 3/5 , model 2 , r2===0.827626 \n", + "=========== end of fold 3 in level 0 ===========\n", + "Fold 4/5 , model 0 , r2===0.725732 \n", + "Fold 4/5 , model 1 , r2===0.545276 \n", + "Fold 4/5 , model 2 , r2===0.713435 \n", + "=========== end of fold 4 in level 0 ===========\n", + "Fold 5/5 , model 0 , r2===0.826311 \n", + "Fold 5/5 , model 1 , r2===0.823888 \n", + "Fold 5/5 , model 2 , r2===0.852178 \n", + "=========== end of fold 5 in level 0 ===========\n", + "Output dimensionality of level 0 is 3 \n", + "====================== End of Level 0 ======================\n", + " level 0 lasted 17.530065 seconds \n", + "====================== Start of Level 1 ======================\n", + "Input Dimensionality 23 at Level 1 \n", + "1 models included in Level 1 \n", + "Fold 1/5 , model 0 , r2===0.344470 \n", + "=========== end of fold 1 in level 1 ===========\n", + "Fold 2/5 , model 0 , r2===0.711914 \n", + "=========== end of fold 2 in level 1 ===========\n", + "Fold 3/5 , model 0 , r2===0.744692 \n", + "=========== end of fold 3 in level 1 ===========\n", + "Fold 4/5 , model 0 , r2===0.566766 \n", + "=========== end of fold 4 in level 1 ===========\n", + "Fold 5/5 , model 0 , r2===0.813641 \n", + "=========== end of fold 5 in level 1 ===========\n", + "Output dimensionality of level 1 is 1 \n", + "====================== End of Level 1 ======================\n", + " level 1 lasted 16.871905 seconds \n", + "====================== End of fit ======================\n", + " fit() lasted 34.405983 seconds \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "************************\n", + " 0.8581754923098954\n", + "************************\n", + " 87.90447952498737\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# # Training the stacking classifier\n", + "\n", + "\n", + "# scores = cross_val_test(stack_net, X, y, model_type='regression', n_cv=5)\n", + "\n", + "# print(scores['train_r2'])\n", + "# print(scores['test_r2'])\n", + "\n", + "# print(scores.keys())\n", + "# # Порівняння метрик тренування-тест\n", + "# print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_r2']), np.mean(scores['test_r2'])))\n", + "# print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_mae']), np.mean(scores['test_mae'])))\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "f5iEtpDgh64v", + "outputId": "a9a27040-7a7b-49f3-9e85-474d39f9fe4e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "====================== Start of Level 0 ======================\n", + "Input Dimensionality 20 at Level 0 \n", + "3 models included in Level 0 \n", + "Fold 1/5 , model 0 , custom===0.872970 \n", + "Fold 1/5 , model 1 , custom===0.814608 \n", + "Fold 1/5 , model 2 , custom===0.872920 \n", + "=========== end of fold 1 in level 0 ===========\n", + "Fold 2/5 , model 0 , custom===0.781848 \n", + "Fold 2/5 , model 1 , custom===0.765228 \n", + "Fold 2/5 , model 2 , custom===0.816307 \n", + "=========== end of fold 2 in level 0 ===========\n", + "Fold 3/5 , model 0 , custom===0.823965 \n", + "Fold 3/5 , model 1 , custom===0.726821 \n", + "Fold 3/5 , model 2 , custom===0.813376 \n", + "=========== end of fold 3 in level 0 ===========\n", + "Fold 4/5 , model 0 , custom===0.664061 \n", + "Fold 4/5 , model 1 , custom===0.646937 \n", + "Fold 4/5 , model 2 , custom===0.627758 \n", + "=========== end of fold 4 in level 0 ===========\n", + "Fold 5/5 , model 0 , custom===0.663774 \n", + "Fold 5/5 , model 1 , custom===0.685916 \n", + "Fold 5/5 , model 2 , custom===0.679194 \n", + "=========== end of fold 5 in level 0 ===========\n", + "Output dimensionality of level 0 is 3 \n", + "====================== End of Level 0 ======================\n", + " level 0 lasted 18.262664 seconds \n", + "====================== Start of Level 1 ======================\n", + "Input Dimensionality 23 at Level 1 \n", + "1 models included in Level 1 \n", + "Fold 1/5 , model 0 , custom===0.835540 \n", + "=========== end of fold 1 in level 1 ===========\n", + "Fold 2/5 , model 0 , custom===0.746396 \n", + "=========== end of fold 2 in level 1 ===========\n", + "Fold 3/5 , model 0 , custom===0.787041 \n", + "=========== end of fold 3 in level 1 ===========\n", + "Fold 4/5 , model 0 , custom===0.640307 \n", + "=========== end of fold 4 in level 1 ===========\n", + "Fold 5/5 , model 0 , custom===0.522661 \n", + "=========== end of fold 5 in level 1 ===========\n", + "Output dimensionality of level 1 is 1 \n", + "====================== End of Level 1 ======================\n", + " level 1 lasted 17.182471 seconds \n", + "====================== End of fit ======================\n", + " fit() lasted 35.448526 seconds \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "Input Dimensionality 20 at Level 0 \n", + "3 models included in Level 0 \n", + "Fold 1/5 , model 0 , custom===0.753318 \n", + "Fold 1/5 , model 1 , custom===0.785693 \n", + "Fold 1/5 , model 2 , custom===0.811107 \n", + "=========== end of fold 1 in level 0 ===========\n", + "Fold 2/5 , model 0 , custom===0.711620 \n", + "Fold 2/5 , model 1 , custom===0.654802 \n", + "Fold 2/5 , model 2 , custom===0.671256 \n", + "=========== end of fold 2 in level 0 ===========\n", + "Fold 3/5 , model 0 , custom===0.803641 \n", + "Fold 3/5 , model 1 , custom===0.736728 \n", + "Fold 3/5 , model 2 , custom===0.792260 \n", + "=========== end of fold 3 in level 0 ===========\n", + "Fold 4/5 , model 0 , custom===0.796421 \n", + "Fold 4/5 , model 1 , custom===0.518474 \n", + "Fold 4/5 , model 2 , custom===0.846659 \n", + "=========== end of fold 4 in level 0 ===========\n", + "Fold 5/5 , model 0 , custom===0.645727 \n", + "Fold 5/5 , model 1 , custom===0.544997 \n", + "Fold 5/5 , model 2 , custom===0.622026 \n", + "=========== end of fold 5 in level 0 ===========\n", + "Output dimensionality of level 0 is 3 \n", + "====================== End of Level 0 ======================\n", + " level 0 lasted 17.711757 seconds \n", + "====================== Start of Level 1 ======================\n", + "Input Dimensionality 23 at Level 1 \n", + "1 models included in Level 1 \n", + "Fold 1/5 , model 0 , custom===0.702840 \n", + "=========== end of fold 1 in level 1 ===========\n", + "Fold 2/5 , model 0 , custom===0.605708 \n", + "=========== end of fold 2 in level 1 ===========\n", + "Fold 3/5 , model 0 , custom===0.468704 \n", + "=========== end of fold 3 in level 1 ===========\n", + "Fold 4/5 , model 0 , custom===0.703826 \n", + "=========== end of fold 4 in level 1 ===========\n", + "Fold 5/5 , model 0 , custom===0.652147 \n", + "=========== end of fold 5 in level 1 ===========\n", + "Output dimensionality of level 1 is 1 \n", + "====================== End of Level 1 ======================\n", + " level 1 lasted 16.641401 seconds \n", + "====================== End of fit ======================\n", + " fit() lasted 34.355973 seconds \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "Input Dimensionality 20 at Level 0 \n", + "3 models included in Level 0 \n", + "Fold 1/5 , model 0 , custom===0.840415 \n", + "Fold 1/5 , model 1 , custom===0.840497 \n", + "Fold 1/5 , model 2 , custom===0.832862 \n", + "=========== end of fold 1 in level 0 ===========\n", + "Fold 2/5 , model 0 , custom===0.792322 \n", + "Fold 2/5 , model 1 , custom===0.665001 \n", + "Fold 2/5 , model 2 , custom===0.827707 \n", + "=========== end of fold 2 in level 0 ===========\n", + "Fold 3/5 , model 0 , custom===0.796784 \n", + "Fold 3/5 , model 1 , custom===0.731078 \n", + "Fold 3/5 , model 2 , custom===0.763302 \n", + "=========== end of fold 3 in level 0 ===========\n", + "Fold 4/5 , model 0 , custom===0.405353 \n", + "Fold 4/5 , model 1 , custom===0.457721 \n", + "Fold 4/5 , model 2 , custom===0.503097 \n", + "=========== end of fold 4 in level 0 ===========\n", + "Fold 5/5 , model 0 , custom===0.698257 \n", + "Fold 5/5 , model 1 , custom===0.605934 \n", + "Fold 5/5 , model 2 , custom===0.699024 \n", + "=========== end of fold 5 in level 0 ===========\n", + "Output dimensionality of level 0 is 3 \n", + "====================== End of Level 0 ======================\n", + " level 0 lasted 18.742084 seconds \n", + "====================== Start of Level 1 ======================\n", + "Input Dimensionality 23 at Level 1 \n", + "1 models included in Level 1 \n", + "Fold 1/5 , model 0 , custom===0.825606 \n", + "=========== end of fold 1 in level 1 ===========\n", + "Fold 2/5 , model 0 , custom===0.834812 \n", + "=========== end of fold 2 in level 1 ===========\n", + "Fold 3/5 , model 0 , custom===0.771748 \n", + "=========== end of fold 3 in level 1 ===========\n", + "Fold 4/5 , model 0 , custom===0.605812 \n", + "=========== end of fold 4 in level 1 ===========\n", + "Fold 5/5 , model 0 , custom===0.610083 \n", + "=========== end of fold 5 in level 1 ===========\n", + "Output dimensionality of level 1 is 1 \n", + "====================== End of Level 1 ======================\n", + " level 1 lasted 16.779898 seconds \n", + "====================== End of fit ======================\n", + " fit() lasted 35.523730 seconds \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "Input Dimensionality 20 at Level 0 \n", + "3 models included in Level 0 \n", + "Fold 1/5 , model 0 , custom===0.823516 \n", + "Fold 1/5 , model 1 , custom===0.699534 \n", + "Fold 1/5 , model 2 , custom===0.846083 \n", + "=========== end of fold 1 in level 0 ===========\n", + "Fold 2/5 , model 0 , custom===0.712296 \n", + "Fold 2/5 , model 1 , custom===0.739516 \n", + "Fold 2/5 , model 2 , custom===0.776874 \n", + "=========== end of fold 2 in level 0 ===========\n", + "Fold 3/5 , model 0 , custom===0.860966 \n", + "Fold 3/5 , model 1 , custom===0.756017 \n", + "Fold 3/5 , model 2 , custom===0.855464 \n", + "=========== end of fold 3 in level 0 ===========\n", + "Fold 4/5 , model 0 , custom===0.901260 \n", + "Fold 4/5 , model 1 , custom===0.836559 \n", + "Fold 4/5 , model 2 , custom===0.881604 \n", + "=========== end of fold 4 in level 0 ===========\n", + "Fold 5/5 , model 0 , custom===0.443464 \n", + "Fold 5/5 , model 1 , custom===0.468378 \n", + "Fold 5/5 , model 2 , custom===0.567936 \n", + "=========== end of fold 5 in level 0 ===========\n", + "Output dimensionality of level 0 is 3 \n", + "====================== End of Level 0 ======================\n", + " level 0 lasted 23.025588 seconds \n", + "====================== Start of Level 1 ======================\n", + "Input Dimensionality 23 at Level 1 \n", + "1 models included in Level 1 \n", + "Fold 1/5 , model 0 , custom===0.850123 \n", + "=========== end of fold 1 in level 1 ===========\n", + "Fold 2/5 , model 0 , custom===0.652366 \n", + "=========== end of fold 2 in level 1 ===========\n", + "Fold 3/5 , model 0 , custom===0.797301 \n", + "=========== end of fold 3 in level 1 ===========\n", + "Fold 4/5 , model 0 , custom===0.670731 \n", + "=========== end of fold 4 in level 1 ===========\n", + "Fold 5/5 , model 0 , custom===0.387702 \n", + "=========== end of fold 5 in level 1 ===========\n", + "Output dimensionality of level 1 is 1 \n", + "====================== End of Level 1 ======================\n", + " level 1 lasted 17.061743 seconds \n", + "====================== End of fit ======================\n", + " fit() lasted 40.091802 seconds \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "Input Dimensionality 20 at Level 0 \n", + "3 models included in Level 0 \n", + "Fold 1/5 , model 0 , custom===0.854734 \n", + "Fold 1/5 , model 1 , custom===0.760988 \n", + "Fold 1/5 , model 2 , custom===0.889494 \n", + "=========== end of fold 1 in level 0 ===========\n", + "Fold 2/5 , model 0 , custom===0.510614 \n", + "Fold 2/5 , model 1 , custom===0.490943 \n", + "Fold 2/5 , model 2 , custom===0.632916 \n", + "=========== end of fold 2 in level 0 ===========\n", + "Fold 3/5 , model 0 , custom===0.823085 \n", + "Fold 3/5 , model 1 , custom===0.772802 \n", + "Fold 3/5 , model 2 , custom===0.833726 \n", + "=========== end of fold 3 in level 0 ===========\n", + "Fold 4/5 , model 0 , custom===0.859707 \n", + "Fold 4/5 , model 1 , custom===0.778830 \n", + "Fold 4/5 , model 2 , custom===0.847239 \n", + "=========== end of fold 4 in level 0 ===========\n", + "Fold 5/5 , model 0 , custom===0.669015 \n", + "Fold 5/5 , model 1 , custom===0.511400 \n", + "Fold 5/5 , model 2 , custom===0.730421 \n", + "=========== end of fold 5 in level 0 ===========\n", + "Output dimensionality of level 0 is 3 \n", + "====================== End of Level 0 ======================\n", + " level 0 lasted 17.534643 seconds \n", + "====================== Start of Level 1 ======================\n", + "Input Dimensionality 23 at Level 1 \n", + "1 models included in Level 1 \n", + "Fold 1/5 , model 0 , custom===0.841589 \n", + "=========== end of fold 1 in level 1 ===========\n", + "Fold 2/5 , model 0 , custom===0.433086 \n", + "=========== end of fold 2 in level 1 ===========\n", + "Fold 3/5 , model 0 , custom===0.688474 \n", + "=========== end of fold 3 in level 1 ===========\n", + "Fold 4/5 , model 0 , custom===0.781353 \n", + "=========== end of fold 4 in level 1 ===========\n", + "Fold 5/5 , model 0 , custom===0.659429 \n", + "=========== end of fold 5 in level 1 ===========\n", + "Output dimensionality of level 1 is 1 \n", + "====================== End of Level 1 ======================\n", + " level 1 lasted 16.675574 seconds \n", + "====================== End of fit ======================\n", + " fit() lasted 34.212889 seconds \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "====================== Start of Level 0 ======================\n", + "5 estimators included in Level 0 \n", + "====================== Start of Level 1 ======================\n", + "5 estimators included in Level 1 \n", + "[0.9693958 0.95406991 0.96808435 0.97102371 0.96923852]\n", + "[0.71530265 0.81015099 0.77534298 0.75173496 0.85714487]\n", + "dict_keys(['fit_time', 'score_time', 'test_r2', 'train_r2', 'test_mae', 'train_mae', 'test_mse', 'train_mse', 'test_mape', 'train_mape'])\n", + "Train(metric), Test(metric): 0.966, 0.782\n", + "Train(metric), Test(metric): 33.568, 91.081\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Benchmark Leaderboard" + ], + "metadata": { + "id": "AUMOHPibwSar" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "TJxNdRvDxY40" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import sys\n", + "import pickle\n", + "import joblib\n", + "import re\n", + "import json\n", + "\n", + "# sys.path.insert(0,'../..')\n" + ], + "metadata": { + "id": "xTqSOq_Wwgou" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def data_preproc(df_steels, compos_name):\n", + " from matminer.featurizers.conversions import StrToComposition\n", + " from matminer.featurizers.composition.element import ElementFraction\n", + " from matminer.featurizers.composition.element import TMetalFraction\n", + " from matminer.featurizers.composition.element import Stoichiometry\n", + "\n", + " from matminer.featurizers.composition.composite import Meredig\n", + " from matminer.featurizers.composition.element import BandCenter\n", + "\n", + " stc = StrToComposition()\n", + " df_steels = stc.featurize_dataframe(df_steels, compos_name, pbar=False)\n", + "\n", + " ef = ElementFraction()\n", + " tm = TMetalFraction()\n", + " st = Stoichiometry()\n", + " meredig = Meredig()\n", + " bc = BandCenter()\n", + "\n", + " df_steels_bc = bc.featurize_dataframe(df_steels, \"composition\")\n", + " df_steels_ef = ef.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + " df_steels_ef = df_steels_ef.loc[:, (df_steels_ef == 0).mean() <= 0.6]\n", + " df_steels_ef\n", + "\n", + " df_steels_tm = tm.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + " df_steels_st = st.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + " df_steels_meredig = meredig.featurize_dataframe(df_steels, \"composition\")\n", + "\n", + " data_steel = df_steels_ef.drop([compos_name, 'composition'], axis=1)\n", + "\n", + " df = pd.concat([data_steel,\n", + " df_steels_st['0-norm'], df_steels_st['2-norm'],\n", + " df_steels_st['3-norm'], df_steels_st['5-norm'],\n", + " df_steels_st['7-norm'], df_steels_st['10-norm'],\n", + " df_steels_tm['transition metal fraction'],\n", + " df_steels_bc['band center']\n", + " ], axis=1)\n", + "\n", + " return df\n" + ], + "metadata": { + "id": "R5f1TfN-Avrp" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "mb = MatbenchBenchmark(autoload=False, subset=['matbench_steels'])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0elSHOsPwSp7", + "outputId": "53ec63d9-2022-4c95-8379-906eefeecb65" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-05-27 18:18:50 INFO Initialized benchmark 'matbench_v0.1' with 1 tasks: \n", + "['matbench_steels']\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "INFO:matbench:Initialized benchmark 'matbench_v0.1' with 1 tasks: \n", + "['matbench_steels']\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "for task in mb.tasks:\n", + " task.load()\n", + " for fold in task.folds:\n", + "\n", + " # Inputs are either chemical compositions as strings\n", + " # or crystal structures as pymatgen.Structure objects.\n", + " # Outputs are either floats (regression tasks) or bools (classification tasks)\n", + " train_inputs, train_outputs = task.get_train_and_val_data(fold)\n", + "\n", + " df_steels_mb = pd.DataFrame({'compos':list(train_inputs), 'target':list(train_outputs)})\n", + "\n", + " df = data_preproc(df_steels_mb, 'compos')\n", + "\n", + " X_train = df.drop('target', axis=1)\n", + " y_train = df['target']\n", + "\n", + "\n", + " # train and validate your model\n", + " stack_net.fit(X_train,y_train)\n", + "\n", + " # Get testing data\n", + " test_inputs = task.get_test_data(fold, include_target=False)\n", + "\n", + " test_df = pd.DataFrame({'compos':list(test_inputs)})\n", + " X_test = df = data_preproc(test_df, 'compos')\n", + "\n", + " # Predict on the testing data\n", + " # Your output should be a pandas series, numpy array, or python iterable\n", + " # where the array elements are floats or bools\n", + " # predictions = my_model.predict(test_inputs)\n", + " predictions = stack_net.predict(X_test)\n", + "\n", + " # Record your data!\n", + " task.record(fold, predictions)\n", + "\n", + "\n", + "\n", + "\n", + "# Save your results\n", + "mb.to_file(\"results.json.gz\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "d0093155ab7645818b33ecf805a4e24f", + "766de92e3f0e4517a1e7a6e7983715cf", + "ff2172e8a95847a6895e6eaa82d4c0b7", + "79ccedbfc0b849e186928fc496f10196", + "4ba509948c234cec9f1aa9fa12268ee8", + "8118f09611604defb1d6e7fe2c7a38cc", + "9cea02a758864db7a7d4bd8287706480", + "066d9ed6d0324512b2387e8fad51d6d7", + "c83a7c55d0574b84a7055880d6e21609", + "2dc9c8229b934bb3829fe16604d4aa40", + "77e8ec0fee7f46d2b64459f78a19eac4", + "1d8f97605c1e4ebda22df2204b314c2b", + "65c4970c344345e3915a46fff6d1eaac", + "5e46b086557e4aa8a0aa8b8fb7f2d91f", + "f1245ebe0f2c4b90a22f4e3f0c4be3ac", + "8f9dfa28bd7c46119cee66b08553243d", + "28a2679f2e5f4b788eaafc4aa34d95cf", + "86568ce023fe4f4d8aa75e0ad073b4cc", + "70603e4f25084a4ba8f4ac487b1e64c2", + "380722e242bb4f949442e000a7a8a18d", + "b81cb03e2960461e8b25cdf076102f05", + "25290564fada419abb5d1edf25158455", + "d9c8fee7b6a1491bbe534cd40cecbe7b", + "0d4578184d0e435b82f357354333004d", + "10fd038b7ecf4e29a6a62707f8e259be", + "c75c476a09c049e7a8586cde63ecef4e", + "890ed1d7e6ea4fa18330471dc8d28efd", + "fb44735df1544cc99eb004c1d65e02f5", + "c826dd76f82848608270dce93d3c8e76", + "5a519e55faec481784a64dc40e750607", + "189dfb02af004234ae3054fdd2df340d", + "884eff2df3b247bdac5128737e515cd8", + "d253702326274bb8928fbdd0acad04b8", + "4d0c1558ce6d453593ca99f01dbce797", + "6d818f633c3544459a9d58f2b93d4c09", + "9cd4f12d02f84aa2b37872e08c3ed8a0", + "18c4307ff6e149b898d120882db641f0", + "8912d1e447f64f418065f3cf4865886b", + "a49bbad175304be68b85173134ea6d8b", + "72c045a425bb42978095ad2d0317a848", + "85322731b7a649d7be83ba900df9559b", + "7e880ed1e4d3444bb0423388e828dede", + "0e57ddc7b222416e89bfac4b6c23b7c6", + "07e6c8cedffc49c59bf89b7c1afa9896", + "ec584f58337b496c84b587d1fe752dfd", + "87e09ea5d7e54f9ea5e36873e0de41fa", + "fb19e169c5d44d85aaa1d85e2f901041", + "9ab203fc4eb04191bebf107f410344d2", + "95ee095155fa4ea5914217218a78acfb", + "c5bc0f7acb8c4d4fab1e93e99baeac75", + "ad52ea9000fa4a8394bda119a39e0c5e", + "ff87035dac4b470095f7d0aee1bb8fac", + "749229f666914aee84eee47a8cc094b4", + "e21813045d6d4e02ae29ee6b4d1ab67a", + "a9c67d629b5a4fc2a9c0511ef30941b6", + "005afc83071e47a5a806ec196d9a3d25", + "cf9c1faf12514836a08b1cdbc94a35dc", + "3edee656fea24fd9bb8fc76c54e7d8d9", + "21422ae0e7454c718322aee7e425f4c0", + "55280c73ec7f4a3eaa6a3866c70dad2d", + "5e66188816324a48bc5d60613fac588d", + "38390d6e49ff4cd3949f244c90615fee", + "333f8e522a5d48cc90568a03f7b907cb", + "70476cabeb2841f59416cb9633de9fff", + "21e2032f107b42e9a25d7d82a47fe2d8", + "9831ebd6eac34466b0208bc8f0a5b942", + "1c2c7949383a4d0e8ba5771281a1c107", + "b7611a1934984b608cf9871a326669ef", + "9b9716dbc1ea457fb6d7118d1351a427", + "a62c0dbbca9c41888541f07ccd944a2e", + "beb4e4220ddb41b68c3100c438ea1d9a", + "b63c4d6fa0e344c1b3ca534598dd7894", + "f5944f2ef55e439e868be4a470afe3dc", + "0f4c38e8884d42a4aa39e2140ae392e7", + "79bd3753658548678b76a4bc6e45339c", + "bfc5feef74864714adecf811a1d82af1", + "19994b11b4fe4be2a3776b400dae5853", + "8cf2dac6348044288062182852cc2209", + "3360160845bf4d4eb7d161be69ea5439", + "5662acc71d144c1993d1753aa35aaf6e", + "30452411d1f849a38384464c080a36b9", + "6807559f4435411ca603998e709238ab", + "bf7604300c9047b1acd67e37b4a57f94", + "580baaacf25b465385948ae402c0af97", + "b443c4cd76174702afe25d2519b57d3e", + "ab56ce442ec34d1992f1a3187ae75a64", + "a45d07455574434082ac718101ed1583", + "3c9452bbd65247c993685e5f9e1362f6", + "49920193317b41dbb02b128a837a9399", + "5d298ec24ced45fa904f3418e5bae4d7", + "404bcf2db3ee4334adb3e7b296b83026", + "96ea55d911db493ca0babbbe066689b6", + "96e9d1d46c664d9fa78e03ff06e57083", + "0e78f3289bc140399154bdc9fe019b4f", + "33c884f5fe3f4d4fb402adae056ab435", + "e686f569ef154b109f9a69ce99fcd07d", + "0d2fe9a454054dbb8a1fd73ee1007047", + "08a5c2339bf94585b9cc573c16208680", + "083a7ed0e73e4df5b1c20cfe2f72d4df", + "8b4c2f2c07fe48a8bc1a051bf907e27c", + "ff14942f5bb6431ba7e1ae464d30e575", + "cd19ec9d9c414799a98f7e23b42b77c3", + "11da03b07b314a609c0c9ddc13b622dc", + "6106d702a16743ef8c197cce465a4b29", + "dadaf301fe4d44b19bae05195cf7e35a", + "0c908fb9724c4a3ca4bc2d7854ca58cb", + "5c9f9a367a0a46f1b0008869387bf178", + "f1a57ebe457b4c2b8723368b22c659b6", + "2ddb664b856841daa9cd55c27acae1cb", + "589bfc27f46a49359db0808cdce343bf", + "cb533cde781b44b7930f6f87ff829212", + "397287e97c8245d280ad9d533d941405", + "631f1aaf70b94f2bb21e857dfd7be1f6", + "93a7ea64251341df8125278dce5a93be", + "962e360c2afd43ccb15b27b834aef8d1", + "2c811d8e265f4a4d82bc12a6423c38f6", + "a779aec87f974c958d1454d87acb8d98", + "8c40a98fbf6b48ba96727bfd083a16f5", + "45425416c716440781e33f783dcb34c3", + "2c64a73c9da84795b098adecd18e7840", + "60dbbbff81d44e63834ea8d3b7cbb187", + "9479f9433a2b40d184cb460ebea45a14", + "bd358e314a0142239a3593ee2c107481", + "f4a85e18ae374799b1368bc7c59fd10b", + "6237554367e74f82b96524f997dae48d", + "b7ba161c7f454a76abb3a4069d67267f", + "e2a513caaa7e4cc9b6c4fe356804d6db", + "3987e2875f7f41a2a9c48b9d500cbe2f", + "a26b00d2194e4e60aa3786516965cdd0", + "b308a6f2782549699fd6c4aa84c2f834", + "4ba890c95090481cbfa7043f26eb660d", + "4ffa2d36ac27496086af760c68aabf0a", + "abeb221871b84d88b0db18c710a73b63", + "75c434447d944b1eaa6ab1e4ced5de78", + "a3d72067b8b049e9a8ad51e9e4cfcc1b", + "f71734e4ae554b0a83463e9800983141", + "b9b57a07133f4fbf8bd6ca3c6363d3d5", + "db0a4d39be6c4e6eb2e1fbb08c7491dd", + "f762eb228c354c10be3ef054024b9f25", + "5ca1aa0ac12d42b992fc558758aba381", + "a4b0d3734df14b1284964eacdbf82fb1", + "c0da42ef3e3b45ca8aae73ee17bad05d", + "0f0a0bfdae424c879f15373744b78dce", + "34b5a434f30544c18e7044df0bda541d", + "a30d9a359aa44339bf1a71cd5d081c3b", + "953b84f47e2747718c82b8dcbdfd8eba", + "d879475eb84a4e05a13c07086368ab71", + "279ca74ece194992b39426a6571e10d4", + "99a670e95e6640fe838b5d77cd49b276", + "63eefaecb257465ebc21f51e4465db74", + "03106cb1ad84414f9eb27da153086d22", + "76e48c17a3414755a1ab1f5ccbeb0c51", + "213058eaee7f42e1a72ddcc1844862c5", + "43572c01ed354483848f27809b0b76bf", + "2acd74345acc4fc7a3fe4b1ed6e9250d", + "b253c5366ad747a2bd508287e09af96d", + "e9c858c99c6248e8bdb2a4dd91eba565", + "7d331e96bcaf42258fca6d2e12d32fcd", + "8f15f2176c554932be7bad56fce652fd", + "a9e552df119c4d5693b9b4a923bf6d2e", + "9ba68c3e54e84a7ebd7a0f82394cbb7d", + "446685b32df94c6687849d8befb3c9af", + "6a3d9ca3ba89467a834f087642155258", + "c7bffd0b517d4ed387fae8eb27e5e471", + "f032d8b19da34fadb9b8915de276aed5", + "949d05a45cf04c70b4bab6c1969b2c4a", + "517530edb7264097b6b630b38813b6df", + "5117c358f2e1433a87310ec61f675bad", + "b73bc9d558d741479ed298517f838986", + "9d9f5a11df824ed3b4659ec98eb8668e", + "1be6153e6c084de89434d1c8bec9a8a9", + "c756c8ce48fe4b89abc71dcae8aedf09", + "a004a3ff8bf8494f80197891e3cf29f6", + "8af5131eda874194b68d817455c0e72e", + "c067f39cfad7430eba175990d1af5a67", + "fbbbbcdcacac43d59f6264bdd9606c2d", + "8ef671b320714fae93cf2324277d5d4d", + "623f44d5acf0439793bd89fdb1e4ec26", + "a1d83dfdc2af488a8a6b22ee31507270", + "746f920c74414e5b9750dca2cfa27ba0", + "8b1568890698441cb252e27cb7b34e52", + "a7492039d8134388bb63d331e062ca3d", + "c9dbae65476a47de91cf994d3b1d5f55", + "a8c75eb77daa422c8c623a1f7bdab322", + "730c0cde4f164d1facac591dcd6b2dc5", + "e0a53d49e2224526abda9468ea5e6470", + "1dbdf3a6c38748bdbd000da852e187b5", + "6677592bd88d48f39a39f02fb3f51ecb", + "ee406823272a4d96a4499ec31e5d243b", + "525a958c4982457fa90829beac4e6d95", + "1690ed5f1bf8461c91d26c4ddfdb1801", + "b429cc4164f243bc914cb12afe6bcfc2", + "4b4e40c2f65e4159ba9115f16824456f", + "128704cd8f9c48c78ed8aa908c5c43f6", + "2454bd719ed94c02a5a8c7dc711b9b44", + "03deb66d2de6400db7ef22c25eb8431c", + "846978974be14da38c9bd9adfe19eeee", + "769a0db5b90e46238e8f1099d5f579e5", + "84799302b17948fe998cfc69f64c2707", + "ccf5affb96454a86a58fcb0d93485a2d", + "0920db3f48c64a198f7607e4f36ab72e", + "9c67ae75fe174801a7d73deff44a6391", + "d81dc0a8fc6b47c6a2916bd9825c3eaa", + "06bc949890c04e728b9ac0be1c44e448", + "d198dd7d6e52422cb6bae22de0b7ad64", + "179c6883e95746af97b0d0831e55e984", + "1f4dcbd6460a4d3a93d1198aa3c3e396", + "9505015db00346c8ba9a9add0117b4a8", + "377464a3ac2e4c00874a1ab4048ccbf2", + "c230b98570b24bdc9b296cb3a52a1997", + "d79e9f87986a4c56bb6eeeaa40086939", + "29e7f35dc7c543db8401c29c5109d3a3", + "7925491c19824db48254aaa6084665b0", + "31b5916f2bed46449ac402b77380bf38", + "287a59efab6d4e928b87dc5f74e5f8fc", + "6fd345f55d954dc7905407f38e645afd", + "4e4911872e0d4f4e9702d289f7c8a08a", + "f35bead1a69744dfacb26509ed038689", + "8ac57f4db7bb47edbb3b88156e274a5c", + "fc93639cd5b54321b9ee646cd1466030", + "b48490e695154529a0f898298b5f99e0", + "e484faf1efcd4202bfa6251f6b8d5572", + "a049f98127a4470a90936dfc85b8433a", + "26448ea6c5ad41039de4f12a3594fc6d", + "7ab1bc29f427443b94979c2760cdd7d4", + "252c56cfd1c045f6a971f953890c25c7", + "53171a3c0de14d478a381b729d18da83", + "d0797ec0964f43559d80611047e0708b", + "505558c4ccaf45bba5b041a381340055", + "738d0a917c50453a9a3ee1b6594b2c68", + "b317affed0e34e119aea85faf046daeb", + "768bc41c329641c98d40230df8d4e97d", + "bd37eec584564c06ab7ca1749dae3b3a", + "2dde36a3c2b143a2a1f13940ad48e882", + "97650e6e280b43a6b8a0d30da990031f", + "b36eec3567384f5999ba04d9f7e86146", + "3ee07e67e315444b993c2d4a38cbfddc", + "a92dc101d88b49ecbf82227052bb64c6", + "ca9cf9d860bf4eefb3c4a51443a3d7ef", + "457d128cdf564941b15cc2c79e23c9b1", + "4bdf314d12474846bd0a0bad18a3da12", + "650dc244579d46fb8308256a68438cfb", + "9fb9891626c246c396a299122922f56c", + "eb0af518801d4c36a1af938d2b9e5ad1", + "0296ffceac7a430a88a90e3ec868f8da", + "b0b99702c49a45059fc1451306934454", + "3be0f6c84a8c4127ab5ba15694ea9c44", + "841c8639aad4411c9107330422c4c9bd", + "3d42b9817b2447ce8bf5336f54a8f45d", + "9944b283538e49f9ab2430445a6a734e", + "8493453c97d2482ab2bad6164df0f360", + "5201f7dcec1e441b974f804b8de09d12", + "fe67741343c64d3eab57faba439ec994", + "25a86fe8394d451e8f6d02f8167317a3", + "02a3a100934441e29f6ab684c6851bcf", + "12e7cf7f142f4292942eb15fcbf27516", + "0e5697e32488480a9de3f15f1d8c5321", + "54ad0c00789343fe8d3f01e636cccb42", + "6feee4ca68d84e1997f7c2d06241b154", + "eafb495d69814e9c85bce2150aee2d97", + "80000dd923d54eb89684f8082cfee852", + "d2f2c7dc8fec4cd28b30126b04cf3520", + "bf2b766f902949cb88d82eb182c8bb9d", + "8bc1e4e043b34dd1aa50b0cae860e59d", + "e8845ff39a7b4ddb9559e91b35b3dc59", + "8da400794d074aa8bce71e1b3e551562", + "bad62dc89fd247aeb8dda6764a7e961e", + "a6fcce4e0d7a4373b622eadbf1915589", + "5d66472d41d643d1956fd57bf9f5e832", + "f2668e50ef9c458d9a135b7d77caba56", + "fb891f2796ac4b15995bceb074537caf", + "575c16d704bb40eea3a08abe7f80aaee", + "255989869984402fb3de634476dfd41c", + "b52119b221f641159557a5f69e3bb498", + "347d673c46764e5b870ad9da75edcc07", + "85af84b4f079445690da446bf5b6de19", + "ff7ccd63f29744e79e111da7fb0a47c7", + "26f58315465240279c04f731a7c82c20", + "ed65a3ccae53477e931d46ac88635967", + "e71b072dc4474a79b4c89c500bc4f252", + "b35520b151a348e4b1328dccd8b6dbb1", + "3ed965bcf64b48768b0d443b20d148d8", + "a84415c929a64f5bb64b693ee9bc584a", + "88a2ee78a10444c2a3716006d981d96a", + "034fcb295998479bb9aec8524420a29f", + "8368fc0179e34bd48950a4307bd436f2", + "7faf4fcc789d4c52b76ee687e5af58b8", + "3542d0f2d06040c0a98610cf002543f4", + "083b48ca7770470685a74526eeff3da9", + "77262bbf47b643999db6f475c473981c", + "acebbd88b3da4fbf8414fe2682a5feae", + "4a71a9fc02f54114939d9f37fe680673", + "38af0d4ba59446178a672dc47b2b33b1", + "42020b87b5924382864036e698a0cc9c", + "7519e28a085143bbbefbbb196ea580d2", + "bf88a39273564bd68defe2c14a2dd414", + "fa9a929d496148cfb48697dec59e23a6", + "3a649e16ea3e4d7f99e2dc8dd0de150e", + "80ef4f0cd4954af0928ed11cae09906c", + "6e331fa67fa74e2a93776a9f44e04233", + "946c6bdea2174169a09fc208ebfb00a2", + "77de107d10aa4677a0ae0e4a93d28cc8", + "2759736a2ab042afa4223e05012578fd", + "2ee28c4995f74cc18894391281130907", + "4b0962cb69a646c599d555a34abc857d", + "16d33b41cefa4845841b67b831ffd0bf", + "91a37ec310e9493d9eb3db660f38342d", + "1bc741d02df14432b4d9747a2256cd24", + "bb9b7a1f2ef643a29ae93e1e3d2af80c", + "edab56aae29549d2a1811dac009dc459", + "73abb6939d93455ab3c1cb7af216b6ce", + "925468d7414141aea022c7919cea4a0d", + "c8f430aafe7f49caacd27442d84e3278", + "c37ea381ce89425a8902ff167f533bca", + "84e3c7c0defe43d68892d1cfb72c6773", + "d9bbcb09be5a439383417f730745d7e2", + "1d05913de398404dbbc026357264ead8", + "7013f02788ec452eb7765904ae3d1215", + "670900d1438841b78828d0b7a5f8f2bd", + "a2908ecfd56e4b28b3c94db362fbe10c", + "1295c7b1b0ef43ebacaa93291d19b0be", + "d2b86af3d9b94ab2b434d96fc4be8007", + "1ce6cf397c6643799c4b143c5069759b", + "ab88bc7b34524daea842419d01150cdf", + "27460383249c413f83f6bc2c84da723c", + "40e5ab878a884c4db0a455e6a4c5b3c8", + "6e47bb43eddb4ab9b34f5daf1f96b4aa", + "aa60b4cbbbce43a3a107767b95e0464d", + "3bffdac1a0524d0d839c6b8d3a2e21dc", + "e79bad48e357400e97380eaebbc47db1", + "a379838766cd4177823f295b33246248", + "e76c870de61f442991855894f350cdb4", + "5b74ff9bd62944e5b188b4e60e251035", + "e33fd79a6dd849d6b01e6db60e4ae53f", + "d1bec49e29ae4ea4920ce96698a6d3a7", + "4944b6c85ae5411490fe5a936e42cf23", + "92822b1efb1949c5b343195792b39713", + "701fcf04c1c84f5cbac71652958f4ff8", + "ed0466979f23453ea5b88af31768b63f", + "c82ca6b2835a4d1a88d9173530e5d2fd", + "bcee1254b6be4d0eb38b6aa8b593ba43", + "39694a800cd44ea3bab7aca291aa6936", + "180a38f040a24f1a91361284a0e64271", + "9c906db88f934080b3ecdf3d591d370f", + "5080feea3a6249778800056ca22ef16a", + "ce82a81e030d4f4ab38107827c591355", + "4452b391dd6347b7941c646b2b6f8278", + "648235db4e7f4b299c26874f9d860c17", + "2c70e6d30ee94db3ad23965b8742585f", + "21ca04a6a1384aad8968123696a6f15e", + "d2e9b58335864e9c995bb84194d8e4e6", + "3bbc126dd86e4360bd18c2ee2981d401", + "f48564690aa843c798ff7019fca1dacc", + "8dd9fdfe7a1d4d139864c911d3d0bb93", + "2a6cd1b9646c4cfca669ddbf32415a0c", + "f664f316fd4f43e3b1f776c3e88cf33d", + "ee39c329f6ff43b4ab85d33728a50af9", + "b3e5f4145d15419f8251ad4aa64b2bc5", + "6ce1a41c5579495cae987f533b355602", + "515e6d750c6f4632976c12700d67f613", + "6b9c70beac9249189fc7b4c1246de115", + "2b08b42a9817448f963eb0938d090e06", + "979552ca0f61487cb6859d5ad3cd7a08", + "4b42bdc575ca4a1ca7fb780c8e9b4e70", + "7ae94169430946868a8ba6d7ac9078ef", + "5db998ba6a0a4e449a70391f5a48502f", + "1b907000065947ff8a2aca81d8916806", + "4bc98324710343818ce70c277a384208", + "5d3a960cb6bd4c828732fb72a755552b", + "7083526d4b6f4e90945147d12ccb484c", + "4a726c08eaf94a1dba0330a980b7ed86", + "b40000482b8b46858c7c138aed45fb52", + "f6d232a6b076423eb74d964c5fb78fb4", + "46ecf90698e5452392dfa20e5f905160", + "cd9988d01bba44f1b2b34a1cca33ff91", + "6b8cf1c3c4004db29438f6bcde78a613", + "384b31c8947a4ae4b8df9b2ad604ab02", + "1140d225f86d4c029dace234a5d8c7ca", + "dfc3de7bab9e4bb3ba955bcdb7216b0f", + "2db4d21ef5f047d493828698c94729d9", + "002cc6ef5d7245a19889b71285c89d98", + "31171ad2489e476db3fe24a144e1ff3a", + "506c3de481e8469780e0d05d7272a090", + "9740429be4304a48a8a4c8b0a4ed0e0c", + "c77d2aac6b074785a8d5aed256dc985f", + "9a7eb53745c44c5687e84e34ec51fa0a", + "6105b0715af34a55b012203f3ff48987", + "d6c49c0dd9c342b99b154b6b17e5a500", + "5f969d9e71a24780b5a16383ca9bfccd", + "6df6aeee9db8477e8c35a424f76b2f5e", + "9893fe9fddf54f5597a08b5866f3b02c", + "9bf5c1b3474745bcbf96d1072b20f482", + "b3423d51b07a4206ad794e5f26708a2f", + "9322bc98ce17456e9ba0042d5868aad4", + "08c123aef14d417684b7e4e2539f618a", + "1a23cc8709e7409787ea340cec2e72a0", + "dd7c932427124a3aadc30d655191baac", + "7198794684a6443c944863591ad6e5fb", + "531284f389aa4d3293e20e82a7c2382a", + "f15ac19328484edf82e237ffe10d7825", + "ad755bf9c129409e974de59d8c7bca4c", + "5ef094666ec747168399af78e70579fd", + "be8a358eb5c0443b8b8e5205bfb77efe", + "4216554e7b384198ad528ce530249372", + "3bc1c6f974564fa099e1b606f33ac7aa", + "573ceb2855e2423caa8f3cb752039efe", + "fef8b303920f4fe4bf41fa4ac4af9b93", + "345eec84935746d1bf384e5e0268bfa4", + "9c3a0a99a2c0449a9f220a3009057476", + "7c80262ad19f4abf8fe55d6aacdf1415", + "ce00c096aa56405fb5a8132fc2dde2a4", + "3e1d46da81e84649a46dd14c71fd51c3", + "260ee2ed027146579d31a2ec2eb6fabe", + "9eccf4ebb6614d048aa3dea0de4dafc1", + "0723cbae223b4068a21867eb4e8208a1", + "5d117ccba1ec42b6bc209b5219f80dbf", + "bcb143743d5d4f08a23caea35a193350", + "81acb66d95e94e818b99b5b559eeed4d", + "6d2189ea99be4b75b826aa0cf7ed25ca", + "d0281eee993f4823a4fa2537811c0682", + "312aafaeebe04e3e9edf169a6e30b9cf", + "327591a55c744c7491e8ddec7595705a", + "1f5fe8c48f14493c96fe8145b7262c31", + "38791bd579c44dc08695961119086e05", + "7a7fa2356dfc4da38354e0c2e5d35589", + "a36e17bd31ef45c1985bcf342bab87ad", + "28fdd22b35ab4a47ad9d07d7bb2297a1", + "d15f721635794f4ca23eb45f0a1c9a3a", + "a54bb51f98ae4a2caac6b22663548cb6", + "a3d84153d98d490c9ec4a9df76f5e327", + "7b11166e85914cfc826e10503bf4cc2d", + "560b2f64078d4e9a9afa41d93cb15a86", + "e769e37935d04401a4fdc2fca0d24c62", + "88a869de65d14eaab3c1b4320a96c8ba", + "c9d3ac73d2724df5ba9115078938486f", + "715180fbf87f4927af1be2fda1137d93", + "a8f6089d155448e2870d685b2959c39d", + "84602f41a7804f0e9ea8f9837f145a32", + "61b8ac066f2b4cdd911d7a2928575828", + "f8575e04aecc49f1a6ccaaf789fd19b1", + "ce1e3e8f96004313937cdce517cc202c", + "f55d5486aac5423fb0100df37da67b4f", + "1eece7ce60794a86a02f81242eccd140", + "61443cb995024528873b782741ef059a", + "b6fd7a4d23cc48dd88fd8715295fe172", + "ec71f5588d9f4126aea65ce353fcb270", + "a26db00da3164c1c9909338b8ab90c64", + "9b1780530cae4e778e9dfd62f944180a", + "59ad2df672534babba19c2ee436c9673", + "d97eec0936ac43699e4da29ac988051d", + "370b0ae594894aba99fa73e7e0bb3ba9", + "b13ac64be8ec4d488709ffaf4cf12c54", + "5250266ebe38421689a71943f4facaae", + "be5b38767ef749ca847e45779eced2d5", + "566222d6592449c2995c6bc1c03763ab", + "8a57b8c91eda451d92dbb9e5c51b7394", + "94bb4a85649d4025910d5f3d7fbccece", + "97564050e8d945c694f474991d085993", + "a15c8e0dd67d48f6bef07df1a33e7dae", + "e713133e02c14c2ab973240b69bda10b", + "ecf8588a30a54a6d87d4ecdf688801df", + "d7fa96c8c5a34ea692d9fd6a077c240d", + "f24e5bb46da44f7ba8265ab54f692cdb", + "1ca3e39a56f54f01a0c64593d78c4d67", + "7b722ae022c740809468c7472a225c8b", + "95c48bd7bf0943669b91727bac46bc59", + "bfabcbe0957843819d28ed978b634542", + "74220daec776475c9b7196231f483d7a", + "48fc283d838f4e90a160aaaef2fa872e", + "a948535abdb4487b8e8aacc2b78b25ea", + "a6beec75d9da4a9081c1f9911ebf3145", + "4395d92860c34ef5930bb27f1079fe97", + "ab3bdb3cfe34462685c4a899f2c71bbe", + "b3da7e59b18c40fea9d3b9aaf8e2ade3", + "bcf6f5e6e761441cbd1d486b28aaeea2", + "adb8ea4598f546808eef6b609ef04419", + "b5b1149a45f040e0a7e870b86eb7685d", + "0ea78a44a4404284ab74830913994f02", + "92db1c3a321a4346b0cc48df642a58d9", + "be93502b3d154a8c8a304a3a54f89547", + "ef70837d8c164e81be14d166f2e44dd6", + "00e7783811da4a9f870389f4af03dfff", + "1c987b91a17b41e1ace1a3092ca2b1a5", + "217597bce9bd4f12b5bcbe50520ebf8b", + "a317a600d4d745769075b7f0f409f2b8", + "4e856378f57b49c68882e5de96dc9b85", + "497202a5992a41f59baeb585fa5f9af5", + "8925090f047b4ecfb3cf82494c8589c9", + "848fd76e6b764888a368360e22df8909", + "32fc069695ea416693c151466b0702dc", + "173b8e2e71564a31ae8500edd8786036", + "62b06812de464dee82b2add0ba2f4840", + "a51e6fefae05425689eb356bf04ad3c3", + "8f6d90ac9a0c4100aa73d107e7993218", + "9a28ea356df34a24afba5a80d9b6c3b4", + "c6062aa576854fd9a1f4b001ac0bab72", + "357f38ad98314fdda8eaf0b924f0d4da", + "798d9ec5e6ea4487ba87467f5107292a", + "82751038f5304698b9cbdddd5caf4210", + "4501663cef33496fa9b10df6d9348bd5", + "8297225fbb74404fb4a0ad77eba67435", + "303b28756efd48b4a50513293942d930", + "215c8772bb3946a29d48a4dba6b95631", + "e6347c02645b40f8868f5d8a73291e6c", + "162ee99cb10c4e508b726fcf4144595a", + "397a474f0dab480098d775e7ec36b315", + "6c06e4696b0e477f80dfb55e3daaab47", + "ab98baac8e9f4589852528acb007b1a4", + "589e2d12b5a648888b3a51e6fd6e4ce8", + "18b80d342e7d4a308f87d30a30fa188f", + "8fbdc893fb454c15b0ee99a237e5ada5", + "09a82fe9c2fc43829f7ab016d462dc6b", + "60001a7ab5374801a966efa903d704fb", + "f43bc2cb4bef4eb394ab5e559060ede8", + "c46071a47e0c470ca7cdea87296adcbf", + "1e1e7d6f4d67480b8dcf8472c0641dfe", + "362f11d2978f49f7aece3d69385774cd", + "5bbc4748398e4d12b865bb8593392f51", + "93e27bdd23174e5a84396db64f93993f", + "504798a073d6401ebc9ac4b535b7ba75", + "4e52035e7d164bbdb8b345b58e0f1a7b", + "88455b33d4074bde8f49f9abc47e8255", + "884e49eba56d47fb938a3e0b7b710666", + "01136e3ea94844ca9ab34161aa4d3141", + "e612a61d1284419c8a4f19a5427ac5b1", + "213eddd34dec4dd0aed3d213245c406c", + "97996231ce924657bd64e935de2adc8c", + "4b0c1cd85bae486ca7dd78b11d9ba676", + "cb2c96aa5d6e406e997ec0f2914371d4", + "7050bebaaca843c486fed7f8071e631d", + "b8eaa12acac04a02b4c4018b6b5a060b", + "073dbb77b667409eb3a77fb08d293749", + "95a64b3bb8d343d39ac19de385e6b1fd", + "dbe768fea0d441f291efed84ff58e926", + "44ee46d342fa440391065eb8b7e8078e", + "0a9d216451914b999bb4a7ad50e393d5", + "7e57064ce37e45f2bc1fc91113fc4e55", + "4c8e5e58d83a4b8eae9d70b4c3edcc2b", + "b3696cc227f347218a44775e2a9ac8e9", + "6e56d785fd6e48328301bd9f59eaeb84", + "9beb2c27834c47f58d0828a56fc0c4eb", + "73316c6ca8624080838ac6a759cb9b50", + "66bb8213fa8e454e9a124f6d2ba033a6", + "0748b98cd73146eda7459d0860147fcf", + "41d31b0bd5134e198aac234022f700b2", + "d8e3374ff2cd45ada94f99a17102bd32", + "578bd888db2c42e2ac808e0b93bce3d8", + "f4244b5a535e44e8a331b77bd38183a4", + "e1c10f56a9144c1faa30063e207f3774", + "a38f7dd92d704a2aad67bb2947600b8f" + ] + }, + "id": "6dBaWWoG1wvw", + "outputId": "f9b3336d-fc11-4a50-a636-a70df2cc7e85" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2024-05-27 18:41:12 INFO Dataset matbench_steels already loaded; not reloading dataset.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "INFO:matbench.task:Dataset matbench_steels already loaded; not reloading dataset.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "BandCenter: 0%| | 0/249 [00:00b!>EVE^2dcZUBs%OOGANjfMY8L+f!O-Vd*g+0V|q zfgzNn656mHjjC$H1Ec@@eCHsO^zi(w-~Pvb`)~c@^TX3W^z%O-pPv8z^^1N_$Izd= zJUstH_W!;w_V)SZ@$u97XK}f|Vt@P4f7r!~{r2wqqugK3pr!)o)~TB=9dEtNgn z&TaVBYPp&9x{lU*VrM<2m5MjJogi0E&~nq>TF#?3XV&s*Hv3Ui%6YBaODWx(y{?vJ zoL5b=&+5(2lh!njy+^AR+jwoGo%d1e!SPm`e0LYW*08m5J=l9mGvTzAz12FcSZj?@ zdK=t-9^0ACY?qdfwnpt^r@6Pkj9F~4cJw}1-E%a#)tlMQ3Rm0NeQ&9)5)Lp=f7Z1R zj<-2O>nl%ZwYFVZ=Q7shYrF62Ke^Aat&NKvgYYe>*BG|@+*xkxSZi&(v=@Qq&Y4rQ z)!LEkVDD-3-`iVR*sgS}lzZwuasOp_v(p2kkt*DL#iO`1d^4XOC^;W&ezh%c?O``E2wHp!mm z_did6cDZ2AT{8EYLayg|CULI)Ao}y}S-N~&+JX=gEU22<^ zqjDq8DqF18aSVcJS5kRRe;*wFypKglj)NW%nKu8$bZw|o2WP@ch`GYRAzs<^UU@#Rip@ia0v8EVYSokZ2RDHxiv1g4wa*C#BdP@ygmq2hJINYwE2v;H!bpT7oU@w@J z^P8mbzTGOmEWX;Ma>fNmJP0oee}m#=zq4vF)?qK~Nz`$JRGx9Pi`()^&PX)D(o#4; zI}@06qzZ6akXgk)kU3jz)MHRexE{iTMD=C{RjGh`1CS*A$u(~5_{D#xoUt8#19$b!6j!av49JyD~yL_l@(UA z3dK1GcLMK*lBVvh=H05QJdv~&g5nR5jh>@vMuKz@FI=Q&nijZ;AcDj|g5kiO1os52 z-XcO8>20(VpeXV%Z6!rv!yr-Flv-pL=qDm%2F+vRsIPAV^$ zo%hCfZq$1e5!@Q$qn{<4`g$y35LcW6o$Jd|4-yOzRpJ|xnEkC;`R^)G+*n7}0LflS z!452^GAx0D4!Z*2!)nX)3a|iFO>TM4jPUhlmq<-QNdmIZQ3BC?)mwN8M?#e$Vg8f* z$|=d`qWud|n_q38jzS1PnlQNqZw_g&O|Bq*Ku78jG>S6jJ+SR^@ckE*_;qtsY}q=o0*bopx=_S$UBtp_Gaftlc0#3fRspqX1_O+ zZ{&%5(1%(Ry9G|YUf~3IJ%GukU=st_?zm<2!V}SAQEO%cwa=Qe#M;BpdwBmf?5foMdQ24@LX|2|sXX5ACMhWzh#q(vSCM9L)w)@R|>f*uk?RR@DFE zCK}RNEjn*jP5LL;D5;=N5=7pr8?DmKatWmWf-Z%2;Jj15x+yPwowa=2=Bw`X0ThT6 zHp1KY2lCbMsqFv`02+wg&Vf~#jv_A)WOX4=MW+K3YWrR}%TkL&z31%xl&_QmwhKN- z2a5@N7g&#mAOjK>nM3hctHzVGi#`%TTP-{k4HP|?U6_!e8zeRMU8TUA8HtAq4N>WV z0Ij_SW_UFrK^S6tlcM7Ao&j55pPV^%p^j;+vI61ACh^pDBS(q~1)R^j>S_#07{iv- z{+hw->zdL~KB$K`mfTZlDO)GLkWlyuxT3sDdU-QbQ2+-FA}NJA`u4mkmHS6EI?Bj4 z&?;D2N0zHa{8UYl6l;MO8b5$d>y)<+0Jr)gx@XU+5q(hW&;`2Sc4@!9@hM-HSZHf;0HbJrOznVG(HZcTUYAq~g z06Ej4!4-U?Kp#CqmP=KVEc`C=E^oC!MlT;g10-d}=DXcXvSQtT&{L?~2q1|)znCd9 zVnXa|N@bJGelAf=Y>}E8^&vu%mqp`u^`>n@>pZgpi+%ZNqE0V2qwcQLUgDyOdbhMmHeJ%yTEA!WXi4Sh#~Q+KJfhv-!>OB>|hKv zi4ii~TKfZPSij#~w8lU31Jo8%6@Lj0uyirVbx`FQ^%D4iKxMAJqE^iY#Y4A4`< zVrG;9@Le@%-~?}0jb}>BU_3O$4xNi+^NlgqA;CkAqh><&Pu5j|-LTl!mEn@ml1OJ) zMdLz%4`zY-Q=Roz&Eg_+PU3n{+-I1ZTZN^T+#1PhpU>DG?N+YwHs9I;Jax7L8NK|p zsOsptT{eFuurF(=G)+NBC4xkt6^ZgU>`TIEPwG<&cYDEsBz+fx3PXJYr>k58RGKT! zlB$9}46*CIfmei)>M%hP!g$&aT5h~#RmABIleA>D^L#GR+ZI^%{B-kV_q4E-*6Ndru`DQUd&MP#eaxz2Lvz%WTT<@@V1Uf6-6I{fCYh#`$hfZI=nRS`TeqY_sA0$jaLR$B zSsT8>BM@vFw24MUVrZFC^Pw3?C+#2{Es!tc$x{QSrUui0=*C`8DyVdVOe{76H5}67 z425;vp0j8kRU^r?Hx<3Cqv~-3>In=9ODXst=G;!g^4WIa6iob zuh>ZQ*tah6B5Sr+7sa~pnewz?wmZS9Ru2rp25DJSc#+kfHySRCW9?bRP>)Q)2w9WW zWAg09=86qf%++SNV-1zx1Pwbp6twCX?i|E!v1bs9jv^6Wv&2>yI@|u2ib|H4RowPq z*6#z)q;ak49!15oFN?^P;mJU|o@yZKJq(pg_iVCwsVSq8c#zJ;bk9hGx<~=1oQkZ4>W>YES3iZ_o3|6`xjXUVs*`SD?v1Y#|2;7aqQe*pYTY1ZZ*_K zxZMlB0r@pI3_zL1zxno^T^p&4)lwmUKqH<($G;(L*+qQqWW2kop@P5rXR|N@vM+{->3iPa!ng}XS3>8J+ zaJBsnG1M3w`ZJsOCdlzeJ;U~WVrc9u-JYgV4Mo0u^Eah&AGd7{K**PhIPyjP5{jwZ z-YjTjNM-kzpR#>(>4gt#mm#0$Fq}3_Mkt~u17C`AN!``jZ>lmpyht{;P{~7EQ#rZa71{Z|bHgEy zR-uvj%A48TA`d+*N_qsTsea(ymp+|p2R0HTtB(}M@W#_Ly<6PdX7hYG^icbKYs3W< zUTVGip-{TslPQeaRCi0L9N$a!`?IsDaobkQxW%FVy0^dpDLfDFj;{?(cuu{DYg;|r zruK7q;%KZ7O0Cul6p|2+R(1eAg+RlyIZ`7&>C64~WfZ(b{d1^VAVii2um~WHJgJ&t z&oDXP_cZ7L0z&KdG{-YYYer?bL{}{)v>_DU%1VzK?67Xi50buwq4TA-az7}B?45GD z{17K!ECF_?hjm>2AZys_2lqi|nq2mTbxS9=Nz&eblTz zZ)ga(4^)&kr-zQ=?c#;sG7|?&YCroVt(W}ST&`ZvWtHX7 zt*qCp@;yk>4%tU3q4TzXZ)gBsCN-3724YGOaMj*IjMfjm!Pj)FsW1D(uM#P6nznP5 zts{)qxBO6TU<56Ap{LT__YDajh3+dFeM1lBMnG*yvCo8H`3^ngKl Date: Tue, 28 May 2024 12:39:55 +0300 Subject: [PATCH 2/3] update results and ipynb --- .../StackNet_matv0_2.ipynb | 4719 ++++++++--------- .../matbench_v0.1_StackNet-mat_v0.2/info.json | 4 +- .../results.json.gz | Bin 4725 -> 4694 bytes 3 files changed, 2215 insertions(+), 2508 deletions(-) diff --git a/benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb b/benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb index 7f37b5b5..eaf6fec9 100644 --- a/benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb +++ b/benchmarks/matbench_v0.1_StackNet-mat_v0.2/StackNet_matv0_2.ipynb @@ -15,7 +15,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "11b4244294aa4d42b38911fd5fc49918": { + "5951387c8ad44e6e8c3bc221d26f95a7": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -30,14 +30,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a21458c70aad44719ae8b24fd3865d6b", - "IPY_MODEL_b7e488a326c14d1499c2e615a031038e", - "IPY_MODEL_7d1320e4db5943999bf84fe33bb882ec" + "IPY_MODEL_c5eb5ffe4b8449909dec01cbb8398204", + "IPY_MODEL_a87cb9a4619e4f2e94cd225305c4c164", + "IPY_MODEL_42a9587733e34474b004bc6e50c70d93" ], - "layout": "IPY_MODEL_736855b37c144b609c98a37ba3705663" + "layout": "IPY_MODEL_6ff853f5aea441edb579cfb8e554b5ee" } }, - "a21458c70aad44719ae8b24fd3865d6b": { + "c5eb5ffe4b8449909dec01cbb8398204": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -52,13 +52,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d894dd29dc57497e9ac29c1643d97107", + "layout": "IPY_MODEL_a0e10959e52c48c6819b7b905db963a7", "placeholder": "​", - "style": "IPY_MODEL_6304c23c072841d18553007521cfde34", + "style": "IPY_MODEL_68372a1748d14422abc0230d19bd65bf", "value": "BandCenter: 100%" } }, - "b7e488a326c14d1499c2e615a031038e": { + "a87cb9a4619e4f2e94cd225305c4c164": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -74,15 +74,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_44392292a4ab4bf581af0a518fcf618a", + "layout": "IPY_MODEL_771770e147864184b3bcd09aa2b68919", "max": 312, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_c7f1f1f06a134869b958fef80be83633", + "style": "IPY_MODEL_f1115dee46654033ad55d0e5616b5e31", "value": 312 } }, - "7d1320e4db5943999bf84fe33bb882ec": { + "42a9587733e34474b004bc6e50c70d93": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -97,13 +97,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9bc3591f2bff4182a090fa8c82210c74", + "layout": "IPY_MODEL_9e680338dd8e455f970e034e10ef7c1d", "placeholder": "​", - "style": "IPY_MODEL_4f94db1c516148ae80e1489f56dce60a", - "value": " 312/312 [00:00<00:00, 568.39it/s]" + "style": "IPY_MODEL_268ee68148c54f2d83dfd3ca5c510173", + "value": " 312/312 [00:00<00:00, 1381.48it/s]" } }, - "736855b37c144b609c98a37ba3705663": { + "6ff853f5aea441edb579cfb8e554b5ee": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -155,7 +155,7 @@ "width": null } }, - "d894dd29dc57497e9ac29c1643d97107": { + "a0e10959e52c48c6819b7b905db963a7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -207,7 +207,7 @@ "width": null } }, - "6304c23c072841d18553007521cfde34": { + "68372a1748d14422abc0230d19bd65bf": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -222,7 +222,7 @@ "description_width": "" } }, - "44392292a4ab4bf581af0a518fcf618a": { + "771770e147864184b3bcd09aa2b68919": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -274,7 +274,7 @@ "width": null } }, - "c7f1f1f06a134869b958fef80be83633": { + "f1115dee46654033ad55d0e5616b5e31": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -290,7 +290,7 @@ "description_width": "" } }, - "9bc3591f2bff4182a090fa8c82210c74": { + "9e680338dd8e455f970e034e10ef7c1d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -342,7 +342,7 @@ "width": null } }, - "4f94db1c516148ae80e1489f56dce60a": { + "268ee68148c54f2d83dfd3ca5c510173": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -357,7 +357,7 @@ "description_width": "" } }, - "740e0dad714c4165a8fd2f20b365cb7b": { + "b05a8377886f40fea22ccd259614aaa6": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -372,14 +372,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7d6d5015c811413eab609042a095a666", - "IPY_MODEL_2736c06011b94a1f864ef08d3610ec1a", - "IPY_MODEL_7ebf753a4bab43fdad4fbcd3b0949740" + "IPY_MODEL_b3c7332bcc4847958fc76bdeff06151c", + "IPY_MODEL_8ea1d829587e4eada5054b704d192bc9", + "IPY_MODEL_fd754937f10e45fe9670b1287eaf8684" ], - "layout": "IPY_MODEL_d2d8a5f3236d41b4b5765a9ce601eaa8" + "layout": "IPY_MODEL_97248511cf4c421bb274ffd5e7c68177" } }, - "7d6d5015c811413eab609042a095a666": { + "b3c7332bcc4847958fc76bdeff06151c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -394,13 +394,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cd30ce5fa89a4af393e18a7ae0f020c2", + "layout": "IPY_MODEL_20af95800c9843a09dc7310cb81de0c7", "placeholder": "​", - "style": "IPY_MODEL_34db3f81395f405e894d7799cc8f8ee0", + "style": "IPY_MODEL_0860619ace6a499fb6bbd61ff7770ae2", "value": "ElementFraction: 100%" } }, - "2736c06011b94a1f864ef08d3610ec1a": { + "8ea1d829587e4eada5054b704d192bc9": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -416,15 +416,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0fd44e88d8b84f3f97fca5b3ebcf329d", + "layout": "IPY_MODEL_34aafcb4af2643c3a9328cdd900fb7dd", "max": 312, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_dca8e99c636948d782ae9c3408c5379a", + "style": "IPY_MODEL_51158415b05041b5b4f14e7080ba7881", "value": 312 } }, - "7ebf753a4bab43fdad4fbcd3b0949740": { + "fd754937f10e45fe9670b1287eaf8684": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -439,13 +439,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e3eb70559f94d15946e5f69e2337b1d", + "layout": "IPY_MODEL_8a44b63f70464cc7b9b65ff32ab51bfd", "placeholder": "​", - "style": "IPY_MODEL_8caf3b91fd8d4064a1c774820c2874c2", - "value": " 312/312 [00:00<00:00, 1349.79it/s]" + "style": "IPY_MODEL_6711f2a4a09d4516b0e1d24f06501524", + "value": " 312/312 [00:00<00:00, 1268.53it/s]" } }, - "d2d8a5f3236d41b4b5765a9ce601eaa8": { + "97248511cf4c421bb274ffd5e7c68177": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -497,7 +497,7 @@ "width": null } }, - "cd30ce5fa89a4af393e18a7ae0f020c2": { + "20af95800c9843a09dc7310cb81de0c7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -549,7 +549,7 @@ "width": null } }, - "34db3f81395f405e894d7799cc8f8ee0": { + "0860619ace6a499fb6bbd61ff7770ae2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -564,7 +564,7 @@ "description_width": "" } }, - "0fd44e88d8b84f3f97fca5b3ebcf329d": { + "34aafcb4af2643c3a9328cdd900fb7dd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -616,7 +616,7 @@ "width": null } }, - "dca8e99c636948d782ae9c3408c5379a": { + "51158415b05041b5b4f14e7080ba7881": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -632,7 +632,7 @@ "description_width": "" } }, - "4e3eb70559f94d15946e5f69e2337b1d": { + "8a44b63f70464cc7b9b65ff32ab51bfd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -684,7 +684,7 @@ "width": null } }, - "8caf3b91fd8d4064a1c774820c2874c2": { + "6711f2a4a09d4516b0e1d24f06501524": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -699,7 +699,7 @@ "description_width": "" } }, - "f6b45047bef14d799468426862568e62": { + "d0daf63c6916499f807afb3b3302c662": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -714,14 +714,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5bdf3fa39d084bd0aa5c22d9fc39ce91", - "IPY_MODEL_d2720c54cef0492ab71223dba0b078fa", - "IPY_MODEL_6d42f7727ee3429ea0ca193d90affb35" + "IPY_MODEL_574c7d34957643f7b4192a926b354482", + "IPY_MODEL_bcfe83cdd141416bada4514f39f6bd70", + "IPY_MODEL_445e32c93bb7431aba57e215a70134d5" ], - "layout": "IPY_MODEL_cedbadd4e63f4f6b8b4fef1ae5229fb9" + "layout": "IPY_MODEL_822bbd8a845342d5b3fbfd33d73428ae" } }, - "5bdf3fa39d084bd0aa5c22d9fc39ce91": { + "574c7d34957643f7b4192a926b354482": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -736,13 +736,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_743a0e9275c24189ac5a164d729b9d65", + "layout": "IPY_MODEL_df501797e87e4aaa8adaa8ff618aaa37", "placeholder": "​", - "style": "IPY_MODEL_2326785aa4dd450d89b3fcbefb630c92", + "style": "IPY_MODEL_40e20b82119b4e6ab3ae3547a7c3d72a", "value": "TMetalFraction: 100%" } }, - "d2720c54cef0492ab71223dba0b078fa": { + "bcfe83cdd141416bada4514f39f6bd70": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -758,15 +758,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_77592d0a57b34ecc985646f281f12998", + "layout": "IPY_MODEL_0d0a7c45234f4edebd46ab00c5001acf", "max": 312, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6fbbc3a8541548888afe89042c27644d", + "style": "IPY_MODEL_b497c552ba9b46678348226d871c5c8f", "value": 312 } }, - "6d42f7727ee3429ea0ca193d90affb35": { + "445e32c93bb7431aba57e215a70134d5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -781,13 +781,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_223c7b02f0c34780b79c81f787e654ad", + "layout": "IPY_MODEL_f48e20d6f312489ca8b8595bb1019c49", "placeholder": "​", - "style": "IPY_MODEL_074c46c79f144415ad43fa95bb68433b", - "value": " 312/312 [00:00<00:00, 532.12it/s]" + "style": "IPY_MODEL_66de8d54a3d04c8cb61e1d250269b991", + "value": " 312/312 [00:00<00:00, 1365.91it/s]" } }, - "cedbadd4e63f4f6b8b4fef1ae5229fb9": { + "822bbd8a845342d5b3fbfd33d73428ae": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -839,7 +839,7 @@ "width": null } }, - "743a0e9275c24189ac5a164d729b9d65": { + "df501797e87e4aaa8adaa8ff618aaa37": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -891,7 +891,7 @@ "width": null } }, - "2326785aa4dd450d89b3fcbefb630c92": { + "40e20b82119b4e6ab3ae3547a7c3d72a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -906,7 +906,7 @@ "description_width": "" } }, - "77592d0a57b34ecc985646f281f12998": { + "0d0a7c45234f4edebd46ab00c5001acf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -958,7 +958,7 @@ "width": null } }, - "6fbbc3a8541548888afe89042c27644d": { + "b497c552ba9b46678348226d871c5c8f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -974,7 +974,7 @@ "description_width": "" } }, - "223c7b02f0c34780b79c81f787e654ad": { + "f48e20d6f312489ca8b8595bb1019c49": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1026,7 +1026,7 @@ "width": null } }, - "074c46c79f144415ad43fa95bb68433b": { + "66de8d54a3d04c8cb61e1d250269b991": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1041,7 +1041,7 @@ "description_width": "" } }, - "e3aec42386234935a45ec6797720fbf4": { + "2b18104da42c48048538d8d3764c56a5": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1056,14 +1056,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5002f942143b45cab246352ea1084751", - "IPY_MODEL_5124a80ff3fe4e30bc12559ebf9d4a14", - "IPY_MODEL_323272527f4d43bab7ee6659871704b5" + "IPY_MODEL_15d342846ad8447fa580836d08d5db9f", + "IPY_MODEL_3658c78af95c442b8b844f132e2a1c3e", + "IPY_MODEL_3cd57e0df1fe4519a6097e2ab878dbd7" ], - "layout": "IPY_MODEL_c68db0ef6165441782726e6e3990967e" + "layout": "IPY_MODEL_7926f670a4ae41fc808be2cb5b82389f" } }, - "5002f942143b45cab246352ea1084751": { + "15d342846ad8447fa580836d08d5db9f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1078,13 +1078,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f9e4755717fd46619686fce16b8d8641", + "layout": "IPY_MODEL_2874ec35ac914ddfb6666a04825db409", "placeholder": "​", - "style": "IPY_MODEL_4876beee10984f038614abcafceade50", + "style": "IPY_MODEL_512cb2509ee4464f82350d6f5ae92bb4", "value": "Stoichiometry: 100%" } }, - "5124a80ff3fe4e30bc12559ebf9d4a14": { + "3658c78af95c442b8b844f132e2a1c3e": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1100,15 +1100,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_53068bb95cc2494ab9931acd33e84406", + "layout": "IPY_MODEL_51f67fa34c5443e9991e00a1d71b667d", "max": 312, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_3378757992b044f199653305f3fb69d0", + "style": "IPY_MODEL_a00e609aef554eee9335a611aef79b7e", "value": 312 } }, - "323272527f4d43bab7ee6659871704b5": { + "3cd57e0df1fe4519a6097e2ab878dbd7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1123,13 +1123,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8da8c8921a3a485c945d6a3711b1b30b", + "layout": "IPY_MODEL_6670c2c8e9134888a8feae69a2e25100", "placeholder": "​", - "style": "IPY_MODEL_c812c7809c7d4131af62ed000aea3648", - "value": " 312/312 [00:00<00:00, 545.85it/s]" + "style": "IPY_MODEL_abcfe2a54ce145018aa5488d8aa80b63", + "value": " 312/312 [00:00<00:00, 1383.30it/s]" } }, - "c68db0ef6165441782726e6e3990967e": { + "7926f670a4ae41fc808be2cb5b82389f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1181,7 +1181,7 @@ "width": null } }, - "f9e4755717fd46619686fce16b8d8641": { + "2874ec35ac914ddfb6666a04825db409": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1233,7 +1233,7 @@ "width": null } }, - "4876beee10984f038614abcafceade50": { + "512cb2509ee4464f82350d6f5ae92bb4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1248,7 +1248,7 @@ "description_width": "" } }, - "53068bb95cc2494ab9931acd33e84406": { + "51f67fa34c5443e9991e00a1d71b667d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1300,7 +1300,7 @@ "width": null } }, - "3378757992b044f199653305f3fb69d0": { + "a00e609aef554eee9335a611aef79b7e": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1316,7 +1316,7 @@ "description_width": "" } }, - "8da8c8921a3a485c945d6a3711b1b30b": { + "6670c2c8e9134888a8feae69a2e25100": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1368,7 +1368,7 @@ "width": null } }, - "c812c7809c7d4131af62ed000aea3648": { + "abcfe2a54ce145018aa5488d8aa80b63": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1383,7 +1383,7 @@ "description_width": "" } }, - "a54a162a17c94dfcaaa8718536295d23": { + "46103e6b769c4772b0e0c8dd0dfc9bb7": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1398,14 +1398,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f260e33e9e844b30a62e1fa0ac3d8531", - "IPY_MODEL_7e2afbe8ab6f4f7d9d980a8500883128", - "IPY_MODEL_c2e8680e8f7f4a81958b650eea8719c1" + "IPY_MODEL_9444b59122c34e0994e2b6e07b011181", + "IPY_MODEL_2499b8324cf14821a3a0a217fa54570a", + "IPY_MODEL_b3806645f9dd4037a30d1609871a7b2f" ], - "layout": "IPY_MODEL_106265f8ccd24b83b1da14e3e30c4395" + "layout": "IPY_MODEL_3c67b7d2e8ee457d9e776e4cc405baad" } }, - "f260e33e9e844b30a62e1fa0ac3d8531": { + "9444b59122c34e0994e2b6e07b011181": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1420,13 +1420,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_40081259d2fb47798b6a3dc7946d208b", + "layout": "IPY_MODEL_a99d5fca2b1748218cb2314e993307c7", "placeholder": "​", - "style": "IPY_MODEL_ae6694ce16c24c98a973cae14aaae874", + "style": "IPY_MODEL_4437b7f662c740a1bbad1a99ff62ecf0", "value": "Meredig: 100%" } }, - "7e2afbe8ab6f4f7d9d980a8500883128": { + "2499b8324cf14821a3a0a217fa54570a": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1442,15 +1442,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_90896d92141246c0806e16dc171e7b87", + "layout": "IPY_MODEL_8540d60b1c3c43b5af090689dc02dfab", "max": 312, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_2fc201f12dbb401089b5d4efa8c7a272", + "style": "IPY_MODEL_87cbc8f15e994a28ae17f27b6acba1e2", "value": 312 } }, - "c2e8680e8f7f4a81958b650eea8719c1": { + "b3806645f9dd4037a30d1609871a7b2f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1465,13 +1465,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6cd502e772be46b5877654c685f8e6eb", + "layout": "IPY_MODEL_f2e1b59432094113b79d80511c6a1b6a", "placeholder": "​", - "style": "IPY_MODEL_bde9b13a52464851848834ffc6c93b05", - "value": " 312/312 [00:24<00:00, 11.18it/s]" + "style": "IPY_MODEL_ca6e973b53d2456f967aa48bc9e66fe9", + "value": " 312/312 [00:02<00:00, 91.22it/s]" } }, - "106265f8ccd24b83b1da14e3e30c4395": { + "3c67b7d2e8ee457d9e776e4cc405baad": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1523,7 +1523,7 @@ "width": null } }, - "40081259d2fb47798b6a3dc7946d208b": { + "a99d5fca2b1748218cb2314e993307c7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1575,7 +1575,7 @@ "width": null } }, - "ae6694ce16c24c98a973cae14aaae874": { + "4437b7f662c740a1bbad1a99ff62ecf0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1590,7 +1590,7 @@ "description_width": "" } }, - "90896d92141246c0806e16dc171e7b87": { + "8540d60b1c3c43b5af090689dc02dfab": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1642,7 +1642,7 @@ "width": null } }, - "2fc201f12dbb401089b5d4efa8c7a272": { + "87cbc8f15e994a28ae17f27b6acba1e2": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1658,7 +1658,7 @@ "description_width": "" } }, - "6cd502e772be46b5877654c685f8e6eb": { + "f2e1b59432094113b79d80511c6a1b6a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1710,7 +1710,7 @@ "width": null } }, - "bde9b13a52464851848834ffc6c93b05": { + "ca6e973b53d2456f967aa48bc9e66fe9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1725,7 +1725,7 @@ "description_width": "" } }, - "d0093155ab7645818b33ecf805a4e24f": { + "e707dae0983e472884c217f3619056c2": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1740,14 +1740,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_766de92e3f0e4517a1e7a6e7983715cf", - "IPY_MODEL_ff2172e8a95847a6895e6eaa82d4c0b7", - "IPY_MODEL_79ccedbfc0b849e186928fc496f10196" + "IPY_MODEL_dbe04a6f1beb4c50a4f4e2e5bb7e5a73", + "IPY_MODEL_17b1098ac33e4149afa5976f4bad19c6", + "IPY_MODEL_4fdea50d51fe4ccabd7a48c29b199e41" ], - "layout": "IPY_MODEL_4ba509948c234cec9f1aa9fa12268ee8" + "layout": "IPY_MODEL_dda751be29d94836ae90b445704afe27" } }, - "766de92e3f0e4517a1e7a6e7983715cf": { + "dbe04a6f1beb4c50a4f4e2e5bb7e5a73": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1762,13 +1762,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8118f09611604defb1d6e7fe2c7a38cc", + "layout": "IPY_MODEL_354f64b91dbf4853842691b25e476a62", "placeholder": "​", - "style": "IPY_MODEL_9cea02a758864db7a7d4bd8287706480", + "style": "IPY_MODEL_44c2d0516be340bcaea556ac87bc599b", "value": "BandCenter: 100%" } }, - "ff2172e8a95847a6895e6eaa82d4c0b7": { + "17b1098ac33e4149afa5976f4bad19c6": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1784,15 +1784,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_066d9ed6d0324512b2387e8fad51d6d7", + "layout": "IPY_MODEL_505b40f357254300bfee760af3c60d93", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_c83a7c55d0574b84a7055880d6e21609", + "style": "IPY_MODEL_984971502b7a465bb9971441cf3b2476", "value": 249 } }, - "79ccedbfc0b849e186928fc496f10196": { + "4fdea50d51fe4ccabd7a48c29b199e41": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1807,13 +1807,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2dc9c8229b934bb3829fe16604d4aa40", + "layout": "IPY_MODEL_01a2f29efe094e56bbd79466d7727c75", "placeholder": "​", - "style": "IPY_MODEL_77e8ec0fee7f46d2b64459f78a19eac4", - "value": " 249/249 [00:00<00:00, 938.47it/s]" + "style": "IPY_MODEL_7585e303b3e04c57a068b6ec6fdbdee7", + "value": " 249/249 [00:00<00:00,  5.85it/s]" } }, - "4ba509948c234cec9f1aa9fa12268ee8": { + "dda751be29d94836ae90b445704afe27": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1865,7 +1865,7 @@ "width": null } }, - "8118f09611604defb1d6e7fe2c7a38cc": { + "354f64b91dbf4853842691b25e476a62": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1917,7 +1917,7 @@ "width": null } }, - "9cea02a758864db7a7d4bd8287706480": { + "44c2d0516be340bcaea556ac87bc599b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1932,7 +1932,7 @@ "description_width": "" } }, - "066d9ed6d0324512b2387e8fad51d6d7": { + "505b40f357254300bfee760af3c60d93": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1984,7 +1984,7 @@ "width": null } }, - "c83a7c55d0574b84a7055880d6e21609": { + "984971502b7a465bb9971441cf3b2476": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2000,7 +2000,7 @@ "description_width": "" } }, - "2dc9c8229b934bb3829fe16604d4aa40": { + "01a2f29efe094e56bbd79466d7727c75": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2052,7 +2052,7 @@ "width": null } }, - "77e8ec0fee7f46d2b64459f78a19eac4": { + "7585e303b3e04c57a068b6ec6fdbdee7": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2067,7 +2067,7 @@ "description_width": "" } }, - "1d8f97605c1e4ebda22df2204b314c2b": { + "d6278fe9587d429ab9836c4b2c6d960c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2082,14 +2082,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_65c4970c344345e3915a46fff6d1eaac", - "IPY_MODEL_5e46b086557e4aa8a0aa8b8fb7f2d91f", - "IPY_MODEL_f1245ebe0f2c4b90a22f4e3f0c4be3ac" + "IPY_MODEL_073e17bd9206478982708489b28fb6bb", + "IPY_MODEL_fba2123e65dc4fe99439ff249008ccae", + "IPY_MODEL_c17778a0a0ce46749364e88c37d8d38c" ], - "layout": "IPY_MODEL_8f9dfa28bd7c46119cee66b08553243d" + "layout": "IPY_MODEL_8a0f8f3f63bb4841b22cf4612e2b7bc1" } }, - "65c4970c344345e3915a46fff6d1eaac": { + "073e17bd9206478982708489b28fb6bb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2104,13 +2104,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_28a2679f2e5f4b788eaafc4aa34d95cf", + "layout": "IPY_MODEL_bf5a52ee74a64903a79a361b0220ef63", "placeholder": "​", - "style": "IPY_MODEL_86568ce023fe4f4d8aa75e0ad073b4cc", + "style": "IPY_MODEL_584f4de8df6e47b6b89a4daeb23fd4db", "value": "ElementFraction: 100%" } }, - "5e46b086557e4aa8a0aa8b8fb7f2d91f": { + "fba2123e65dc4fe99439ff249008ccae": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2126,15 +2126,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_70603e4f25084a4ba8f4ac487b1e64c2", + "layout": "IPY_MODEL_4ca4023fe57b47acb23ba3e2a36bc9d9", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_380722e242bb4f949442e000a7a8a18d", + "style": "IPY_MODEL_97e92b2b7af84ef180a3f548d1b1a0f7", "value": 249 } }, - "f1245ebe0f2c4b90a22f4e3f0c4be3ac": { + "c17778a0a0ce46749364e88c37d8d38c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2149,13 +2149,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b81cb03e2960461e8b25cdf076102f05", + "layout": "IPY_MODEL_1bda0596ca8f4e6cb656feec1685961a", "placeholder": "​", - "style": "IPY_MODEL_25290564fada419abb5d1edf25158455", - "value": " 249/249 [00:00<00:00, 1495.30it/s]" + "style": "IPY_MODEL_46e5e5232e864544993bfb6d794bed1e", + "value": " 249/249 [00:00<00:00,  6.69it/s]" } }, - "8f9dfa28bd7c46119cee66b08553243d": { + "8a0f8f3f63bb4841b22cf4612e2b7bc1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2207,7 +2207,7 @@ "width": null } }, - "28a2679f2e5f4b788eaafc4aa34d95cf": { + "bf5a52ee74a64903a79a361b0220ef63": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2259,7 +2259,7 @@ "width": null } }, - "86568ce023fe4f4d8aa75e0ad073b4cc": { + "584f4de8df6e47b6b89a4daeb23fd4db": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2274,7 +2274,7 @@ "description_width": "" } }, - "70603e4f25084a4ba8f4ac487b1e64c2": { + "4ca4023fe57b47acb23ba3e2a36bc9d9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2326,7 +2326,7 @@ "width": null } }, - "380722e242bb4f949442e000a7a8a18d": { + "97e92b2b7af84ef180a3f548d1b1a0f7": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2342,7 +2342,7 @@ "description_width": "" } }, - "b81cb03e2960461e8b25cdf076102f05": { + "1bda0596ca8f4e6cb656feec1685961a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2394,7 +2394,7 @@ "width": null } }, - "25290564fada419abb5d1edf25158455": { + "46e5e5232e864544993bfb6d794bed1e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2409,7 +2409,7 @@ "description_width": "" } }, - "d9c8fee7b6a1491bbe534cd40cecbe7b": { + "824872abf99c4c8d880e13f4b01ae388": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2424,14 +2424,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0d4578184d0e435b82f357354333004d", - "IPY_MODEL_10fd038b7ecf4e29a6a62707f8e259be", - "IPY_MODEL_c75c476a09c049e7a8586cde63ecef4e" + "IPY_MODEL_188946237a1b4c0b8ec8c8b6958eee64", + "IPY_MODEL_bee47414427f47908518f625aed66208", + "IPY_MODEL_5cb484f7b4884a3aa710aa33a80080e5" ], - "layout": "IPY_MODEL_890ed1d7e6ea4fa18330471dc8d28efd" + "layout": "IPY_MODEL_aa1f632c10434d5690fbd4c6c4f7c41e" } }, - "0d4578184d0e435b82f357354333004d": { + "188946237a1b4c0b8ec8c8b6958eee64": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2446,13 +2446,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fb44735df1544cc99eb004c1d65e02f5", + "layout": "IPY_MODEL_24bd3531758d4dd5847723199fc55ff5", "placeholder": "​", - "style": "IPY_MODEL_c826dd76f82848608270dce93d3c8e76", + "style": "IPY_MODEL_e6b2e61b33be4f959bf2d059f3b4e5bc", "value": "TMetalFraction: 100%" } }, - "10fd038b7ecf4e29a6a62707f8e259be": { + "bee47414427f47908518f625aed66208": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2468,15 +2468,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5a519e55faec481784a64dc40e750607", + "layout": "IPY_MODEL_75d863aa0c294621b4d0a13deea74f8d", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_189dfb02af004234ae3054fdd2df340d", + "style": "IPY_MODEL_455efa3d02aa4b62a0aa8809f81b56f7", "value": 249 } }, - "c75c476a09c049e7a8586cde63ecef4e": { + "5cb484f7b4884a3aa710aa33a80080e5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2491,13 +2491,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_884eff2df3b247bdac5128737e515cd8", + "layout": "IPY_MODEL_d932cf10c947443498bb111f40665d04", "placeholder": "​", - "style": "IPY_MODEL_d253702326274bb8928fbdd0acad04b8", - "value": " 249/249 [00:00<00:00, 814.86it/s]" + "style": "IPY_MODEL_5a85a081043947e5908b024aa3456bb5", + "value": " 249/249 [00:00<00:00,  6.60it/s]" } }, - "890ed1d7e6ea4fa18330471dc8d28efd": { + "aa1f632c10434d5690fbd4c6c4f7c41e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2549,7 +2549,7 @@ "width": null } }, - "fb44735df1544cc99eb004c1d65e02f5": { + "24bd3531758d4dd5847723199fc55ff5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2601,7 +2601,7 @@ "width": null } }, - "c826dd76f82848608270dce93d3c8e76": { + "e6b2e61b33be4f959bf2d059f3b4e5bc": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2616,7 +2616,7 @@ "description_width": "" } }, - "5a519e55faec481784a64dc40e750607": { + "75d863aa0c294621b4d0a13deea74f8d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2668,7 +2668,7 @@ "width": null } }, - "189dfb02af004234ae3054fdd2df340d": { + "455efa3d02aa4b62a0aa8809f81b56f7": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2684,7 +2684,7 @@ "description_width": "" } }, - "884eff2df3b247bdac5128737e515cd8": { + "d932cf10c947443498bb111f40665d04": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2736,7 +2736,7 @@ "width": null } }, - "d253702326274bb8928fbdd0acad04b8": { + "5a85a081043947e5908b024aa3456bb5": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2751,7 +2751,7 @@ "description_width": "" } }, - "4d0c1558ce6d453593ca99f01dbce797": { + "9044d17fe2304db1b446bdb9e4c1d2e1": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2766,14 +2766,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d818f633c3544459a9d58f2b93d4c09", - "IPY_MODEL_9cd4f12d02f84aa2b37872e08c3ed8a0", - "IPY_MODEL_18c4307ff6e149b898d120882db641f0" + "IPY_MODEL_db4ffd7076124a3e8ffca08648aa9815", + "IPY_MODEL_dc1da5f0999e43a88dbecdb475f87641", + "IPY_MODEL_3676d407cbf04fa79f4d520e91d753cb" ], - "layout": "IPY_MODEL_8912d1e447f64f418065f3cf4865886b" + "layout": "IPY_MODEL_579a5616c5a44ef1b1ef5c09571311e2" } }, - "6d818f633c3544459a9d58f2b93d4c09": { + "db4ffd7076124a3e8ffca08648aa9815": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2788,13 +2788,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a49bbad175304be68b85173134ea6d8b", + "layout": "IPY_MODEL_5677e329f7254e029859200bfe466d30", "placeholder": "​", - "style": "IPY_MODEL_72c045a425bb42978095ad2d0317a848", + "style": "IPY_MODEL_ef32a5b1ff0d43469530d7782b163d7c", "value": "Stoichiometry: 100%" } }, - "9cd4f12d02f84aa2b37872e08c3ed8a0": { + "dc1da5f0999e43a88dbecdb475f87641": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2810,15 +2810,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_85322731b7a649d7be83ba900df9559b", + "layout": "IPY_MODEL_17fc6799a03a43b798a6cac1acbc140f", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_7e880ed1e4d3444bb0423388e828dede", + "style": "IPY_MODEL_7f82a1b4161c4990aca025bad291c86a", "value": 249 } }, - "18c4307ff6e149b898d120882db641f0": { + "3676d407cbf04fa79f4d520e91d753cb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2833,13 +2833,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0e57ddc7b222416e89bfac4b6c23b7c6", + "layout": "IPY_MODEL_d06a303cff374d7694251c9eaecc67c2", "placeholder": "​", - "style": "IPY_MODEL_07e6c8cedffc49c59bf89b7c1afa9896", - "value": " 249/249 [00:00<00:00, 740.76it/s]" + "style": "IPY_MODEL_be911bc3bfe8490ba4908f34a4059235", + "value": " 249/249 [00:00<00:00,  6.96it/s]" } }, - "8912d1e447f64f418065f3cf4865886b": { + "579a5616c5a44ef1b1ef5c09571311e2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2891,7 +2891,7 @@ "width": null } }, - "a49bbad175304be68b85173134ea6d8b": { + "5677e329f7254e029859200bfe466d30": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2943,7 +2943,7 @@ "width": null } }, - "72c045a425bb42978095ad2d0317a848": { + "ef32a5b1ff0d43469530d7782b163d7c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2958,7 +2958,7 @@ "description_width": "" } }, - "85322731b7a649d7be83ba900df9559b": { + "17fc6799a03a43b798a6cac1acbc140f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3010,7 +3010,7 @@ "width": null } }, - "7e880ed1e4d3444bb0423388e828dede": { + "7f82a1b4161c4990aca025bad291c86a": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3026,7 +3026,7 @@ "description_width": "" } }, - "0e57ddc7b222416e89bfac4b6c23b7c6": { + "d06a303cff374d7694251c9eaecc67c2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3078,7 +3078,7 @@ "width": null } }, - "07e6c8cedffc49c59bf89b7c1afa9896": { + "be911bc3bfe8490ba4908f34a4059235": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3093,7 +3093,7 @@ "description_width": "" } }, - "ec584f58337b496c84b587d1fe752dfd": { + "0cf54304b2b7463eab6674de9dd97665": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3108,14 +3108,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_87e09ea5d7e54f9ea5e36873e0de41fa", - "IPY_MODEL_fb19e169c5d44d85aaa1d85e2f901041", - "IPY_MODEL_9ab203fc4eb04191bebf107f410344d2" + "IPY_MODEL_7dddc3fedf9a4113aa87169d7f66b86c", + "IPY_MODEL_685a219753934b978803034adbdd873f", + "IPY_MODEL_fd83196f378444f183935519e92e9e3d" ], - "layout": "IPY_MODEL_95ee095155fa4ea5914217218a78acfb" + "layout": "IPY_MODEL_3ccf2e74bbde4906be2de031ecd4933e" } }, - "87e09ea5d7e54f9ea5e36873e0de41fa": { + "7dddc3fedf9a4113aa87169d7f66b86c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3130,13 +3130,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c5bc0f7acb8c4d4fab1e93e99baeac75", + "layout": "IPY_MODEL_bd032c2a9fe84f9fa771033dd084b772", "placeholder": "​", - "style": "IPY_MODEL_ad52ea9000fa4a8394bda119a39e0c5e", + "style": "IPY_MODEL_b7264fb92ed14e80a71b2f488bb9d631", "value": "Meredig: 100%" } }, - "fb19e169c5d44d85aaa1d85e2f901041": { + "685a219753934b978803034adbdd873f": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3152,15 +3152,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ff87035dac4b470095f7d0aee1bb8fac", + "layout": "IPY_MODEL_2d5d3817586c409198bc9c9a2b063c67", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_749229f666914aee84eee47a8cc094b4", + "style": "IPY_MODEL_e22aea8e26a24df896886e58d53e3772", "value": 249 } }, - "9ab203fc4eb04191bebf107f410344d2": { + "fd83196f378444f183935519e92e9e3d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3175,13 +3175,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e21813045d6d4e02ae29ee6b4d1ab67a", + "layout": "IPY_MODEL_b9e6fa757e394dcc802af6d107fe99dc", "placeholder": "​", - "style": "IPY_MODEL_a9c67d629b5a4fc2a9c0511ef30941b6", - "value": " 249/249 [00:18<00:00, 12.30it/s]" + "style": "IPY_MODEL_efa0bd43587145d9a46b032afdd49590", + "value": " 249/249 [00:02<00:00, 113.31it/s]" } }, - "95ee095155fa4ea5914217218a78acfb": { + "3ccf2e74bbde4906be2de031ecd4933e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3233,7 +3233,7 @@ "width": null } }, - "c5bc0f7acb8c4d4fab1e93e99baeac75": { + "bd032c2a9fe84f9fa771033dd084b772": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3285,7 +3285,7 @@ "width": null } }, - "ad52ea9000fa4a8394bda119a39e0c5e": { + "b7264fb92ed14e80a71b2f488bb9d631": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3300,7 +3300,7 @@ "description_width": "" } }, - "ff87035dac4b470095f7d0aee1bb8fac": { + "2d5d3817586c409198bc9c9a2b063c67": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3352,7 +3352,7 @@ "width": null } }, - "749229f666914aee84eee47a8cc094b4": { + "e22aea8e26a24df896886e58d53e3772": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3368,7 +3368,7 @@ "description_width": "" } }, - "e21813045d6d4e02ae29ee6b4d1ab67a": { + "b9e6fa757e394dcc802af6d107fe99dc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3420,7 +3420,7 @@ "width": null } }, - "a9c67d629b5a4fc2a9c0511ef30941b6": { + "efa0bd43587145d9a46b032afdd49590": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3435,7 +3435,7 @@ "description_width": "" } }, - "005afc83071e47a5a806ec196d9a3d25": { + "7172ab9b6b2046f29cda82e3f64b5db8": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3450,14 +3450,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_cf9c1faf12514836a08b1cdbc94a35dc", - "IPY_MODEL_3edee656fea24fd9bb8fc76c54e7d8d9", - "IPY_MODEL_21422ae0e7454c718322aee7e425f4c0" + "IPY_MODEL_79dba4e2359243779e88265c93588f17", + "IPY_MODEL_e3282ff1eea34807b2c52ff2f8fd5868", + "IPY_MODEL_01f345751f2d44f099ceeccb32beb520" ], - "layout": "IPY_MODEL_55280c73ec7f4a3eaa6a3866c70dad2d" + "layout": "IPY_MODEL_c362540cc60f4e38ae12a998a6c594f6" } }, - "cf9c1faf12514836a08b1cdbc94a35dc": { + "79dba4e2359243779e88265c93588f17": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3472,13 +3472,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5e66188816324a48bc5d60613fac588d", + "layout": "IPY_MODEL_3c341159adf04d79945b139d7d76181a", "placeholder": "​", - "style": "IPY_MODEL_38390d6e49ff4cd3949f244c90615fee", + "style": "IPY_MODEL_5d2ca9d8a84c4e0fae020fe662ec39d9", "value": "BandCenter: 100%" } }, - "3edee656fea24fd9bb8fc76c54e7d8d9": { + "e3282ff1eea34807b2c52ff2f8fd5868": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3494,15 +3494,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_333f8e522a5d48cc90568a03f7b907cb", + "layout": "IPY_MODEL_809b017795c4411a89dca8c1706ce74c", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_70476cabeb2841f59416cb9633de9fff", + "style": "IPY_MODEL_2e583c94269f4a17bbc92ec97fac2a93", "value": 63 } }, - "21422ae0e7454c718322aee7e425f4c0": { + "01f345751f2d44f099ceeccb32beb520": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3517,13 +3517,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_21e2032f107b42e9a25d7d82a47fe2d8", + "layout": "IPY_MODEL_2d2eb3e84b434069ada5bf403125bae5", "placeholder": "​", - "style": "IPY_MODEL_9831ebd6eac34466b0208bc8f0a5b942", - "value": " 63/63 [00:00<00:00,  7.73it/s]" + "style": "IPY_MODEL_8638a53172e44ecd9c4629439551f27e", + "value": " 63/63 [00:00<00:00,  7.53it/s]" } }, - "55280c73ec7f4a3eaa6a3866c70dad2d": { + "c362540cc60f4e38ae12a998a6c594f6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3575,7 +3575,7 @@ "width": null } }, - "5e66188816324a48bc5d60613fac588d": { + "3c341159adf04d79945b139d7d76181a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3627,7 +3627,7 @@ "width": null } }, - "38390d6e49ff4cd3949f244c90615fee": { + "5d2ca9d8a84c4e0fae020fe662ec39d9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3642,7 +3642,7 @@ "description_width": "" } }, - "333f8e522a5d48cc90568a03f7b907cb": { + "809b017795c4411a89dca8c1706ce74c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3694,7 +3694,7 @@ "width": null } }, - "70476cabeb2841f59416cb9633de9fff": { + "2e583c94269f4a17bbc92ec97fac2a93": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3710,7 +3710,7 @@ "description_width": "" } }, - "21e2032f107b42e9a25d7d82a47fe2d8": { + "2d2eb3e84b434069ada5bf403125bae5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3762,7 +3762,7 @@ "width": null } }, - "9831ebd6eac34466b0208bc8f0a5b942": { + "8638a53172e44ecd9c4629439551f27e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3777,7 +3777,7 @@ "description_width": "" } }, - "1c2c7949383a4d0e8ba5771281a1c107": { + "e7aab8277cce479d8bd185795dc0f574": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3792,14 +3792,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b7611a1934984b608cf9871a326669ef", - "IPY_MODEL_9b9716dbc1ea457fb6d7118d1351a427", - "IPY_MODEL_a62c0dbbca9c41888541f07ccd944a2e" + "IPY_MODEL_0ff90d9882ee484193f82788130c7eb8", + "IPY_MODEL_dbaf99a3ed434248adbb6a316a359144", + "IPY_MODEL_6b944afd778c4031a9cda186d8e3ed6f" ], - "layout": "IPY_MODEL_beb4e4220ddb41b68c3100c438ea1d9a" + "layout": "IPY_MODEL_d7ea0d72cd31452b9d914b3e9b4d2434" } }, - "b7611a1934984b608cf9871a326669ef": { + "0ff90d9882ee484193f82788130c7eb8": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3814,13 +3814,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b63c4d6fa0e344c1b3ca534598dd7894", + "layout": "IPY_MODEL_bedeba79eb554ae88c9c45c912180430", "placeholder": "​", - "style": "IPY_MODEL_f5944f2ef55e439e868be4a470afe3dc", + "style": "IPY_MODEL_708beefd7c1647788383805b8673b1d9", "value": "ElementFraction: 100%" } }, - "9b9716dbc1ea457fb6d7118d1351a427": { + "dbaf99a3ed434248adbb6a316a359144": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3836,15 +3836,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0f4c38e8884d42a4aa39e2140ae392e7", + "layout": "IPY_MODEL_f55893fb71344d4ba53fdb93ceff8bdf", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_79bd3753658548678b76a4bc6e45339c", + "style": "IPY_MODEL_a014723380444ebcb3db5ce6f370ac9c", "value": 63 } }, - "a62c0dbbca9c41888541f07ccd944a2e": { + "6b944afd778c4031a9cda186d8e3ed6f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3859,13 +3859,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bfc5feef74864714adecf811a1d82af1", + "layout": "IPY_MODEL_94e605943de046d5ae6f547c8d08ad84", "placeholder": "​", - "style": "IPY_MODEL_19994b11b4fe4be2a3776b400dae5853", - "value": " 63/63 [00:00<00:00,  7.26it/s]" + "style": "IPY_MODEL_e608368689894077baafbc7a8416c516", + "value": " 63/63 [00:00<00:00,  6.85it/s]" } }, - "beb4e4220ddb41b68c3100c438ea1d9a": { + "d7ea0d72cd31452b9d914b3e9b4d2434": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3917,7 +3917,7 @@ "width": null } }, - "b63c4d6fa0e344c1b3ca534598dd7894": { + "bedeba79eb554ae88c9c45c912180430": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3969,7 +3969,7 @@ "width": null } }, - "f5944f2ef55e439e868be4a470afe3dc": { + "708beefd7c1647788383805b8673b1d9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3984,7 +3984,7 @@ "description_width": "" } }, - "0f4c38e8884d42a4aa39e2140ae392e7": { + "f55893fb71344d4ba53fdb93ceff8bdf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4036,7 +4036,7 @@ "width": null } }, - "79bd3753658548678b76a4bc6e45339c": { + "a014723380444ebcb3db5ce6f370ac9c": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4052,7 +4052,7 @@ "description_width": "" } }, - "bfc5feef74864714adecf811a1d82af1": { + "94e605943de046d5ae6f547c8d08ad84": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4104,7 +4104,7 @@ "width": null } }, - "19994b11b4fe4be2a3776b400dae5853": { + "e608368689894077baafbc7a8416c516": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4119,7 +4119,7 @@ "description_width": "" } }, - "8cf2dac6348044288062182852cc2209": { + "fbe900499bfc4522af062a0a9f06bff2": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4134,14 +4134,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3360160845bf4d4eb7d161be69ea5439", - "IPY_MODEL_5662acc71d144c1993d1753aa35aaf6e", - "IPY_MODEL_30452411d1f849a38384464c080a36b9" + "IPY_MODEL_b3072733afe64b918ed193abda76fb64", + "IPY_MODEL_56854aecf472435f897ab0a16d8c713a", + "IPY_MODEL_e8680686712344faa08b43f630f0c571" ], - "layout": "IPY_MODEL_6807559f4435411ca603998e709238ab" + "layout": "IPY_MODEL_df50c566eef441e4adbb1aa8e5715fb9" } }, - "3360160845bf4d4eb7d161be69ea5439": { + "b3072733afe64b918ed193abda76fb64": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4156,13 +4156,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf7604300c9047b1acd67e37b4a57f94", + "layout": "IPY_MODEL_f964fa12090d4cb6b61fa7a3707b6303", "placeholder": "​", - "style": "IPY_MODEL_580baaacf25b465385948ae402c0af97", + "style": "IPY_MODEL_4d4444e464f5448296406b75faae0af2", "value": "TMetalFraction: 100%" } }, - "5662acc71d144c1993d1753aa35aaf6e": { + "56854aecf472435f897ab0a16d8c713a": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4178,15 +4178,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b443c4cd76174702afe25d2519b57d3e", + "layout": "IPY_MODEL_fc41426ebabb49ebbc8d3d593d4dc4b7", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_ab56ce442ec34d1992f1a3187ae75a64", + "style": "IPY_MODEL_730643cb808a416da0bf85a2174315a2", "value": 63 } }, - "30452411d1f849a38384464c080a36b9": { + "e8680686712344faa08b43f630f0c571": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4201,13 +4201,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a45d07455574434082ac718101ed1583", + "layout": "IPY_MODEL_91a4e965e09043429c472f1c1b2544d1", "placeholder": "​", - "style": "IPY_MODEL_3c9452bbd65247c993685e5f9e1362f6", - "value": " 63/63 [00:00<00:00,  8.19it/s]" + "style": "IPY_MODEL_7551cc9e82774741ae279e5731106196", + "value": " 63/63 [00:00<00:00,  7.14it/s]" } }, - "6807559f4435411ca603998e709238ab": { + "df50c566eef441e4adbb1aa8e5715fb9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4259,7 +4259,7 @@ "width": null } }, - "bf7604300c9047b1acd67e37b4a57f94": { + "f964fa12090d4cb6b61fa7a3707b6303": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4311,7 +4311,7 @@ "width": null } }, - "580baaacf25b465385948ae402c0af97": { + "4d4444e464f5448296406b75faae0af2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4326,7 +4326,7 @@ "description_width": "" } }, - "b443c4cd76174702afe25d2519b57d3e": { + "fc41426ebabb49ebbc8d3d593d4dc4b7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4378,7 +4378,7 @@ "width": null } }, - "ab56ce442ec34d1992f1a3187ae75a64": { + "730643cb808a416da0bf85a2174315a2": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4394,7 +4394,7 @@ "description_width": "" } }, - "a45d07455574434082ac718101ed1583": { + "91a4e965e09043429c472f1c1b2544d1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4446,7 +4446,7 @@ "width": null } }, - "3c9452bbd65247c993685e5f9e1362f6": { + "7551cc9e82774741ae279e5731106196": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4461,7 +4461,7 @@ "description_width": "" } }, - "49920193317b41dbb02b128a837a9399": { + "e5d5fc04f95c4edc98163f3f0e72bdce": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4476,14 +4476,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5d298ec24ced45fa904f3418e5bae4d7", - "IPY_MODEL_404bcf2db3ee4334adb3e7b296b83026", - "IPY_MODEL_96ea55d911db493ca0babbbe066689b6" + "IPY_MODEL_2e5431ca12d94fc5baafa3f093493cb8", + "IPY_MODEL_fbcda81318cf44ae923007843adb3a52", + "IPY_MODEL_90b5f12cbb77411ea1761d0153007419" ], - "layout": "IPY_MODEL_96e9d1d46c664d9fa78e03ff06e57083" + "layout": "IPY_MODEL_1b5b7d027995455fbbd84a1d8779390b" } }, - "5d298ec24ced45fa904f3418e5bae4d7": { + "2e5431ca12d94fc5baafa3f093493cb8": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4498,13 +4498,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0e78f3289bc140399154bdc9fe019b4f", + "layout": "IPY_MODEL_09f7d5a120c9403bb6c073a1e16f5fee", "placeholder": "​", - "style": "IPY_MODEL_33c884f5fe3f4d4fb402adae056ab435", + "style": "IPY_MODEL_2159f19a003e4c569fa6563240b29b92", "value": "Stoichiometry: 100%" } }, - "404bcf2db3ee4334adb3e7b296b83026": { + "fbcda81318cf44ae923007843adb3a52": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4520,15 +4520,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e686f569ef154b109f9a69ce99fcd07d", + "layout": "IPY_MODEL_43b5e507eefe4e5c83df90fee5da5785", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_0d2fe9a454054dbb8a1fd73ee1007047", + "style": "IPY_MODEL_88c3812543a648c58d7261f1e47a5c02", "value": 63 } }, - "96ea55d911db493ca0babbbe066689b6": { + "90b5f12cbb77411ea1761d0153007419": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4543,13 +4543,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_08a5c2339bf94585b9cc573c16208680", + "layout": "IPY_MODEL_51c87d9f8cf1402f879993246db7fc6f", "placeholder": "​", - "style": "IPY_MODEL_083a7ed0e73e4df5b1c20cfe2f72d4df", - "value": " 63/63 [00:00<00:00,  7.31it/s]" + "style": "IPY_MODEL_8b763394132746c589f289de1625e857", + "value": " 63/63 [00:00<00:00,  7.29it/s]" } }, - "96e9d1d46c664d9fa78e03ff06e57083": { + "1b5b7d027995455fbbd84a1d8779390b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4601,7 +4601,7 @@ "width": null } }, - "0e78f3289bc140399154bdc9fe019b4f": { + "09f7d5a120c9403bb6c073a1e16f5fee": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4653,7 +4653,7 @@ "width": null } }, - "33c884f5fe3f4d4fb402adae056ab435": { + "2159f19a003e4c569fa6563240b29b92": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4668,7 +4668,7 @@ "description_width": "" } }, - "e686f569ef154b109f9a69ce99fcd07d": { + "43b5e507eefe4e5c83df90fee5da5785": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4720,7 +4720,7 @@ "width": null } }, - "0d2fe9a454054dbb8a1fd73ee1007047": { + "88c3812543a648c58d7261f1e47a5c02": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4736,7 +4736,7 @@ "description_width": "" } }, - "08a5c2339bf94585b9cc573c16208680": { + "51c87d9f8cf1402f879993246db7fc6f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4788,7 +4788,7 @@ "width": null } }, - "083a7ed0e73e4df5b1c20cfe2f72d4df": { + "8b763394132746c589f289de1625e857": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4803,7 +4803,7 @@ "description_width": "" } }, - "8b4c2f2c07fe48a8bc1a051bf907e27c": { + "647c96f35cfc45b8b88dab29d68a15b9": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4818,14 +4818,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ff14942f5bb6431ba7e1ae464d30e575", - "IPY_MODEL_cd19ec9d9c414799a98f7e23b42b77c3", - "IPY_MODEL_11da03b07b314a609c0c9ddc13b622dc" + "IPY_MODEL_d0f5002680414f2e9bb12a2a341c09ed", + "IPY_MODEL_93fe09cae99e42be8dc600746872e930", + "IPY_MODEL_f3d440d81acd4ed6bcbe4ae8e9d20a46" ], - "layout": "IPY_MODEL_6106d702a16743ef8c197cce465a4b29" + "layout": "IPY_MODEL_e0ba62b0609d45c98c611dd3f6ac0c48" } }, - "ff14942f5bb6431ba7e1ae464d30e575": { + "d0f5002680414f2e9bb12a2a341c09ed": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4840,13 +4840,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dadaf301fe4d44b19bae05195cf7e35a", + "layout": "IPY_MODEL_09e8f6be83f340df971bcfc67e86db82", "placeholder": "​", - "style": "IPY_MODEL_0c908fb9724c4a3ca4bc2d7854ca58cb", + "style": "IPY_MODEL_4ffba8d950b6486988ba11410797ba69", "value": "Meredig: 100%" } }, - "cd19ec9d9c414799a98f7e23b42b77c3": { + "93fe09cae99e42be8dc600746872e930": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4862,15 +4862,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5c9f9a367a0a46f1b0008869387bf178", + "layout": "IPY_MODEL_fef012a5235c4250b78d7a0f63ba5ee1", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_f1a57ebe457b4c2b8723368b22c659b6", + "style": "IPY_MODEL_8b81fdbd1b8944c7ab3e421d58399406", "value": 63 } }, - "11da03b07b314a609c0c9ddc13b622dc": { + "f3d440d81acd4ed6bcbe4ae8e9d20a46": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4885,13 +4885,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2ddb664b856841daa9cd55c27acae1cb", + "layout": "IPY_MODEL_e18ce6f7cc8c446a9bae03091ce6788b", "placeholder": "​", - "style": "IPY_MODEL_589bfc27f46a49359db0808cdce343bf", - "value": " 63/63 [00:03<00:00, 16.10it/s]" + "style": "IPY_MODEL_188c241a929e4d3a8d6e58b3010ab02e", + "value": " 63/63 [00:00<00:00,  6.98it/s]" } }, - "6106d702a16743ef8c197cce465a4b29": { + "e0ba62b0609d45c98c611dd3f6ac0c48": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4943,7 +4943,7 @@ "width": null } }, - "dadaf301fe4d44b19bae05195cf7e35a": { + "09e8f6be83f340df971bcfc67e86db82": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4995,7 +4995,7 @@ "width": null } }, - "0c908fb9724c4a3ca4bc2d7854ca58cb": { + "4ffba8d950b6486988ba11410797ba69": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5010,7 +5010,7 @@ "description_width": "" } }, - "5c9f9a367a0a46f1b0008869387bf178": { + "fef012a5235c4250b78d7a0f63ba5ee1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5062,7 +5062,7 @@ "width": null } }, - "f1a57ebe457b4c2b8723368b22c659b6": { + "8b81fdbd1b8944c7ab3e421d58399406": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5078,7 +5078,7 @@ "description_width": "" } }, - "2ddb664b856841daa9cd55c27acae1cb": { + "e18ce6f7cc8c446a9bae03091ce6788b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5130,7 +5130,7 @@ "width": null } }, - "589bfc27f46a49359db0808cdce343bf": { + "188c241a929e4d3a8d6e58b3010ab02e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5145,7 +5145,7 @@ "description_width": "" } }, - "cb533cde781b44b7930f6f87ff829212": { + "24453e598d3446be8fa829d38055a70e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5160,14 +5160,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_397287e97c8245d280ad9d533d941405", - "IPY_MODEL_631f1aaf70b94f2bb21e857dfd7be1f6", - "IPY_MODEL_93a7ea64251341df8125278dce5a93be" + "IPY_MODEL_7041780bec084852aa34f49263167d93", + "IPY_MODEL_45c88efa94d64fc8a0eb1fd4f7160c7b", + "IPY_MODEL_f944eadc68454244b7f4b1fef44e4299" ], - "layout": "IPY_MODEL_962e360c2afd43ccb15b27b834aef8d1" + "layout": "IPY_MODEL_a1e159d9bf584d1aad56d9c43f3f5b50" } }, - "397287e97c8245d280ad9d533d941405": { + "7041780bec084852aa34f49263167d93": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5182,13 +5182,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2c811d8e265f4a4d82bc12a6423c38f6", + "layout": "IPY_MODEL_f524acfd68254e649b99558f321ed040", "placeholder": "​", - "style": "IPY_MODEL_a779aec87f974c958d1454d87acb8d98", + "style": "IPY_MODEL_fab749f0edd046ae885541cb465013bc", "value": "BandCenter: 100%" } }, - "631f1aaf70b94f2bb21e857dfd7be1f6": { + "45c88efa94d64fc8a0eb1fd4f7160c7b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5204,15 +5204,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8c40a98fbf6b48ba96727bfd083a16f5", + "layout": "IPY_MODEL_b9699e073da949a7965617a80a25149e", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_45425416c716440781e33f783dcb34c3", + "style": "IPY_MODEL_507902059abc4a90b8a490f7387baf0d", "value": 249 } }, - "93a7ea64251341df8125278dce5a93be": { + "f944eadc68454244b7f4b1fef44e4299": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5227,13 +5227,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2c64a73c9da84795b098adecd18e7840", + "layout": "IPY_MODEL_fc05af6c372c44039f7c59a582162402", "placeholder": "​", - "style": "IPY_MODEL_60dbbbff81d44e63834ea8d3b7cbb187", - "value": " 249/249 [00:00<00:00, 973.25it/s]" + "style": "IPY_MODEL_dfc0fb39bbe94ab7b72942d04e50b952", + "value": " 249/249 [00:00<00:00,  6.92it/s]" } }, - "962e360c2afd43ccb15b27b834aef8d1": { + "a1e159d9bf584d1aad56d9c43f3f5b50": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5285,7 +5285,7 @@ "width": null } }, - "2c811d8e265f4a4d82bc12a6423c38f6": { + "f524acfd68254e649b99558f321ed040": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5337,7 +5337,7 @@ "width": null } }, - "a779aec87f974c958d1454d87acb8d98": { + "fab749f0edd046ae885541cb465013bc": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5352,7 +5352,7 @@ "description_width": "" } }, - "8c40a98fbf6b48ba96727bfd083a16f5": { + "b9699e073da949a7965617a80a25149e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5404,7 +5404,7 @@ "width": null } }, - "45425416c716440781e33f783dcb34c3": { + "507902059abc4a90b8a490f7387baf0d": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5420,7 +5420,7 @@ "description_width": "" } }, - "2c64a73c9da84795b098adecd18e7840": { + "fc05af6c372c44039f7c59a582162402": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5472,7 +5472,7 @@ "width": null } }, - "60dbbbff81d44e63834ea8d3b7cbb187": { + "dfc0fb39bbe94ab7b72942d04e50b952": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5487,7 +5487,7 @@ "description_width": "" } }, - "9479f9433a2b40d184cb460ebea45a14": { + "bb7acfb84bc142bc927bbce3416cec45": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5502,14 +5502,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bd358e314a0142239a3593ee2c107481", - "IPY_MODEL_f4a85e18ae374799b1368bc7c59fd10b", - "IPY_MODEL_6237554367e74f82b96524f997dae48d" + "IPY_MODEL_62e554818f1c4646ac45ebd0c2108efb", + "IPY_MODEL_55560a2f3b694dfa87bb0a8857a94ce5", + "IPY_MODEL_ad353eac3ef140488199a4e7726a12dc" ], - "layout": "IPY_MODEL_b7ba161c7f454a76abb3a4069d67267f" + "layout": "IPY_MODEL_70e0bfdcfff84889a793c860fb6f328d" } }, - "bd358e314a0142239a3593ee2c107481": { + "62e554818f1c4646ac45ebd0c2108efb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5524,13 +5524,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e2a513caaa7e4cc9b6c4fe356804d6db", + "layout": "IPY_MODEL_cea7e515e317446aa5dad192eae7ed41", "placeholder": "​", - "style": "IPY_MODEL_3987e2875f7f41a2a9c48b9d500cbe2f", + "style": "IPY_MODEL_d4b05ddb56e24026aafa7d5248c24d2f", "value": "ElementFraction: 100%" } }, - "f4a85e18ae374799b1368bc7c59fd10b": { + "55560a2f3b694dfa87bb0a8857a94ce5": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5546,15 +5546,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a26b00d2194e4e60aa3786516965cdd0", + "layout": "IPY_MODEL_8444006ef6bf4320adc39ac97440ce8d", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_b308a6f2782549699fd6c4aa84c2f834", + "style": "IPY_MODEL_f80482e3ab4a43fca53f9ac3321a6243", "value": 249 } }, - "6237554367e74f82b96524f997dae48d": { + "ad353eac3ef140488199a4e7726a12dc": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5569,13 +5569,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4ba890c95090481cbfa7043f26eb660d", + "layout": "IPY_MODEL_6bb412aa4f8346519e7723fd6314d1a4", "placeholder": "​", - "style": "IPY_MODEL_4ffa2d36ac27496086af760c68aabf0a", - "value": " 249/249 [00:00<00:00, 985.24it/s]" + "style": "IPY_MODEL_d8341890465b497cb71f96a7ffe4d043", + "value": " 249/249 [00:00<00:00,  7.21it/s]" } }, - "b7ba161c7f454a76abb3a4069d67267f": { + "70e0bfdcfff84889a793c860fb6f328d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5627,7 +5627,7 @@ "width": null } }, - "e2a513caaa7e4cc9b6c4fe356804d6db": { + "cea7e515e317446aa5dad192eae7ed41": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5679,7 +5679,7 @@ "width": null } }, - "3987e2875f7f41a2a9c48b9d500cbe2f": { + "d4b05ddb56e24026aafa7d5248c24d2f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5694,7 +5694,7 @@ "description_width": "" } }, - "a26b00d2194e4e60aa3786516965cdd0": { + "8444006ef6bf4320adc39ac97440ce8d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5746,7 +5746,7 @@ "width": null } }, - "b308a6f2782549699fd6c4aa84c2f834": { + "f80482e3ab4a43fca53f9ac3321a6243": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5762,7 +5762,7 @@ "description_width": "" } }, - "4ba890c95090481cbfa7043f26eb660d": { + "6bb412aa4f8346519e7723fd6314d1a4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5814,7 +5814,7 @@ "width": null } }, - "4ffa2d36ac27496086af760c68aabf0a": { + "d8341890465b497cb71f96a7ffe4d043": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5829,7 +5829,7 @@ "description_width": "" } }, - "abeb221871b84d88b0db18c710a73b63": { + "fc423a69158d459589e0567a28181e2c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5844,14 +5844,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_75c434447d944b1eaa6ab1e4ced5de78", - "IPY_MODEL_a3d72067b8b049e9a8ad51e9e4cfcc1b", - "IPY_MODEL_f71734e4ae554b0a83463e9800983141" + "IPY_MODEL_da8eec0c832b46b39ffcdb1997e1e40d", + "IPY_MODEL_f39da09de39c463f87e58be9d5a517f3", + "IPY_MODEL_fa4a716848784cb5a70cc5bd2872fa7b" ], - "layout": "IPY_MODEL_b9b57a07133f4fbf8bd6ca3c6363d3d5" + "layout": "IPY_MODEL_c82ebb0ce9104778a7356b857a7de452" } }, - "75c434447d944b1eaa6ab1e4ced5de78": { + "da8eec0c832b46b39ffcdb1997e1e40d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5866,13 +5866,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_db0a4d39be6c4e6eb2e1fbb08c7491dd", + "layout": "IPY_MODEL_b092c23d0db14a9c9e13c99870bce7f0", "placeholder": "​", - "style": "IPY_MODEL_f762eb228c354c10be3ef054024b9f25", + "style": "IPY_MODEL_d47d6f4ff56e4e40a115725bb256d4a8", "value": "TMetalFraction: 100%" } }, - "a3d72067b8b049e9a8ad51e9e4cfcc1b": { + "f39da09de39c463f87e58be9d5a517f3": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5888,15 +5888,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5ca1aa0ac12d42b992fc558758aba381", + "layout": "IPY_MODEL_976028b8121f438182df5fa37c9039bc", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_a4b0d3734df14b1284964eacdbf82fb1", + "style": "IPY_MODEL_bd70d6d343f449aa877e7ad8971f8c87", "value": 249 } }, - "f71734e4ae554b0a83463e9800983141": { + "fa4a716848784cb5a70cc5bd2872fa7b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5911,13 +5911,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c0da42ef3e3b45ca8aae73ee17bad05d", + "layout": "IPY_MODEL_4d93e01ef3174ec8a1176ca14fc88aa0", "placeholder": "​", - "style": "IPY_MODEL_0f0a0bfdae424c879f15373744b78dce", - "value": " 249/249 [00:00<00:00, 989.53it/s]" + "style": "IPY_MODEL_d33a72aed9de4e59a73eb8ab99053d4b", + "value": " 249/249 [00:00<00:00,  7.03it/s]" } }, - "b9b57a07133f4fbf8bd6ca3c6363d3d5": { + "c82ebb0ce9104778a7356b857a7de452": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5969,7 +5969,7 @@ "width": null } }, - "db0a4d39be6c4e6eb2e1fbb08c7491dd": { + "b092c23d0db14a9c9e13c99870bce7f0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6021,7 +6021,7 @@ "width": null } }, - "f762eb228c354c10be3ef054024b9f25": { + "d47d6f4ff56e4e40a115725bb256d4a8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6036,7 +6036,7 @@ "description_width": "" } }, - "5ca1aa0ac12d42b992fc558758aba381": { + "976028b8121f438182df5fa37c9039bc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6088,7 +6088,7 @@ "width": null } }, - "a4b0d3734df14b1284964eacdbf82fb1": { + "bd70d6d343f449aa877e7ad8971f8c87": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6104,7 +6104,7 @@ "description_width": "" } }, - "c0da42ef3e3b45ca8aae73ee17bad05d": { + "4d93e01ef3174ec8a1176ca14fc88aa0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6156,7 +6156,7 @@ "width": null } }, - "0f0a0bfdae424c879f15373744b78dce": { + "d33a72aed9de4e59a73eb8ab99053d4b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6171,7 +6171,7 @@ "description_width": "" } }, - "34b5a434f30544c18e7044df0bda541d": { + "85e39c90568646f482008c94cd10edd5": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6186,14 +6186,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a30d9a359aa44339bf1a71cd5d081c3b", - "IPY_MODEL_953b84f47e2747718c82b8dcbdfd8eba", - "IPY_MODEL_d879475eb84a4e05a13c07086368ab71" + "IPY_MODEL_cfa21e02a978401ca7d13bfc5425f41c", + "IPY_MODEL_98c23842b9344e77ba9b7302b0cd8e07", + "IPY_MODEL_0e0d99a58d654faca3c1d5650bbb59e5" ], - "layout": "IPY_MODEL_279ca74ece194992b39426a6571e10d4" + "layout": "IPY_MODEL_5cb548699e024098865f1f845c599390" } }, - "a30d9a359aa44339bf1a71cd5d081c3b": { + "cfa21e02a978401ca7d13bfc5425f41c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6208,13 +6208,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_99a670e95e6640fe838b5d77cd49b276", + "layout": "IPY_MODEL_317420ddd6924ae981bf343f8605393b", "placeholder": "​", - "style": "IPY_MODEL_63eefaecb257465ebc21f51e4465db74", + "style": "IPY_MODEL_90654233a34e421db7b14843c255f73b", "value": "Stoichiometry: 100%" } }, - "953b84f47e2747718c82b8dcbdfd8eba": { + "98c23842b9344e77ba9b7302b0cd8e07": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6230,15 +6230,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_03106cb1ad84414f9eb27da153086d22", + "layout": "IPY_MODEL_17a2e1cd658942739443acc901ed6b7c", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_76e48c17a3414755a1ab1f5ccbeb0c51", + "style": "IPY_MODEL_a68c401de87441ad80f2b03c3ce9e97f", "value": 249 } }, - "d879475eb84a4e05a13c07086368ab71": { + "0e0d99a58d654faca3c1d5650bbb59e5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6253,13 +6253,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_213058eaee7f42e1a72ddcc1844862c5", + "layout": "IPY_MODEL_c1fb5b3a2f2b42bd8b55f344b98763dd", "placeholder": "​", - "style": "IPY_MODEL_43572c01ed354483848f27809b0b76bf", - "value": " 249/249 [00:00<00:00, 936.00it/s]" + "style": "IPY_MODEL_485ddd452c6f4e2ab7097658d71e1c9b", + "value": " 249/249 [00:00<00:00,  7.08it/s]" } }, - "279ca74ece194992b39426a6571e10d4": { + "5cb548699e024098865f1f845c599390": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6311,7 +6311,7 @@ "width": null } }, - "99a670e95e6640fe838b5d77cd49b276": { + "317420ddd6924ae981bf343f8605393b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6363,7 +6363,7 @@ "width": null } }, - "63eefaecb257465ebc21f51e4465db74": { + "90654233a34e421db7b14843c255f73b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6378,7 +6378,7 @@ "description_width": "" } }, - "03106cb1ad84414f9eb27da153086d22": { + "17a2e1cd658942739443acc901ed6b7c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6430,7 +6430,7 @@ "width": null } }, - "76e48c17a3414755a1ab1f5ccbeb0c51": { + "a68c401de87441ad80f2b03c3ce9e97f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6446,7 +6446,7 @@ "description_width": "" } }, - "213058eaee7f42e1a72ddcc1844862c5": { + "c1fb5b3a2f2b42bd8b55f344b98763dd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6498,7 +6498,7 @@ "width": null } }, - "43572c01ed354483848f27809b0b76bf": { + "485ddd452c6f4e2ab7097658d71e1c9b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6513,7 +6513,7 @@ "description_width": "" } }, - "2acd74345acc4fc7a3fe4b1ed6e9250d": { + "2e290dc9f9a34e698921b48e4ce9850f": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6528,14 +6528,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b253c5366ad747a2bd508287e09af96d", - "IPY_MODEL_e9c858c99c6248e8bdb2a4dd91eba565", - "IPY_MODEL_7d331e96bcaf42258fca6d2e12d32fcd" + "IPY_MODEL_ade6b5a98b484a019e21c0254010384b", + "IPY_MODEL_98fce663b24f41c9b796fec6b7709858", + "IPY_MODEL_8e3b1e1edfea4f399362dbfc615a9286" ], - "layout": "IPY_MODEL_8f15f2176c554932be7bad56fce652fd" + "layout": "IPY_MODEL_74bf20854178461981226999415d7d3a" } }, - "b253c5366ad747a2bd508287e09af96d": { + "ade6b5a98b484a019e21c0254010384b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6550,13 +6550,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a9e552df119c4d5693b9b4a923bf6d2e", + "layout": "IPY_MODEL_2d542398998b41c7b2674c95bd73dc5c", "placeholder": "​", - "style": "IPY_MODEL_9ba68c3e54e84a7ebd7a0f82394cbb7d", + "style": "IPY_MODEL_2d643bba6142492bb33600af49b25448", "value": "Meredig: 100%" } }, - "e9c858c99c6248e8bdb2a4dd91eba565": { + "98fce663b24f41c9b796fec6b7709858": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6572,15 +6572,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_446685b32df94c6687849d8befb3c9af", + "layout": "IPY_MODEL_c1e9aa6027ef42f3ad2b7cf4e6ee2124", "max": 249, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6a3d9ca3ba89467a834f087642155258", + "style": "IPY_MODEL_9d293ea64a0347128c10a3bc4882c260", "value": 249 } }, - "7d331e96bcaf42258fca6d2e12d32fcd": { + "8e3b1e1edfea4f399362dbfc615a9286": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6595,13 +6595,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c7bffd0b517d4ed387fae8eb27e5e471", + "layout": "IPY_MODEL_c11b28f365ba4c1998edbd73974d56d6", "placeholder": "​", - "style": "IPY_MODEL_f032d8b19da34fadb9b8915de276aed5", - "value": " 249/249 [00:19<00:00, 12.83it/s]" + "style": "IPY_MODEL_2c02aed04f4e449ea297f4a29e2c60a1", + "value": " 249/249 [00:01<00:00, 121.46it/s]" } }, - "8f15f2176c554932be7bad56fce652fd": { + "74bf20854178461981226999415d7d3a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6653,7 +6653,7 @@ "width": null } }, - "a9e552df119c4d5693b9b4a923bf6d2e": { + "2d542398998b41c7b2674c95bd73dc5c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6705,7 +6705,7 @@ "width": null } }, - "9ba68c3e54e84a7ebd7a0f82394cbb7d": { + "2d643bba6142492bb33600af49b25448": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6720,7 +6720,7 @@ "description_width": "" } }, - "446685b32df94c6687849d8befb3c9af": { + "c1e9aa6027ef42f3ad2b7cf4e6ee2124": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6772,7 +6772,7 @@ "width": null } }, - "6a3d9ca3ba89467a834f087642155258": { + "9d293ea64a0347128c10a3bc4882c260": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6788,7 +6788,7 @@ "description_width": "" } }, - "c7bffd0b517d4ed387fae8eb27e5e471": { + "c11b28f365ba4c1998edbd73974d56d6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6840,7 +6840,7 @@ "width": null } }, - "f032d8b19da34fadb9b8915de276aed5": { + "2c02aed04f4e449ea297f4a29e2c60a1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6855,7 +6855,7 @@ "description_width": "" } }, - "949d05a45cf04c70b4bab6c1969b2c4a": { + "72cab45dec0043219bca378fc6f77951": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6870,14 +6870,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_517530edb7264097b6b630b38813b6df", - "IPY_MODEL_5117c358f2e1433a87310ec61f675bad", - "IPY_MODEL_b73bc9d558d741479ed298517f838986" + "IPY_MODEL_977f04c1f88945fb970a7c4f86e352de", + "IPY_MODEL_3a253192de794ac5b066fd7434479250", + "IPY_MODEL_4e151775960d47ebae61e2edc44e8f4c" ], - "layout": "IPY_MODEL_9d9f5a11df824ed3b4659ec98eb8668e" + "layout": "IPY_MODEL_7d30d87f6e444a70b3197a930a106276" } }, - "517530edb7264097b6b630b38813b6df": { + "977f04c1f88945fb970a7c4f86e352de": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6892,13 +6892,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1be6153e6c084de89434d1c8bec9a8a9", + "layout": "IPY_MODEL_995349cc743349c3981b342ea7e9a940", "placeholder": "​", - "style": "IPY_MODEL_c756c8ce48fe4b89abc71dcae8aedf09", + "style": "IPY_MODEL_7923951a251446ba899968a0dfd11020", "value": "BandCenter: 100%" } }, - "5117c358f2e1433a87310ec61f675bad": { + "3a253192de794ac5b066fd7434479250": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6914,15 +6914,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a004a3ff8bf8494f80197891e3cf29f6", + "layout": "IPY_MODEL_26adaea66b3946268a0204cc942a4646", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_8af5131eda874194b68d817455c0e72e", + "style": "IPY_MODEL_55e7648e3ff84302bf48cd83c3817e4d", "value": 63 } }, - "b73bc9d558d741479ed298517f838986": { + "4e151775960d47ebae61e2edc44e8f4c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6937,13 +6937,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c067f39cfad7430eba175990d1af5a67", + "layout": "IPY_MODEL_bc81aa8ed90241c08adafa02384b0611", "placeholder": "​", - "style": "IPY_MODEL_fbbbbcdcacac43d59f6264bdd9606c2d", - "value": " 63/63 [00:00<00:00,  8.48it/s]" + "style": "IPY_MODEL_228c85602d684c439042e7996959fa78", + "value": " 63/63 [00:00<00:00,  7.00it/s]" } }, - "9d9f5a11df824ed3b4659ec98eb8668e": { + "7d30d87f6e444a70b3197a930a106276": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6995,7 +6995,7 @@ "width": null } }, - "1be6153e6c084de89434d1c8bec9a8a9": { + "995349cc743349c3981b342ea7e9a940": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7047,7 +7047,7 @@ "width": null } }, - "c756c8ce48fe4b89abc71dcae8aedf09": { + "7923951a251446ba899968a0dfd11020": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7062,7 +7062,7 @@ "description_width": "" } }, - "a004a3ff8bf8494f80197891e3cf29f6": { + "26adaea66b3946268a0204cc942a4646": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7114,7 +7114,7 @@ "width": null } }, - "8af5131eda874194b68d817455c0e72e": { + "55e7648e3ff84302bf48cd83c3817e4d": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7130,7 +7130,7 @@ "description_width": "" } }, - "c067f39cfad7430eba175990d1af5a67": { + "bc81aa8ed90241c08adafa02384b0611": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7182,7 +7182,7 @@ "width": null } }, - "fbbbbcdcacac43d59f6264bdd9606c2d": { + "228c85602d684c439042e7996959fa78": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7197,7 +7197,7 @@ "description_width": "" } }, - "8ef671b320714fae93cf2324277d5d4d": { + "3e1331961e1546d69e749891c3cbf4d2": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7212,14 +7212,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_623f44d5acf0439793bd89fdb1e4ec26", - "IPY_MODEL_a1d83dfdc2af488a8a6b22ee31507270", - "IPY_MODEL_746f920c74414e5b9750dca2cfa27ba0" + "IPY_MODEL_5dc2991459234c2e971df0415e4f61eb", + "IPY_MODEL_877db61fe33b4201ae9f16a64b629662", + "IPY_MODEL_0a374eaa6f3642618da31e77dd267005" ], - "layout": "IPY_MODEL_8b1568890698441cb252e27cb7b34e52" + "layout": "IPY_MODEL_785cbc92871142eb847382a9eaa65f2c" } }, - "623f44d5acf0439793bd89fdb1e4ec26": { + "5dc2991459234c2e971df0415e4f61eb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7234,13 +7234,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a7492039d8134388bb63d331e062ca3d", + "layout": "IPY_MODEL_647cb8d249c846cfa9a49e77fe0c2a15", "placeholder": "​", - "style": "IPY_MODEL_c9dbae65476a47de91cf994d3b1d5f55", + "style": "IPY_MODEL_8a9b2e8ff06d4591a3b25726225ab6ea", "value": "ElementFraction: 100%" } }, - "a1d83dfdc2af488a8a6b22ee31507270": { + "877db61fe33b4201ae9f16a64b629662": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7256,15 +7256,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a8c75eb77daa422c8c623a1f7bdab322", + "layout": "IPY_MODEL_0beec138768f45e0a016d3f1a4da52e3", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_730c0cde4f164d1facac591dcd6b2dc5", + "style": "IPY_MODEL_dcf6f5483ae54ee2b65899e32031d63e", "value": 63 } }, - "746f920c74414e5b9750dca2cfa27ba0": { + "0a374eaa6f3642618da31e77dd267005": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7279,13 +7279,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e0a53d49e2224526abda9468ea5e6470", + "layout": "IPY_MODEL_9638e3e217404b4586a82b933bf490a3", "placeholder": "​", - "style": "IPY_MODEL_1dbdf3a6c38748bdbd000da852e187b5", - "value": " 63/63 [00:00<00:00,  5.69it/s]" + "style": "IPY_MODEL_a56043f87c8846628fb616bec5467bf2", + "value": " 63/63 [00:00<00:00,  7.04it/s]" } }, - "8b1568890698441cb252e27cb7b34e52": { + "785cbc92871142eb847382a9eaa65f2c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7337,7 +7337,7 @@ "width": null } }, - "a7492039d8134388bb63d331e062ca3d": { + "647cb8d249c846cfa9a49e77fe0c2a15": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7389,7 +7389,7 @@ "width": null } }, - "c9dbae65476a47de91cf994d3b1d5f55": { + "8a9b2e8ff06d4591a3b25726225ab6ea": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7404,7 +7404,7 @@ "description_width": "" } }, - "a8c75eb77daa422c8c623a1f7bdab322": { + "0beec138768f45e0a016d3f1a4da52e3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7456,7 +7456,7 @@ "width": null } }, - "730c0cde4f164d1facac591dcd6b2dc5": { + "dcf6f5483ae54ee2b65899e32031d63e": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7472,7 +7472,7 @@ "description_width": "" } }, - "e0a53d49e2224526abda9468ea5e6470": { + "9638e3e217404b4586a82b933bf490a3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7524,7 +7524,7 @@ "width": null } }, - "1dbdf3a6c38748bdbd000da852e187b5": { + "a56043f87c8846628fb616bec5467bf2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7539,7 +7539,7 @@ "description_width": "" } }, - "6677592bd88d48f39a39f02fb3f51ecb": { + "7712988e84ea4bf6b6272c6460ac27f3": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7554,14 +7554,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ee406823272a4d96a4499ec31e5d243b", - "IPY_MODEL_525a958c4982457fa90829beac4e6d95", - "IPY_MODEL_1690ed5f1bf8461c91d26c4ddfdb1801" + "IPY_MODEL_75630f4281fa472dbbb67e4492acb154", + "IPY_MODEL_de14337a7fce47fc8c1cf9d911afd6e3", + "IPY_MODEL_b168eb9f2e904357ba3f0257caf66bef" ], - "layout": "IPY_MODEL_b429cc4164f243bc914cb12afe6bcfc2" + "layout": "IPY_MODEL_02bf57f94be84decb76be0f62e166302" } }, - "ee406823272a4d96a4499ec31e5d243b": { + "75630f4281fa472dbbb67e4492acb154": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7576,13 +7576,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4b4e40c2f65e4159ba9115f16824456f", + "layout": "IPY_MODEL_60c05e0376af464998e302e216c7e4bd", "placeholder": "​", - "style": "IPY_MODEL_128704cd8f9c48c78ed8aa908c5c43f6", + "style": "IPY_MODEL_348a9a0a7ef9492dab3006e85070f06d", "value": "TMetalFraction: 100%" } }, - "525a958c4982457fa90829beac4e6d95": { + "de14337a7fce47fc8c1cf9d911afd6e3": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7598,15 +7598,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2454bd719ed94c02a5a8c7dc711b9b44", + "layout": "IPY_MODEL_458f04a15bb844809e372706568d4cd6", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_03deb66d2de6400db7ef22c25eb8431c", + "style": "IPY_MODEL_406f829933534afaa6e4465aa1f25863", "value": 63 } }, - "1690ed5f1bf8461c91d26c4ddfdb1801": { + "b168eb9f2e904357ba3f0257caf66bef": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7621,13 +7621,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_846978974be14da38c9bd9adfe19eeee", + "layout": "IPY_MODEL_af01a82ce17946ad95f946a24ea14c0d", "placeholder": "​", - "style": "IPY_MODEL_769a0db5b90e46238e8f1099d5f579e5", - "value": " 63/63 [00:00<00:00,  6.97it/s]" + "style": "IPY_MODEL_fe8654a6ce8a4e4e913af9093862791e", + "value": " 63/63 [00:00<00:00,  6.72it/s]" } }, - "b429cc4164f243bc914cb12afe6bcfc2": { + "02bf57f94be84decb76be0f62e166302": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7679,7 +7679,7 @@ "width": null } }, - "4b4e40c2f65e4159ba9115f16824456f": { + "60c05e0376af464998e302e216c7e4bd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7731,7 +7731,7 @@ "width": null } }, - "128704cd8f9c48c78ed8aa908c5c43f6": { + "348a9a0a7ef9492dab3006e85070f06d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7746,7 +7746,7 @@ "description_width": "" } }, - "2454bd719ed94c02a5a8c7dc711b9b44": { + "458f04a15bb844809e372706568d4cd6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7798,7 +7798,7 @@ "width": null } }, - "03deb66d2de6400db7ef22c25eb8431c": { + "406f829933534afaa6e4465aa1f25863": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7814,7 +7814,7 @@ "description_width": "" } }, - "846978974be14da38c9bd9adfe19eeee": { + "af01a82ce17946ad95f946a24ea14c0d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7866,7 +7866,7 @@ "width": null } }, - "769a0db5b90e46238e8f1099d5f579e5": { + "fe8654a6ce8a4e4e913af9093862791e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7881,7 +7881,7 @@ "description_width": "" } }, - "84799302b17948fe998cfc69f64c2707": { + "808ae27e9feb4bd9b92969f57e46efba": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7896,14 +7896,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ccf5affb96454a86a58fcb0d93485a2d", - "IPY_MODEL_0920db3f48c64a198f7607e4f36ab72e", - "IPY_MODEL_9c67ae75fe174801a7d73deff44a6391" + "IPY_MODEL_126c44c4afc944d385fd4964d5c05dbd", + "IPY_MODEL_356c5df530ce40e48f289d885c658163", + "IPY_MODEL_57d988db560243e8b9e6f1274e41a791" ], - "layout": "IPY_MODEL_d81dc0a8fc6b47c6a2916bd9825c3eaa" + "layout": "IPY_MODEL_57786ecb75914e6a86e6ed706800b577" } }, - "ccf5affb96454a86a58fcb0d93485a2d": { + "126c44c4afc944d385fd4964d5c05dbd": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7918,13 +7918,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_06bc949890c04e728b9ac0be1c44e448", + "layout": "IPY_MODEL_fc32bf359dcf41d7adf894b39ea541ec", "placeholder": "​", - "style": "IPY_MODEL_d198dd7d6e52422cb6bae22de0b7ad64", + "style": "IPY_MODEL_27114c2425824b778bbf601fd2d1a75b", "value": "Stoichiometry: 100%" } }, - "0920db3f48c64a198f7607e4f36ab72e": { + "356c5df530ce40e48f289d885c658163": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7940,15 +7940,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_179c6883e95746af97b0d0831e55e984", + "layout": "IPY_MODEL_32b40d8b1c7f44b995f46eae7dd15dd2", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_1f4dcbd6460a4d3a93d1198aa3c3e396", + "style": "IPY_MODEL_f2bb683b2b26427b85064dd2164760bc", "value": 63 } }, - "9c67ae75fe174801a7d73deff44a6391": { + "57d988db560243e8b9e6f1274e41a791": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7963,13 +7963,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9505015db00346c8ba9a9add0117b4a8", + "layout": "IPY_MODEL_bd9758a063444163b63ca208e3357917", "placeholder": "​", - "style": "IPY_MODEL_377464a3ac2e4c00874a1ab4048ccbf2", - "value": " 63/63 [00:00<00:00,  8.42it/s]" + "style": "IPY_MODEL_097307b328db4df4b126b1389665e151", + "value": " 63/63 [00:00<00:00,  6.79it/s]" } }, - "d81dc0a8fc6b47c6a2916bd9825c3eaa": { + "57786ecb75914e6a86e6ed706800b577": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8021,7 +8021,7 @@ "width": null } }, - "06bc949890c04e728b9ac0be1c44e448": { + "fc32bf359dcf41d7adf894b39ea541ec": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8073,7 +8073,7 @@ "width": null } }, - "d198dd7d6e52422cb6bae22de0b7ad64": { + "27114c2425824b778bbf601fd2d1a75b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8088,7 +8088,7 @@ "description_width": "" } }, - "179c6883e95746af97b0d0831e55e984": { + "32b40d8b1c7f44b995f46eae7dd15dd2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8140,7 +8140,7 @@ "width": null } }, - "1f4dcbd6460a4d3a93d1198aa3c3e396": { + "f2bb683b2b26427b85064dd2164760bc": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -8156,7 +8156,7 @@ "description_width": "" } }, - "9505015db00346c8ba9a9add0117b4a8": { + "bd9758a063444163b63ca208e3357917": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8208,7 +8208,7 @@ "width": null } }, - "377464a3ac2e4c00874a1ab4048ccbf2": { + "097307b328db4df4b126b1389665e151": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8223,7 +8223,7 @@ "description_width": "" } }, - "c230b98570b24bdc9b296cb3a52a1997": { + "ecec751bb40a4e2c83e82137d102577d": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -8238,14 +8238,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d79e9f87986a4c56bb6eeeaa40086939", - "IPY_MODEL_29e7f35dc7c543db8401c29c5109d3a3", - "IPY_MODEL_7925491c19824db48254aaa6084665b0" + "IPY_MODEL_2d6b0515da8d42ba9941da50111e449e", + "IPY_MODEL_8294bbc804e445ac9f2a04200a4cdef7", + "IPY_MODEL_23e58b02d85f41ba969045f5fe3c2581" ], - "layout": "IPY_MODEL_31b5916f2bed46449ac402b77380bf38" + "layout": "IPY_MODEL_9ae2c7ca72794e3eba7a138370b0aba9" } }, - "d79e9f87986a4c56bb6eeeaa40086939": { + "2d6b0515da8d42ba9941da50111e449e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8260,13 +8260,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_287a59efab6d4e928b87dc5f74e5f8fc", + "layout": "IPY_MODEL_1c37f35e5a7f4446814491fc9012b73d", "placeholder": "​", - "style": "IPY_MODEL_6fd345f55d954dc7905407f38e645afd", + "style": "IPY_MODEL_af106c3c4d914622822aacf20cd1f3c1", "value": "Meredig: 100%" } }, - "29e7f35dc7c543db8401c29c5109d3a3": { + "8294bbc804e445ac9f2a04200a4cdef7": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -8282,15 +8282,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e4911872e0d4f4e9702d289f7c8a08a", + "layout": "IPY_MODEL_6f7286d03b2d47ae99fe4b9b2c395867", "max": 63, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_f35bead1a69744dfacb26509ed038689", + "style": "IPY_MODEL_b1a1b5470e4a440485fd9e3905671745", "value": 63 } }, - "7925491c19824db48254aaa6084665b0": { + "23e58b02d85f41ba969045f5fe3c2581": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8305,13 +8305,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8ac57f4db7bb47edbb3b88156e274a5c", + "layout": "IPY_MODEL_580297aa5153425fac1ef68ff552a749", "placeholder": "​", - "style": "IPY_MODEL_fc93639cd5b54321b9ee646cd1466030", - "value": " 63/63 [00:02<00:00, 16.88it/s]" + "style": "IPY_MODEL_1123851a5ea14d1f812d53b565dfc884", + "value": " 63/63 [00:00<00:00,  7.01it/s]" } }, - "31b5916f2bed46449ac402b77380bf38": { + "9ae2c7ca72794e3eba7a138370b0aba9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8363,7 +8363,7 @@ "width": null } }, - "287a59efab6d4e928b87dc5f74e5f8fc": { + "1c37f35e5a7f4446814491fc9012b73d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8415,7 +8415,7 @@ "width": null } }, - "6fd345f55d954dc7905407f38e645afd": { + "af106c3c4d914622822aacf20cd1f3c1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8430,7 +8430,7 @@ "description_width": "" } }, - "4e4911872e0d4f4e9702d289f7c8a08a": { + "6f7286d03b2d47ae99fe4b9b2c395867": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8482,7 +8482,7 @@ "width": null } }, - "f35bead1a69744dfacb26509ed038689": { + "b1a1b5470e4a440485fd9e3905671745": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -8498,7 +8498,7 @@ "description_width": "" } }, - "8ac57f4db7bb47edbb3b88156e274a5c": { + "580297aa5153425fac1ef68ff552a749": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8550,7 +8550,7 @@ "width": null } }, - "fc93639cd5b54321b9ee646cd1466030": { + "1123851a5ea14d1f812d53b565dfc884": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8565,7 +8565,7 @@ "description_width": "" } }, - "b48490e695154529a0f898298b5f99e0": { + "bf8b8518d9cb485abcd1a55907f086c9": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -8580,14 +8580,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e484faf1efcd4202bfa6251f6b8d5572", - "IPY_MODEL_a049f98127a4470a90936dfc85b8433a", - "IPY_MODEL_26448ea6c5ad41039de4f12a3594fc6d" + "IPY_MODEL_b05aabe5754b4afc98e77c66669a6b99", + "IPY_MODEL_b64dbb653f4d4d83936f05555f6bc562", + "IPY_MODEL_986e918ba21948c699e0f21d86dd3ca7" ], - "layout": "IPY_MODEL_7ab1bc29f427443b94979c2760cdd7d4" + "layout": "IPY_MODEL_804b42800abe4f3fb1ef5dda2f648366" } }, - "e484faf1efcd4202bfa6251f6b8d5572": { + "b05aabe5754b4afc98e77c66669a6b99": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8602,13 +8602,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_252c56cfd1c045f6a971f953890c25c7", + "layout": "IPY_MODEL_bc72ceba06354b878e21bca990b289d5", "placeholder": "​", - "style": "IPY_MODEL_53171a3c0de14d478a381b729d18da83", + "style": "IPY_MODEL_0ce12db9d67942b6977522b5b4611ed9", "value": "BandCenter: 100%" } }, - "a049f98127a4470a90936dfc85b8433a": { + "b64dbb653f4d4d83936f05555f6bc562": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -8624,15 +8624,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d0797ec0964f43559d80611047e0708b", + "layout": "IPY_MODEL_2eb2cadfaffe41488131654c594ff4fb", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_505558c4ccaf45bba5b041a381340055", + "style": "IPY_MODEL_0fbf67d41d414ad69ed936c984fc7576", "value": 250 } }, - "26448ea6c5ad41039de4f12a3594fc6d": { + "986e918ba21948c699e0f21d86dd3ca7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8647,13 +8647,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_738d0a917c50453a9a3ee1b6594b2c68", + "layout": "IPY_MODEL_a861661f54b44f62aeba4c059d1285dd", "placeholder": "​", - "style": "IPY_MODEL_b317affed0e34e119aea85faf046daeb", - "value": " 250/250 [00:00<00:00, 921.27it/s]" + "style": "IPY_MODEL_8507dc476d3b4e189603e0bf97e5893b", + "value": " 250/250 [00:00<00:00,  6.97it/s]" } }, - "7ab1bc29f427443b94979c2760cdd7d4": { + "804b42800abe4f3fb1ef5dda2f648366": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8705,7 +8705,7 @@ "width": null } }, - "252c56cfd1c045f6a971f953890c25c7": { + "bc72ceba06354b878e21bca990b289d5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8757,7 +8757,7 @@ "width": null } }, - "53171a3c0de14d478a381b729d18da83": { + "0ce12db9d67942b6977522b5b4611ed9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8772,7 +8772,7 @@ "description_width": "" } }, - "d0797ec0964f43559d80611047e0708b": { + "2eb2cadfaffe41488131654c594ff4fb": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8824,7 +8824,7 @@ "width": null } }, - "505558c4ccaf45bba5b041a381340055": { + "0fbf67d41d414ad69ed936c984fc7576": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -8840,7 +8840,7 @@ "description_width": "" } }, - "738d0a917c50453a9a3ee1b6594b2c68": { + "a861661f54b44f62aeba4c059d1285dd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8892,7 +8892,7 @@ "width": null } }, - "b317affed0e34e119aea85faf046daeb": { + "8507dc476d3b4e189603e0bf97e5893b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8907,7 +8907,7 @@ "description_width": "" } }, - "768bc41c329641c98d40230df8d4e97d": { + "63f54bd83d714653ae4bc2b921b960fd": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -8922,14 +8922,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bd37eec584564c06ab7ca1749dae3b3a", - "IPY_MODEL_2dde36a3c2b143a2a1f13940ad48e882", - "IPY_MODEL_97650e6e280b43a6b8a0d30da990031f" + "IPY_MODEL_5e47a26f42d1451b8a925b3b36d53c7c", + "IPY_MODEL_74ae64147cd346c6ad17eb399f49d565", + "IPY_MODEL_496cfe01c9974b3a969f21eeb342dc16" ], - "layout": "IPY_MODEL_b36eec3567384f5999ba04d9f7e86146" + "layout": "IPY_MODEL_ccf523f87fd14c46b4244c5c3ba56721" } }, - "bd37eec584564c06ab7ca1749dae3b3a": { + "5e47a26f42d1451b8a925b3b36d53c7c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8944,13 +8944,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3ee07e67e315444b993c2d4a38cbfddc", + "layout": "IPY_MODEL_d921c887b3964f629fc78c12b33da953", "placeholder": "​", - "style": "IPY_MODEL_a92dc101d88b49ecbf82227052bb64c6", + "style": "IPY_MODEL_db04943b05ca417390f0a449c556057c", "value": "ElementFraction: 100%" } }, - "2dde36a3c2b143a2a1f13940ad48e882": { + "74ae64147cd346c6ad17eb399f49d565": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -8966,15 +8966,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ca9cf9d860bf4eefb3c4a51443a3d7ef", + "layout": "IPY_MODEL_87e22c1085ef47438cfaaa9f00004959", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_457d128cdf564941b15cc2c79e23c9b1", + "style": "IPY_MODEL_91316150e05b4960b7afeb7f01cbcfb5", "value": 250 } }, - "97650e6e280b43a6b8a0d30da990031f": { + "496cfe01c9974b3a969f21eeb342dc16": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8989,13 +8989,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4bdf314d12474846bd0a0bad18a3da12", + "layout": "IPY_MODEL_0648081fc23540868dd6bc625cbdfdc8", "placeholder": "​", - "style": "IPY_MODEL_650dc244579d46fb8308256a68438cfb", - "value": " 250/250 [00:00<00:00, 943.03it/s]" + "style": "IPY_MODEL_ffede04c61ee4052a1c21007252982b1", + "value": " 250/250 [00:00<00:00,  6.82it/s]" } }, - "b36eec3567384f5999ba04d9f7e86146": { + "ccf523f87fd14c46b4244c5c3ba56721": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9047,7 +9047,7 @@ "width": null } }, - "3ee07e67e315444b993c2d4a38cbfddc": { + "d921c887b3964f629fc78c12b33da953": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9099,7 +9099,7 @@ "width": null } }, - "a92dc101d88b49ecbf82227052bb64c6": { + "db04943b05ca417390f0a449c556057c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9114,7 +9114,7 @@ "description_width": "" } }, - "ca9cf9d860bf4eefb3c4a51443a3d7ef": { + "87e22c1085ef47438cfaaa9f00004959": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9166,7 +9166,7 @@ "width": null } }, - "457d128cdf564941b15cc2c79e23c9b1": { + "91316150e05b4960b7afeb7f01cbcfb5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -9182,7 +9182,7 @@ "description_width": "" } }, - "4bdf314d12474846bd0a0bad18a3da12": { + "0648081fc23540868dd6bc625cbdfdc8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9234,7 +9234,7 @@ "width": null } }, - "650dc244579d46fb8308256a68438cfb": { + "ffede04c61ee4052a1c21007252982b1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9249,7 +9249,7 @@ "description_width": "" } }, - "9fb9891626c246c396a299122922f56c": { + "7e3879013e974497b294afc6cde0f620": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -9264,14 +9264,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_eb0af518801d4c36a1af938d2b9e5ad1", - "IPY_MODEL_0296ffceac7a430a88a90e3ec868f8da", - "IPY_MODEL_b0b99702c49a45059fc1451306934454" + "IPY_MODEL_671a9cbe51f6448a9d0914a12d9237e5", + "IPY_MODEL_70b6aa725ca74143bae44385d585029d", + "IPY_MODEL_e26b62babe344000a1b551418f08fcd1" ], - "layout": "IPY_MODEL_3be0f6c84a8c4127ab5ba15694ea9c44" + "layout": "IPY_MODEL_bf2eb3aa4f9044b2a544903b442e8def" } }, - "eb0af518801d4c36a1af938d2b9e5ad1": { + "671a9cbe51f6448a9d0914a12d9237e5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9286,13 +9286,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_841c8639aad4411c9107330422c4c9bd", + "layout": "IPY_MODEL_5ba77b14dff540169c12ff2f313cd258", "placeholder": "​", - "style": "IPY_MODEL_3d42b9817b2447ce8bf5336f54a8f45d", + "style": "IPY_MODEL_2924d8627f4547559b5b14cf4b372f1b", "value": "TMetalFraction: 100%" } }, - "0296ffceac7a430a88a90e3ec868f8da": { + "70b6aa725ca74143bae44385d585029d": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -9308,15 +9308,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9944b283538e49f9ab2430445a6a734e", + "layout": "IPY_MODEL_857829c412e44f0a83490307cd2cf4af", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_8493453c97d2482ab2bad6164df0f360", + "style": "IPY_MODEL_4883d328c83c42e48c6daebeaa57f7a3", "value": 250 } }, - "b0b99702c49a45059fc1451306934454": { + "e26b62babe344000a1b551418f08fcd1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9331,13 +9331,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5201f7dcec1e441b974f804b8de09d12", + "layout": "IPY_MODEL_08b5694d8bd44c3cad93b96adea8731d", "placeholder": "​", - "style": "IPY_MODEL_fe67741343c64d3eab57faba439ec994", - "value": " 250/250 [00:00<00:00, 998.34it/s]" + "style": "IPY_MODEL_1b359c6b61444bb7ab360e7a109f8e43", + "value": " 250/250 [00:00<00:00,  6.84it/s]" } }, - "3be0f6c84a8c4127ab5ba15694ea9c44": { + "bf2eb3aa4f9044b2a544903b442e8def": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9389,7 +9389,7 @@ "width": null } }, - "841c8639aad4411c9107330422c4c9bd": { + "5ba77b14dff540169c12ff2f313cd258": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9441,7 +9441,7 @@ "width": null } }, - "3d42b9817b2447ce8bf5336f54a8f45d": { + "2924d8627f4547559b5b14cf4b372f1b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9456,7 +9456,7 @@ "description_width": "" } }, - "9944b283538e49f9ab2430445a6a734e": { + "857829c412e44f0a83490307cd2cf4af": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9508,7 +9508,7 @@ "width": null } }, - "8493453c97d2482ab2bad6164df0f360": { + "4883d328c83c42e48c6daebeaa57f7a3": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -9524,7 +9524,7 @@ "description_width": "" } }, - "5201f7dcec1e441b974f804b8de09d12": { + "08b5694d8bd44c3cad93b96adea8731d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9576,7 +9576,7 @@ "width": null } }, - "fe67741343c64d3eab57faba439ec994": { + "1b359c6b61444bb7ab360e7a109f8e43": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9591,7 +9591,7 @@ "description_width": "" } }, - "25a86fe8394d451e8f6d02f8167317a3": { + "4a1db01c360b419e8046e6a869339c12": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -9606,14 +9606,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_02a3a100934441e29f6ab684c6851bcf", - "IPY_MODEL_12e7cf7f142f4292942eb15fcbf27516", - "IPY_MODEL_0e5697e32488480a9de3f15f1d8c5321" + "IPY_MODEL_802067ff1f56468490f728f23cdebe25", + "IPY_MODEL_7edad1ddd4124b02b2738595f838eb54", + "IPY_MODEL_99b872dcde4f42e7b92d0d15eb9cc222" ], - "layout": "IPY_MODEL_54ad0c00789343fe8d3f01e636cccb42" + "layout": "IPY_MODEL_6bf9d25d91464643a0afaa19a40374e3" } }, - "02a3a100934441e29f6ab684c6851bcf": { + "802067ff1f56468490f728f23cdebe25": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9628,13 +9628,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6feee4ca68d84e1997f7c2d06241b154", + "layout": "IPY_MODEL_35355b557780444198c5eb0e6bd8278d", "placeholder": "​", - "style": "IPY_MODEL_eafb495d69814e9c85bce2150aee2d97", + "style": "IPY_MODEL_f4024bdd7ffa416bbdadb9dc777966d5", "value": "Stoichiometry: 100%" } }, - "12e7cf7f142f4292942eb15fcbf27516": { + "7edad1ddd4124b02b2738595f838eb54": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -9650,15 +9650,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_80000dd923d54eb89684f8082cfee852", + "layout": "IPY_MODEL_93b67699003248feaeccd9a716e3c651", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_d2f2c7dc8fec4cd28b30126b04cf3520", + "style": "IPY_MODEL_0d437b1d262e4291b2fb4cb893dfc0fb", "value": 250 } }, - "0e5697e32488480a9de3f15f1d8c5321": { + "99b872dcde4f42e7b92d0d15eb9cc222": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9673,13 +9673,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf2b766f902949cb88d82eb182c8bb9d", + "layout": "IPY_MODEL_2a4fa31589ff4ed28a27cbe1e9f96449", "placeholder": "​", - "style": "IPY_MODEL_8bc1e4e043b34dd1aa50b0cae860e59d", - "value": " 250/250 [00:00<00:00, 886.27it/s]" + "style": "IPY_MODEL_6dfe8c2cb911493e8d921cc10812639f", + "value": " 250/250 [00:00<00:00,  6.95it/s]" } }, - "54ad0c00789343fe8d3f01e636cccb42": { + "6bf9d25d91464643a0afaa19a40374e3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9731,7 +9731,7 @@ "width": null } }, - "6feee4ca68d84e1997f7c2d06241b154": { + "35355b557780444198c5eb0e6bd8278d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9783,7 +9783,7 @@ "width": null } }, - "eafb495d69814e9c85bce2150aee2d97": { + "f4024bdd7ffa416bbdadb9dc777966d5": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9798,7 +9798,7 @@ "description_width": "" } }, - "80000dd923d54eb89684f8082cfee852": { + "93b67699003248feaeccd9a716e3c651": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9850,7 +9850,7 @@ "width": null } }, - "d2f2c7dc8fec4cd28b30126b04cf3520": { + "0d437b1d262e4291b2fb4cb893dfc0fb": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -9866,7 +9866,7 @@ "description_width": "" } }, - "bf2b766f902949cb88d82eb182c8bb9d": { + "2a4fa31589ff4ed28a27cbe1e9f96449": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9918,7 +9918,7 @@ "width": null } }, - "8bc1e4e043b34dd1aa50b0cae860e59d": { + "6dfe8c2cb911493e8d921cc10812639f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9933,7 +9933,7 @@ "description_width": "" } }, - "e8845ff39a7b4ddb9559e91b35b3dc59": { + "e0b0810f63be4c5eb3da40f93099aa39": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -9948,14 +9948,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8da400794d074aa8bce71e1b3e551562", - "IPY_MODEL_bad62dc89fd247aeb8dda6764a7e961e", - "IPY_MODEL_a6fcce4e0d7a4373b622eadbf1915589" + "IPY_MODEL_06d02d6db04946d981e8e81f941f2155", + "IPY_MODEL_7ed57abb99c947ada98e22fd836a5ab3", + "IPY_MODEL_681c563c0f334c97b89ebecbbb53d3da" ], - "layout": "IPY_MODEL_5d66472d41d643d1956fd57bf9f5e832" + "layout": "IPY_MODEL_48ac9ce3a98043849360d300295c6c5e" } }, - "8da400794d074aa8bce71e1b3e551562": { + "06d02d6db04946d981e8e81f941f2155": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9970,13 +9970,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f2668e50ef9c458d9a135b7d77caba56", + "layout": "IPY_MODEL_75dcab789eb04e0abf610927cb5410a0", "placeholder": "​", - "style": "IPY_MODEL_fb891f2796ac4b15995bceb074537caf", + "style": "IPY_MODEL_b57cbbaa611040b58f1be3b288991059", "value": "Meredig: 100%" } }, - "bad62dc89fd247aeb8dda6764a7e961e": { + "7ed57abb99c947ada98e22fd836a5ab3": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -9992,15 +9992,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_575c16d704bb40eea3a08abe7f80aaee", + "layout": "IPY_MODEL_c1e5c97f300e4a249765e7d7d0beda06", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_255989869984402fb3de634476dfd41c", + "style": "IPY_MODEL_865901b6788840eaae531c6285edb377", "value": 250 } }, - "a6fcce4e0d7a4373b622eadbf1915589": { + "681c563c0f334c97b89ebecbbb53d3da": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -10015,13 +10015,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b52119b221f641159557a5f69e3bb498", + "layout": "IPY_MODEL_f8ddf22b430c4c5fbe08c0b6d6336a95", "placeholder": "​", - "style": "IPY_MODEL_347d673c46764e5b870ad9da75edcc07", - "value": " 250/250 [00:19<00:00, 12.25it/s]" + "style": "IPY_MODEL_9787bf48a2d84c319a5d9a51bdc6e8a6", + "value": " 250/250 [00:02<00:00, 149.27it/s]" } }, - "5d66472d41d643d1956fd57bf9f5e832": { + "48ac9ce3a98043849360d300295c6c5e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10073,7 +10073,7 @@ "width": null } }, - "f2668e50ef9c458d9a135b7d77caba56": { + "75dcab789eb04e0abf610927cb5410a0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10125,7 +10125,7 @@ "width": null } }, - "fb891f2796ac4b15995bceb074537caf": { + "b57cbbaa611040b58f1be3b288991059": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -10140,7 +10140,7 @@ "description_width": "" } }, - "575c16d704bb40eea3a08abe7f80aaee": { + "c1e5c97f300e4a249765e7d7d0beda06": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10192,7 +10192,7 @@ "width": null } }, - "255989869984402fb3de634476dfd41c": { + "865901b6788840eaae531c6285edb377": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -10208,7 +10208,7 @@ "description_width": "" } }, - "b52119b221f641159557a5f69e3bb498": { + "f8ddf22b430c4c5fbe08c0b6d6336a95": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10260,7 +10260,7 @@ "width": null } }, - "347d673c46764e5b870ad9da75edcc07": { + "9787bf48a2d84c319a5d9a51bdc6e8a6": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -10275,7 +10275,7 @@ "description_width": "" } }, - "85af84b4f079445690da446bf5b6de19": { + "01342c98b836440087b7171222bfff44": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -10290,14 +10290,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ff7ccd63f29744e79e111da7fb0a47c7", - "IPY_MODEL_26f58315465240279c04f731a7c82c20", - "IPY_MODEL_ed65a3ccae53477e931d46ac88635967" + "IPY_MODEL_2c572750adbe4ad7bf8fcaa934dc4899", + "IPY_MODEL_3e8ca8ca434649cfafeb419253752e12", + "IPY_MODEL_ee38087e22494c07b81d2995a90d8f9d" ], - "layout": "IPY_MODEL_e71b072dc4474a79b4c89c500bc4f252" + "layout": "IPY_MODEL_73da39ac17e94cbca1ef62ec440e6f99" } }, - "ff7ccd63f29744e79e111da7fb0a47c7": { + "2c572750adbe4ad7bf8fcaa934dc4899": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -10312,13 +10312,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b35520b151a348e4b1328dccd8b6dbb1", + "layout": "IPY_MODEL_47e4aaa901cc47d98b132676e85f28b6", "placeholder": "​", - "style": "IPY_MODEL_3ed965bcf64b48768b0d443b20d148d8", + "style": "IPY_MODEL_a52ae6fd91fe4c8dbf7a4c1e7394bffd", "value": "BandCenter: 100%" } }, - "26f58315465240279c04f731a7c82c20": { + "3e8ca8ca434649cfafeb419253752e12": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -10334,15 +10334,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a84415c929a64f5bb64b693ee9bc584a", + "layout": "IPY_MODEL_bd2649ad267d4d848b03da525c34e55a", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_88a2ee78a10444c2a3716006d981d96a", + "style": "IPY_MODEL_2b3ba477f54c4a35b6744fb48b9a7224", "value": 62 } }, - "ed65a3ccae53477e931d46ac88635967": { + "ee38087e22494c07b81d2995a90d8f9d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -10357,13 +10357,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_034fcb295998479bb9aec8524420a29f", + "layout": "IPY_MODEL_c12e0c33ad7148edaedf59646f687c37", "placeholder": "​", - "style": "IPY_MODEL_8368fc0179e34bd48950a4307bd436f2", - "value": " 62/62 [00:00<00:00,  8.13it/s]" + "style": "IPY_MODEL_57fd08a7f04a4927a40d15aea3b57979", + "value": " 62/62 [00:00<00:00,  6.51it/s]" } }, - "e71b072dc4474a79b4c89c500bc4f252": { + "73da39ac17e94cbca1ef62ec440e6f99": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10415,7 +10415,7 @@ "width": null } }, - "b35520b151a348e4b1328dccd8b6dbb1": { + "47e4aaa901cc47d98b132676e85f28b6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10467,7 +10467,7 @@ "width": null } }, - "3ed965bcf64b48768b0d443b20d148d8": { + "a52ae6fd91fe4c8dbf7a4c1e7394bffd": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -10482,7 +10482,7 @@ "description_width": "" } }, - "a84415c929a64f5bb64b693ee9bc584a": { + "bd2649ad267d4d848b03da525c34e55a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10534,7 +10534,7 @@ "width": null } }, - "88a2ee78a10444c2a3716006d981d96a": { + "2b3ba477f54c4a35b6744fb48b9a7224": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -10550,7 +10550,7 @@ "description_width": "" } }, - "034fcb295998479bb9aec8524420a29f": { + "c12e0c33ad7148edaedf59646f687c37": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10602,7 +10602,7 @@ "width": null } }, - "8368fc0179e34bd48950a4307bd436f2": { + "57fd08a7f04a4927a40d15aea3b57979": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -10617,7 +10617,7 @@ "description_width": "" } }, - "7faf4fcc789d4c52b76ee687e5af58b8": { + "2bcc4580444e411f9d5ec9b7a6eaa017": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -10632,14 +10632,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3542d0f2d06040c0a98610cf002543f4", - "IPY_MODEL_083b48ca7770470685a74526eeff3da9", - "IPY_MODEL_77262bbf47b643999db6f475c473981c" + "IPY_MODEL_7ead4ae40c89445ba4e6b42559459e80", + "IPY_MODEL_10bda803324b4ff59001022993dd4995", + "IPY_MODEL_460151765c4b43598a25c29e7b7a8ff9" ], - "layout": "IPY_MODEL_acebbd88b3da4fbf8414fe2682a5feae" + "layout": "IPY_MODEL_e13be1874cff45cf9ad6dd5b7c901938" } }, - "3542d0f2d06040c0a98610cf002543f4": { + "7ead4ae40c89445ba4e6b42559459e80": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -10654,13 +10654,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a71a9fc02f54114939d9f37fe680673", + "layout": "IPY_MODEL_daf8fc4c471c415fae5c6868b242ac3e", "placeholder": "​", - "style": "IPY_MODEL_38af0d4ba59446178a672dc47b2b33b1", + "style": "IPY_MODEL_3b3bc62c28d747e885483f63526559bc", "value": "ElementFraction: 100%" } }, - "083b48ca7770470685a74526eeff3da9": { + "10bda803324b4ff59001022993dd4995": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -10676,15 +10676,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_42020b87b5924382864036e698a0cc9c", + "layout": "IPY_MODEL_63577d16b6c240d6ab4ccf4668689229", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_7519e28a085143bbbefbbb196ea580d2", + "style": "IPY_MODEL_5eb8b2bff66643c696919fca64a8dad4", "value": 62 } }, - "77262bbf47b643999db6f475c473981c": { + "460151765c4b43598a25c29e7b7a8ff9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -10699,13 +10699,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf88a39273564bd68defe2c14a2dd414", + "layout": "IPY_MODEL_d3c8958c7678411aaddbd5e23dea7158", "placeholder": "​", - "style": "IPY_MODEL_fa9a929d496148cfb48697dec59e23a6", - "value": " 62/62 [00:00<00:00,  6.48it/s]" + "style": "IPY_MODEL_55e7bfa638344d8d8fe56542620a4e8d", + "value": " 62/62 [00:00<00:00,  6.95it/s]" } }, - "acebbd88b3da4fbf8414fe2682a5feae": { + "e13be1874cff45cf9ad6dd5b7c901938": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10757,7 +10757,7 @@ "width": null } }, - "4a71a9fc02f54114939d9f37fe680673": { + "daf8fc4c471c415fae5c6868b242ac3e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10809,7 +10809,7 @@ "width": null } }, - "38af0d4ba59446178a672dc47b2b33b1": { + "3b3bc62c28d747e885483f63526559bc": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -10824,7 +10824,7 @@ "description_width": "" } }, - "42020b87b5924382864036e698a0cc9c": { + "63577d16b6c240d6ab4ccf4668689229": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10876,7 +10876,7 @@ "width": null } }, - "7519e28a085143bbbefbbb196ea580d2": { + "5eb8b2bff66643c696919fca64a8dad4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -10892,7 +10892,7 @@ "description_width": "" } }, - "bf88a39273564bd68defe2c14a2dd414": { + "d3c8958c7678411aaddbd5e23dea7158": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -10944,7 +10944,7 @@ "width": null } }, - "fa9a929d496148cfb48697dec59e23a6": { + "55e7bfa638344d8d8fe56542620a4e8d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -10959,7 +10959,7 @@ "description_width": "" } }, - "3a649e16ea3e4d7f99e2dc8dd0de150e": { + "02ca33c6e6eb4918a72b123c1e50ce8c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -10974,14 +10974,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_80ef4f0cd4954af0928ed11cae09906c", - "IPY_MODEL_6e331fa67fa74e2a93776a9f44e04233", - "IPY_MODEL_946c6bdea2174169a09fc208ebfb00a2" + "IPY_MODEL_a31c047fc4064169acb28495f1454ab6", + "IPY_MODEL_76cbe12f3c3344529118c33106f395d6", + "IPY_MODEL_16aacbe4ec2c4066b3b574fb649c8146" ], - "layout": "IPY_MODEL_77de107d10aa4677a0ae0e4a93d28cc8" + "layout": "IPY_MODEL_c34ec7cc40b140f191244cc50f5dbd91" } }, - "80ef4f0cd4954af0928ed11cae09906c": { + "a31c047fc4064169acb28495f1454ab6": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -10996,13 +10996,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2759736a2ab042afa4223e05012578fd", + "layout": "IPY_MODEL_c92b22d2dd49498c8f812804ba6d0356", "placeholder": "​", - "style": "IPY_MODEL_2ee28c4995f74cc18894391281130907", + "style": "IPY_MODEL_ac8c79e21e644c95998ad9854437b3aa", "value": "TMetalFraction: 100%" } }, - "6e331fa67fa74e2a93776a9f44e04233": { + "76cbe12f3c3344529118c33106f395d6": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -11018,15 +11018,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4b0962cb69a646c599d555a34abc857d", + "layout": "IPY_MODEL_0fca205ddc88443c8441094ec9df6fe7", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_16d33b41cefa4845841b67b831ffd0bf", + "style": "IPY_MODEL_f186bea72465493b8bdf4fe3316dad4c", "value": 62 } }, - "946c6bdea2174169a09fc208ebfb00a2": { + "16aacbe4ec2c4066b3b574fb649c8146": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -11041,13 +11041,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_91a37ec310e9493d9eb3db660f38342d", + "layout": "IPY_MODEL_d26dacffac704bf8874cc610893759e4", "placeholder": "​", - "style": "IPY_MODEL_1bc741d02df14432b4d9747a2256cd24", - "value": " 62/62 [00:00<00:00,  6.47it/s]" + "style": "IPY_MODEL_ee948696553e41ecae9934d6a87a6d47", + "value": " 62/62 [00:00<00:00,  7.30it/s]" } }, - "77de107d10aa4677a0ae0e4a93d28cc8": { + "c34ec7cc40b140f191244cc50f5dbd91": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11099,7 +11099,7 @@ "width": null } }, - "2759736a2ab042afa4223e05012578fd": { + "c92b22d2dd49498c8f812804ba6d0356": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11151,7 +11151,7 @@ "width": null } }, - "2ee28c4995f74cc18894391281130907": { + "ac8c79e21e644c95998ad9854437b3aa": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -11166,7 +11166,7 @@ "description_width": "" } }, - "4b0962cb69a646c599d555a34abc857d": { + "0fca205ddc88443c8441094ec9df6fe7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11218,7 +11218,7 @@ "width": null } }, - "16d33b41cefa4845841b67b831ffd0bf": { + "f186bea72465493b8bdf4fe3316dad4c": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -11234,7 +11234,7 @@ "description_width": "" } }, - "91a37ec310e9493d9eb3db660f38342d": { + "d26dacffac704bf8874cc610893759e4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11286,7 +11286,7 @@ "width": null } }, - "1bc741d02df14432b4d9747a2256cd24": { + "ee948696553e41ecae9934d6a87a6d47": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -11301,7 +11301,7 @@ "description_width": "" } }, - "bb9b7a1f2ef643a29ae93e1e3d2af80c": { + "134642f7fa8c4ab8ac4a1493b7ddc249": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -11316,14 +11316,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_edab56aae29549d2a1811dac009dc459", - "IPY_MODEL_73abb6939d93455ab3c1cb7af216b6ce", - "IPY_MODEL_925468d7414141aea022c7919cea4a0d" + "IPY_MODEL_d1b6aaca2df243db9df4fe4e90853d3f", + "IPY_MODEL_65d07a2f540e4b458449ab5ac9f62cf1", + "IPY_MODEL_dbb82d06dae24ba3bb90c925425f212a" ], - "layout": "IPY_MODEL_c8f430aafe7f49caacd27442d84e3278" + "layout": "IPY_MODEL_f4de59b645bd42528ce2340daf6b3525" } }, - "edab56aae29549d2a1811dac009dc459": { + "d1b6aaca2df243db9df4fe4e90853d3f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -11338,13 +11338,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c37ea381ce89425a8902ff167f533bca", + "layout": "IPY_MODEL_a5bc895c69db4a7dad6d9234b0bcd87a", "placeholder": "​", - "style": "IPY_MODEL_84e3c7c0defe43d68892d1cfb72c6773", + "style": "IPY_MODEL_32d4905560994711b96a6880696f39bd", "value": "Stoichiometry: 100%" } }, - "73abb6939d93455ab3c1cb7af216b6ce": { + "65d07a2f540e4b458449ab5ac9f62cf1": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -11360,15 +11360,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d9bbcb09be5a439383417f730745d7e2", + "layout": "IPY_MODEL_22e9f6abf58f49d1aedd53f4ddbc69f9", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_1d05913de398404dbbc026357264ead8", + "style": "IPY_MODEL_10506082314e42ec8e2e15123e1eda0a", "value": 62 } }, - "925468d7414141aea022c7919cea4a0d": { + "dbb82d06dae24ba3bb90c925425f212a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -11383,13 +11383,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7013f02788ec452eb7765904ae3d1215", + "layout": "IPY_MODEL_51a8c48f1b124fb9a9b7f2d712b64c8b", "placeholder": "​", - "style": "IPY_MODEL_670900d1438841b78828d0b7a5f8f2bd", - "value": " 62/62 [00:00<00:00,  6.77it/s]" + "style": "IPY_MODEL_d15e5aa88f7348408d672d4bd12a43a2", + "value": " 62/62 [00:00<00:00,  6.97it/s]" } }, - "c8f430aafe7f49caacd27442d84e3278": { + "f4de59b645bd42528ce2340daf6b3525": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11441,7 +11441,7 @@ "width": null } }, - "c37ea381ce89425a8902ff167f533bca": { + "a5bc895c69db4a7dad6d9234b0bcd87a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11493,7 +11493,7 @@ "width": null } }, - "84e3c7c0defe43d68892d1cfb72c6773": { + "32d4905560994711b96a6880696f39bd": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -11508,7 +11508,7 @@ "description_width": "" } }, - "d9bbcb09be5a439383417f730745d7e2": { + "22e9f6abf58f49d1aedd53f4ddbc69f9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11560,7 +11560,7 @@ "width": null } }, - "1d05913de398404dbbc026357264ead8": { + "10506082314e42ec8e2e15123e1eda0a": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -11576,7 +11576,7 @@ "description_width": "" } }, - "7013f02788ec452eb7765904ae3d1215": { + "51a8c48f1b124fb9a9b7f2d712b64c8b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11628,7 +11628,7 @@ "width": null } }, - "670900d1438841b78828d0b7a5f8f2bd": { + "d15e5aa88f7348408d672d4bd12a43a2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -11643,7 +11643,7 @@ "description_width": "" } }, - "a2908ecfd56e4b28b3c94db362fbe10c": { + "2af8ed86fa2046bda01248f13ff752fe": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -11658,14 +11658,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1295c7b1b0ef43ebacaa93291d19b0be", - "IPY_MODEL_d2b86af3d9b94ab2b434d96fc4be8007", - "IPY_MODEL_1ce6cf397c6643799c4b143c5069759b" + "IPY_MODEL_745df04d2c9e4b2d92f27cd55cb3e0b2", + "IPY_MODEL_88c7072706c94ccca24e85df919eab02", + "IPY_MODEL_357c593ee9f34b478d0f0ebb2eb43722" ], - "layout": "IPY_MODEL_ab88bc7b34524daea842419d01150cdf" + "layout": "IPY_MODEL_4b6cb2bb298b43a5a1d9ea1310cdc3e6" } }, - "1295c7b1b0ef43ebacaa93291d19b0be": { + "745df04d2c9e4b2d92f27cd55cb3e0b2": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -11680,13 +11680,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_27460383249c413f83f6bc2c84da723c", + "layout": "IPY_MODEL_d58c0f1e3a8a4493a507f1bf00b4894c", "placeholder": "​", - "style": "IPY_MODEL_40e5ab878a884c4db0a455e6a4c5b3c8", + "style": "IPY_MODEL_a09ec430d206462a8a9044563e2767ba", "value": "Meredig: 100%" } }, - "d2b86af3d9b94ab2b434d96fc4be8007": { + "88c7072706c94ccca24e85df919eab02": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -11702,15 +11702,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6e47bb43eddb4ab9b34f5daf1f96b4aa", + "layout": "IPY_MODEL_7aa94c5f2daa4340a51cbbdc8c359492", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_aa60b4cbbbce43a3a107767b95e0464d", + "style": "IPY_MODEL_866516db647740e7a95b9b746558d65f", "value": 62 } }, - "1ce6cf397c6643799c4b143c5069759b": { + "357c593ee9f34b478d0f0ebb2eb43722": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -11725,13 +11725,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3bffdac1a0524d0d839c6b8d3a2e21dc", + "layout": "IPY_MODEL_1434fafc579c4de684af8e2b93dcd4bc", "placeholder": "​", - "style": "IPY_MODEL_e79bad48e357400e97380eaebbc47db1", - "value": " 62/62 [00:02<00:00, 17.00it/s]" + "style": "IPY_MODEL_7bf0dac2a4af4a39b9f43e9de4cdb462", + "value": " 62/62 [00:00<00:00,  7.19it/s]" } }, - "ab88bc7b34524daea842419d01150cdf": { + "4b6cb2bb298b43a5a1d9ea1310cdc3e6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11783,7 +11783,7 @@ "width": null } }, - "27460383249c413f83f6bc2c84da723c": { + "d58c0f1e3a8a4493a507f1bf00b4894c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11835,7 +11835,7 @@ "width": null } }, - "40e5ab878a884c4db0a455e6a4c5b3c8": { + "a09ec430d206462a8a9044563e2767ba": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -11850,7 +11850,7 @@ "description_width": "" } }, - "6e47bb43eddb4ab9b34f5daf1f96b4aa": { + "7aa94c5f2daa4340a51cbbdc8c359492": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11902,7 +11902,7 @@ "width": null } }, - "aa60b4cbbbce43a3a107767b95e0464d": { + "866516db647740e7a95b9b746558d65f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -11918,7 +11918,7 @@ "description_width": "" } }, - "3bffdac1a0524d0d839c6b8d3a2e21dc": { + "1434fafc579c4de684af8e2b93dcd4bc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -11970,7 +11970,7 @@ "width": null } }, - "e79bad48e357400e97380eaebbc47db1": { + "7bf0dac2a4af4a39b9f43e9de4cdb462": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -11985,7 +11985,7 @@ "description_width": "" } }, - "a379838766cd4177823f295b33246248": { + "d35c44c8f5d94266a0e60e66131b95d9": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -12000,14 +12000,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e76c870de61f442991855894f350cdb4", - "IPY_MODEL_5b74ff9bd62944e5b188b4e60e251035", - "IPY_MODEL_e33fd79a6dd849d6b01e6db60e4ae53f" + "IPY_MODEL_e658c33dbe47457e8e014069b0fd3c9b", + "IPY_MODEL_4a9b298e3e714a7986b08db2023bb279", + "IPY_MODEL_879c6baf21d44dadad939cc0a58a067f" ], - "layout": "IPY_MODEL_d1bec49e29ae4ea4920ce96698a6d3a7" + "layout": "IPY_MODEL_c7e309d14ce34967b32b98b8c741ccf3" } }, - "e76c870de61f442991855894f350cdb4": { + "e658c33dbe47457e8e014069b0fd3c9b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -12022,13 +12022,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4944b6c85ae5411490fe5a936e42cf23", + "layout": "IPY_MODEL_c4678832a7ee4a7b969c04dca7fb8e3c", "placeholder": "​", - "style": "IPY_MODEL_92822b1efb1949c5b343195792b39713", + "style": "IPY_MODEL_8a634a829b374e0b81c13c99eefc0ad1", "value": "BandCenter: 100%" } }, - "5b74ff9bd62944e5b188b4e60e251035": { + "4a9b298e3e714a7986b08db2023bb279": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -12044,15 +12044,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_701fcf04c1c84f5cbac71652958f4ff8", + "layout": "IPY_MODEL_04179d76f90143149dbb0cdd7b5b0f70", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_ed0466979f23453ea5b88af31768b63f", + "style": "IPY_MODEL_69f6c1c17543404481c11fc05a4df1c2", "value": 250 } }, - "e33fd79a6dd849d6b01e6db60e4ae53f": { + "879c6baf21d44dadad939cc0a58a067f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -12067,13 +12067,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c82ca6b2835a4d1a88d9173530e5d2fd", + "layout": "IPY_MODEL_bef11446d3d842f4aa724672f3eb2059", "placeholder": "​", - "style": "IPY_MODEL_bcee1254b6be4d0eb38b6aa8b593ba43", - "value": " 250/250 [00:00<00:00, 975.97it/s]" + "style": "IPY_MODEL_e48318bdab1d4daeba34e00fc0448639", + "value": " 250/250 [00:00<00:00,  6.84it/s]" } }, - "d1bec49e29ae4ea4920ce96698a6d3a7": { + "c7e309d14ce34967b32b98b8c741ccf3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12125,7 +12125,7 @@ "width": null } }, - "4944b6c85ae5411490fe5a936e42cf23": { + "c4678832a7ee4a7b969c04dca7fb8e3c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12177,7 +12177,7 @@ "width": null } }, - "92822b1efb1949c5b343195792b39713": { + "8a634a829b374e0b81c13c99eefc0ad1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -12192,7 +12192,7 @@ "description_width": "" } }, - "701fcf04c1c84f5cbac71652958f4ff8": { + "04179d76f90143149dbb0cdd7b5b0f70": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12244,7 +12244,7 @@ "width": null } }, - "ed0466979f23453ea5b88af31768b63f": { + "69f6c1c17543404481c11fc05a4df1c2": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -12260,7 +12260,7 @@ "description_width": "" } }, - "c82ca6b2835a4d1a88d9173530e5d2fd": { + "bef11446d3d842f4aa724672f3eb2059": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12312,7 +12312,7 @@ "width": null } }, - "bcee1254b6be4d0eb38b6aa8b593ba43": { + "e48318bdab1d4daeba34e00fc0448639": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -12327,7 +12327,7 @@ "description_width": "" } }, - "39694a800cd44ea3bab7aca291aa6936": { + "fce43fce5cc64816a67a033e631e1f1e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -12342,14 +12342,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_180a38f040a24f1a91361284a0e64271", - "IPY_MODEL_9c906db88f934080b3ecdf3d591d370f", - "IPY_MODEL_5080feea3a6249778800056ca22ef16a" + "IPY_MODEL_83b452bcc99b4c22ab1f0759134fdaab", + "IPY_MODEL_a7fdf761e0b24c0991c341715c14166b", + "IPY_MODEL_abda21509e0046749e7fa018e74c21d2" ], - "layout": "IPY_MODEL_ce82a81e030d4f4ab38107827c591355" + "layout": "IPY_MODEL_1aba789a1d5f45148c2c051a7534cc98" } }, - "180a38f040a24f1a91361284a0e64271": { + "83b452bcc99b4c22ab1f0759134fdaab": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -12364,13 +12364,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4452b391dd6347b7941c646b2b6f8278", + "layout": "IPY_MODEL_10bcd0729fa5457d9adfb73afc8fea1e", "placeholder": "​", - "style": "IPY_MODEL_648235db4e7f4b299c26874f9d860c17", + "style": "IPY_MODEL_e78d929f03da492495d7fcfa177a1c8a", "value": "ElementFraction: 100%" } }, - "9c906db88f934080b3ecdf3d591d370f": { + "a7fdf761e0b24c0991c341715c14166b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -12386,15 +12386,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2c70e6d30ee94db3ad23965b8742585f", + "layout": "IPY_MODEL_3b3447072fa743a8a31958d5987658b8", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_21ca04a6a1384aad8968123696a6f15e", + "style": "IPY_MODEL_730ba0a5bef547cb9a79c2885a883cf2", "value": 250 } }, - "5080feea3a6249778800056ca22ef16a": { + "abda21509e0046749e7fa018e74c21d2": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -12409,13 +12409,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d2e9b58335864e9c995bb84194d8e4e6", + "layout": "IPY_MODEL_710dc35482614556b1dba9c21ba5a36f", "placeholder": "​", - "style": "IPY_MODEL_3bbc126dd86e4360bd18c2ee2981d401", - "value": " 250/250 [00:00<00:00, 943.06it/s]" + "style": "IPY_MODEL_b5321d3a0f154d39bb25b534c2354355", + "value": " 250/250 [00:00<00:00,  7.05it/s]" } }, - "ce82a81e030d4f4ab38107827c591355": { + "1aba789a1d5f45148c2c051a7534cc98": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12467,7 +12467,7 @@ "width": null } }, - "4452b391dd6347b7941c646b2b6f8278": { + "10bcd0729fa5457d9adfb73afc8fea1e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12519,7 +12519,7 @@ "width": null } }, - "648235db4e7f4b299c26874f9d860c17": { + "e78d929f03da492495d7fcfa177a1c8a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -12534,7 +12534,7 @@ "description_width": "" } }, - "2c70e6d30ee94db3ad23965b8742585f": { + "3b3447072fa743a8a31958d5987658b8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12586,7 +12586,7 @@ "width": null } }, - "21ca04a6a1384aad8968123696a6f15e": { + "730ba0a5bef547cb9a79c2885a883cf2": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -12602,7 +12602,7 @@ "description_width": "" } }, - "d2e9b58335864e9c995bb84194d8e4e6": { + "710dc35482614556b1dba9c21ba5a36f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12654,7 +12654,7 @@ "width": null } }, - "3bbc126dd86e4360bd18c2ee2981d401": { + "b5321d3a0f154d39bb25b534c2354355": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -12669,7 +12669,7 @@ "description_width": "" } }, - "f48564690aa843c798ff7019fca1dacc": { + "d185b15a832d458783a8f0652661b487": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -12684,14 +12684,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8dd9fdfe7a1d4d139864c911d3d0bb93", - "IPY_MODEL_2a6cd1b9646c4cfca669ddbf32415a0c", - "IPY_MODEL_f664f316fd4f43e3b1f776c3e88cf33d" + "IPY_MODEL_49e41a9e0e5148ec9ac21c63d5af4a6b", + "IPY_MODEL_fd305f1f4d974cbeb82a0f271f2ff005", + "IPY_MODEL_62956c63d2054b9bb29b0fe799517077" ], - "layout": "IPY_MODEL_ee39c329f6ff43b4ab85d33728a50af9" + "layout": "IPY_MODEL_506ae819c06149c6aef9d3d2fb6788c0" } }, - "8dd9fdfe7a1d4d139864c911d3d0bb93": { + "49e41a9e0e5148ec9ac21c63d5af4a6b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -12706,13 +12706,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b3e5f4145d15419f8251ad4aa64b2bc5", + "layout": "IPY_MODEL_cd4c275cb1c84c04860a0e606ef7aff4", "placeholder": "​", - "style": "IPY_MODEL_6ce1a41c5579495cae987f533b355602", + "style": "IPY_MODEL_7fac80b160974b3ba0ed8564042d862a", "value": "TMetalFraction: 100%" } }, - "2a6cd1b9646c4cfca669ddbf32415a0c": { + "fd305f1f4d974cbeb82a0f271f2ff005": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -12728,15 +12728,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_515e6d750c6f4632976c12700d67f613", + "layout": "IPY_MODEL_97b1c9f2bee74a5185bbfcfe106e72e1", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6b9c70beac9249189fc7b4c1246de115", + "style": "IPY_MODEL_20ad6a419227466abb5f176bf55482b8", "value": 250 } }, - "f664f316fd4f43e3b1f776c3e88cf33d": { + "62956c63d2054b9bb29b0fe799517077": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -12751,13 +12751,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2b08b42a9817448f963eb0938d090e06", + "layout": "IPY_MODEL_867e9cc8f2864ad4942bb44e40d34fd0", "placeholder": "​", - "style": "IPY_MODEL_979552ca0f61487cb6859d5ad3cd7a08", - "value": " 250/250 [00:00<00:00, 979.13it/s]" + "style": "IPY_MODEL_c7ca8f2b44414e9a9083a4e331bb9173", + "value": " 250/250 [00:00<00:00,  7.23it/s]" } }, - "ee39c329f6ff43b4ab85d33728a50af9": { + "506ae819c06149c6aef9d3d2fb6788c0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12809,7 +12809,7 @@ "width": null } }, - "b3e5f4145d15419f8251ad4aa64b2bc5": { + "cd4c275cb1c84c04860a0e606ef7aff4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12861,7 +12861,7 @@ "width": null } }, - "6ce1a41c5579495cae987f533b355602": { + "7fac80b160974b3ba0ed8564042d862a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -12876,7 +12876,7 @@ "description_width": "" } }, - "515e6d750c6f4632976c12700d67f613": { + "97b1c9f2bee74a5185bbfcfe106e72e1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12928,7 +12928,7 @@ "width": null } }, - "6b9c70beac9249189fc7b4c1246de115": { + "20ad6a419227466abb5f176bf55482b8": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -12944,7 +12944,7 @@ "description_width": "" } }, - "2b08b42a9817448f963eb0938d090e06": { + "867e9cc8f2864ad4942bb44e40d34fd0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -12996,7 +12996,7 @@ "width": null } }, - "979552ca0f61487cb6859d5ad3cd7a08": { + "c7ca8f2b44414e9a9083a4e331bb9173": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -13011,7 +13011,7 @@ "description_width": "" } }, - "4b42bdc575ca4a1ca7fb780c8e9b4e70": { + "74aac947e8864eb1bfea8b80c5fb7515": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -13026,14 +13026,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7ae94169430946868a8ba6d7ac9078ef", - "IPY_MODEL_5db998ba6a0a4e449a70391f5a48502f", - "IPY_MODEL_1b907000065947ff8a2aca81d8916806" + "IPY_MODEL_26bd0e2f5a634ab58f385ec74190542d", + "IPY_MODEL_a553618cbbf04d3abb521583473422a1", + "IPY_MODEL_bd861ec7e61b4164bd1066da1add61f4" ], - "layout": "IPY_MODEL_4bc98324710343818ce70c277a384208" + "layout": "IPY_MODEL_bdd4053c88974e5c8ed47e728bec764f" } }, - "7ae94169430946868a8ba6d7ac9078ef": { + "26bd0e2f5a634ab58f385ec74190542d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -13048,13 +13048,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5d3a960cb6bd4c828732fb72a755552b", + "layout": "IPY_MODEL_21dbbd97ed8242f4b3b12d8e0601b890", "placeholder": "​", - "style": "IPY_MODEL_7083526d4b6f4e90945147d12ccb484c", + "style": "IPY_MODEL_8ce0e7724df64b80aa2091a06a740701", "value": "Stoichiometry: 100%" } }, - "5db998ba6a0a4e449a70391f5a48502f": { + "a553618cbbf04d3abb521583473422a1": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -13070,15 +13070,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a726c08eaf94a1dba0330a980b7ed86", + "layout": "IPY_MODEL_a7ff337d700944b98d1beef02e98e014", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_b40000482b8b46858c7c138aed45fb52", + "style": "IPY_MODEL_79d0ba7b6fd144d2aa1656fc4a74e8e5", "value": 250 } }, - "1b907000065947ff8a2aca81d8916806": { + "bd861ec7e61b4164bd1066da1add61f4": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -13093,13 +13093,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f6d232a6b076423eb74d964c5fb78fb4", + "layout": "IPY_MODEL_aadcf2dd4aea4d45b1d70d96eca4b918", "placeholder": "​", - "style": "IPY_MODEL_46ecf90698e5452392dfa20e5f905160", - "value": " 250/250 [00:00<00:00, 951.33it/s]" + "style": "IPY_MODEL_f402fefd9a754f319f8e6432fb6a6a8f", + "value": " 250/250 [00:00<00:00,  7.01it/s]" } }, - "4bc98324710343818ce70c277a384208": { + "bdd4053c88974e5c8ed47e728bec764f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13151,7 +13151,7 @@ "width": null } }, - "5d3a960cb6bd4c828732fb72a755552b": { + "21dbbd97ed8242f4b3b12d8e0601b890": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13203,7 +13203,7 @@ "width": null } }, - "7083526d4b6f4e90945147d12ccb484c": { + "8ce0e7724df64b80aa2091a06a740701": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -13218,7 +13218,7 @@ "description_width": "" } }, - "4a726c08eaf94a1dba0330a980b7ed86": { + "a7ff337d700944b98d1beef02e98e014": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13270,7 +13270,7 @@ "width": null } }, - "b40000482b8b46858c7c138aed45fb52": { + "79d0ba7b6fd144d2aa1656fc4a74e8e5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -13286,7 +13286,7 @@ "description_width": "" } }, - "f6d232a6b076423eb74d964c5fb78fb4": { + "aadcf2dd4aea4d45b1d70d96eca4b918": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13338,7 +13338,7 @@ "width": null } }, - "46ecf90698e5452392dfa20e5f905160": { + "f402fefd9a754f319f8e6432fb6a6a8f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -13353,7 +13353,7 @@ "description_width": "" } }, - "cd9988d01bba44f1b2b34a1cca33ff91": { + "dd19572d40854af582183cd0cbda49d4": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -13368,14 +13368,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6b8cf1c3c4004db29438f6bcde78a613", - "IPY_MODEL_384b31c8947a4ae4b8df9b2ad604ab02", - "IPY_MODEL_1140d225f86d4c029dace234a5d8c7ca" + "IPY_MODEL_37c4350a9ec34d4ea6f8ed75e279f5f4", + "IPY_MODEL_86a10f2f25bc4d8f968986fa5e29ee7b", + "IPY_MODEL_85cff4af28da4629bd5ca0d301a3dc7d" ], - "layout": "IPY_MODEL_dfc3de7bab9e4bb3ba955bcdb7216b0f" + "layout": "IPY_MODEL_ba288ac64e284d538840611992a90b0e" } }, - "6b8cf1c3c4004db29438f6bcde78a613": { + "37c4350a9ec34d4ea6f8ed75e279f5f4": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -13390,13 +13390,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2db4d21ef5f047d493828698c94729d9", + "layout": "IPY_MODEL_e764598a67d846aa9fe1f11b186676fc", "placeholder": "​", - "style": "IPY_MODEL_002cc6ef5d7245a19889b71285c89d98", + "style": "IPY_MODEL_f023e1bbc83f4f8f9251636780b3524f", "value": "Meredig: 100%" } }, - "384b31c8947a4ae4b8df9b2ad604ab02": { + "86a10f2f25bc4d8f968986fa5e29ee7b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -13412,15 +13412,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_31171ad2489e476db3fe24a144e1ff3a", + "layout": "IPY_MODEL_01946306cff940fb94a03cf8d8e9f8a2", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_506c3de481e8469780e0d05d7272a090", + "style": "IPY_MODEL_5e8515a0f1814536a5293dc04d97df01", "value": 250 } }, - "1140d225f86d4c029dace234a5d8c7ca": { + "85cff4af28da4629bd5ca0d301a3dc7d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -13435,13 +13435,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9740429be4304a48a8a4c8b0a4ed0e0c", + "layout": "IPY_MODEL_fd469d22bce74f0aa121577674e3c159", "placeholder": "​", - "style": "IPY_MODEL_c77d2aac6b074785a8d5aed256dc985f", - "value": " 250/250 [00:20<00:00, 11.12it/s]" + "style": "IPY_MODEL_ea1cacae44b943e0b9bc471e013b49a5", + "value": " 250/250 [00:02<00:00, 148.48it/s]" } }, - "dfc3de7bab9e4bb3ba955bcdb7216b0f": { + "ba288ac64e284d538840611992a90b0e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13493,7 +13493,7 @@ "width": null } }, - "2db4d21ef5f047d493828698c94729d9": { + "e764598a67d846aa9fe1f11b186676fc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13545,7 +13545,7 @@ "width": null } }, - "002cc6ef5d7245a19889b71285c89d98": { + "f023e1bbc83f4f8f9251636780b3524f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -13560,7 +13560,7 @@ "description_width": "" } }, - "31171ad2489e476db3fe24a144e1ff3a": { + "01946306cff940fb94a03cf8d8e9f8a2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13612,7 +13612,7 @@ "width": null } }, - "506c3de481e8469780e0d05d7272a090": { + "5e8515a0f1814536a5293dc04d97df01": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -13628,7 +13628,7 @@ "description_width": "" } }, - "9740429be4304a48a8a4c8b0a4ed0e0c": { + "fd469d22bce74f0aa121577674e3c159": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13680,7 +13680,7 @@ "width": null } }, - "c77d2aac6b074785a8d5aed256dc985f": { + "ea1cacae44b943e0b9bc471e013b49a5": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -13695,7 +13695,7 @@ "description_width": "" } }, - "9a7eb53745c44c5687e84e34ec51fa0a": { + "307c30e3319d4fbab21261fb87f10638": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -13710,14 +13710,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6105b0715af34a55b012203f3ff48987", - "IPY_MODEL_d6c49c0dd9c342b99b154b6b17e5a500", - "IPY_MODEL_5f969d9e71a24780b5a16383ca9bfccd" + "IPY_MODEL_9104c8b7449e4764b834770746d271c2", + "IPY_MODEL_3d169305146f439688a81ed927471931", + "IPY_MODEL_3b2f72d92758421091f180194490b441" ], - "layout": "IPY_MODEL_6df6aeee9db8477e8c35a424f76b2f5e" + "layout": "IPY_MODEL_9bf6d8b2ef114b2290ebaf6a7d93384c" } }, - "6105b0715af34a55b012203f3ff48987": { + "9104c8b7449e4764b834770746d271c2": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -13732,13 +13732,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9893fe9fddf54f5597a08b5866f3b02c", + "layout": "IPY_MODEL_69870b23ac6642c58689c3656a58e026", "placeholder": "​", - "style": "IPY_MODEL_9bf5c1b3474745bcbf96d1072b20f482", + "style": "IPY_MODEL_1a482c0b17394020800121ec03a83132", "value": "BandCenter: 100%" } }, - "d6c49c0dd9c342b99b154b6b17e5a500": { + "3d169305146f439688a81ed927471931": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -13754,15 +13754,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b3423d51b07a4206ad794e5f26708a2f", + "layout": "IPY_MODEL_837a3849dc9d4331a84e7946410e5484", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_9322bc98ce17456e9ba0042d5868aad4", + "style": "IPY_MODEL_45fce127fea840fbada04df41eaf9426", "value": 62 } }, - "5f969d9e71a24780b5a16383ca9bfccd": { + "3b2f72d92758421091f180194490b441": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -13777,13 +13777,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_08c123aef14d417684b7e4e2539f618a", + "layout": "IPY_MODEL_f1c99994c75540b986421e69a38f3ff0", "placeholder": "​", - "style": "IPY_MODEL_1a23cc8709e7409787ea340cec2e72a0", - "value": " 62/62 [00:00<00:00,  9.78it/s]" + "style": "IPY_MODEL_6166255504c749f8a3ab09ae81131137", + "value": " 62/62 [00:00<00:00,  7.16it/s]" } }, - "6df6aeee9db8477e8c35a424f76b2f5e": { + "9bf6d8b2ef114b2290ebaf6a7d93384c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13835,7 +13835,7 @@ "width": null } }, - "9893fe9fddf54f5597a08b5866f3b02c": { + "69870b23ac6642c58689c3656a58e026": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13887,7 +13887,7 @@ "width": null } }, - "9bf5c1b3474745bcbf96d1072b20f482": { + "1a482c0b17394020800121ec03a83132": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -13902,7 +13902,7 @@ "description_width": "" } }, - "b3423d51b07a4206ad794e5f26708a2f": { + "837a3849dc9d4331a84e7946410e5484": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -13954,7 +13954,7 @@ "width": null } }, - "9322bc98ce17456e9ba0042d5868aad4": { + "45fce127fea840fbada04df41eaf9426": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -13970,7 +13970,7 @@ "description_width": "" } }, - "08c123aef14d417684b7e4e2539f618a": { + "f1c99994c75540b986421e69a38f3ff0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14022,7 +14022,7 @@ "width": null } }, - "1a23cc8709e7409787ea340cec2e72a0": { + "6166255504c749f8a3ab09ae81131137": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -14037,7 +14037,7 @@ "description_width": "" } }, - "dd7c932427124a3aadc30d655191baac": { + "0c48656a24d24e958a280098d5435ada": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -14052,14 +14052,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7198794684a6443c944863591ad6e5fb", - "IPY_MODEL_531284f389aa4d3293e20e82a7c2382a", - "IPY_MODEL_f15ac19328484edf82e237ffe10d7825" + "IPY_MODEL_5f97ec0ed84b4b229f9eda372b90ffe5", + "IPY_MODEL_2de47eba2c9f412199c2b212bb39a8be", + "IPY_MODEL_b2702055098a4cff85519b1fcdb39872" ], - "layout": "IPY_MODEL_ad755bf9c129409e974de59d8c7bca4c" + "layout": "IPY_MODEL_8f2765bcb8594c31bc79301de876d61d" } }, - "7198794684a6443c944863591ad6e5fb": { + "5f97ec0ed84b4b229f9eda372b90ffe5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -14074,13 +14074,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5ef094666ec747168399af78e70579fd", + "layout": "IPY_MODEL_866bb913380a4d469e11af043ae6fdd1", "placeholder": "​", - "style": "IPY_MODEL_be8a358eb5c0443b8b8e5205bfb77efe", + "style": "IPY_MODEL_e256f0e1e4564e6c8d68d798f7caf4f3", "value": "ElementFraction: 100%" } }, - "531284f389aa4d3293e20e82a7c2382a": { + "2de47eba2c9f412199c2b212bb39a8be": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -14096,15 +14096,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4216554e7b384198ad528ce530249372", + "layout": "IPY_MODEL_f6cc849c44aa43d2a6de8005e0400254", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_3bc1c6f974564fa099e1b606f33ac7aa", + "style": "IPY_MODEL_3682d8cb12bd479399ad6a74745d711c", "value": 62 } }, - "f15ac19328484edf82e237ffe10d7825": { + "b2702055098a4cff85519b1fcdb39872": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -14119,13 +14119,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_573ceb2855e2423caa8f3cb752039efe", + "layout": "IPY_MODEL_0a0b6b7a07194576b735703253a9f08f", "placeholder": "​", - "style": "IPY_MODEL_fef8b303920f4fe4bf41fa4ac4af9b93", - "value": " 62/62 [00:00<00:00,  8.54it/s]" + "style": "IPY_MODEL_ce63e022ce244737b853a0339641f44e", + "value": " 62/62 [00:00<00:00,  7.22it/s]" } }, - "ad755bf9c129409e974de59d8c7bca4c": { + "8f2765bcb8594c31bc79301de876d61d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14177,7 +14177,7 @@ "width": null } }, - "5ef094666ec747168399af78e70579fd": { + "866bb913380a4d469e11af043ae6fdd1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14229,7 +14229,7 @@ "width": null } }, - "be8a358eb5c0443b8b8e5205bfb77efe": { + "e256f0e1e4564e6c8d68d798f7caf4f3": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -14244,7 +14244,7 @@ "description_width": "" } }, - "4216554e7b384198ad528ce530249372": { + "f6cc849c44aa43d2a6de8005e0400254": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14296,7 +14296,7 @@ "width": null } }, - "3bc1c6f974564fa099e1b606f33ac7aa": { + "3682d8cb12bd479399ad6a74745d711c": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -14312,7 +14312,7 @@ "description_width": "" } }, - "573ceb2855e2423caa8f3cb752039efe": { + "0a0b6b7a07194576b735703253a9f08f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14364,7 +14364,7 @@ "width": null } }, - "fef8b303920f4fe4bf41fa4ac4af9b93": { + "ce63e022ce244737b853a0339641f44e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -14379,7 +14379,7 @@ "description_width": "" } }, - "345eec84935746d1bf384e5e0268bfa4": { + "7ea6f1c497f643168918f6b7f9ce79c0": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -14394,14 +14394,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9c3a0a99a2c0449a9f220a3009057476", - "IPY_MODEL_7c80262ad19f4abf8fe55d6aacdf1415", - "IPY_MODEL_ce00c096aa56405fb5a8132fc2dde2a4" + "IPY_MODEL_6711bb4f14fb4a959a9ef5577f8099af", + "IPY_MODEL_d25bc3f4c3b6449caf7ba32fe8645a77", + "IPY_MODEL_c4e61e69ce1f48dfbbde85a78588f968" ], - "layout": "IPY_MODEL_3e1d46da81e84649a46dd14c71fd51c3" + "layout": "IPY_MODEL_9d636801b90f425fa9c2e1269f3cf606" } }, - "9c3a0a99a2c0449a9f220a3009057476": { + "6711bb4f14fb4a959a9ef5577f8099af": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -14416,13 +14416,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_260ee2ed027146579d31a2ec2eb6fabe", + "layout": "IPY_MODEL_58071cb435064e1f98c90b828a236fa8", "placeholder": "​", - "style": "IPY_MODEL_9eccf4ebb6614d048aa3dea0de4dafc1", + "style": "IPY_MODEL_57ebae26eb144742b0db082068d1624b", "value": "TMetalFraction: 100%" } }, - "7c80262ad19f4abf8fe55d6aacdf1415": { + "d25bc3f4c3b6449caf7ba32fe8645a77": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -14438,15 +14438,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0723cbae223b4068a21867eb4e8208a1", + "layout": "IPY_MODEL_950c5dd7030248b39433414af8da3ea9", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5d117ccba1ec42b6bc209b5219f80dbf", + "style": "IPY_MODEL_dcec676639ad4f22b3f116a03e99e415", "value": 62 } }, - "ce00c096aa56405fb5a8132fc2dde2a4": { + "c4e61e69ce1f48dfbbde85a78588f968": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -14461,13 +14461,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bcb143743d5d4f08a23caea35a193350", + "layout": "IPY_MODEL_c95ed7861c44453dbe2badfe211b6d67", "placeholder": "​", - "style": "IPY_MODEL_81acb66d95e94e818b99b5b559eeed4d", - "value": " 62/62 [00:00<00:00,  6.75it/s]" + "style": "IPY_MODEL_72d2fff683e94a86aefb98c46c85abe8", + "value": " 62/62 [00:00<00:00,  6.86it/s]" } }, - "3e1d46da81e84649a46dd14c71fd51c3": { + "9d636801b90f425fa9c2e1269f3cf606": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14519,7 +14519,7 @@ "width": null } }, - "260ee2ed027146579d31a2ec2eb6fabe": { + "58071cb435064e1f98c90b828a236fa8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14571,7 +14571,7 @@ "width": null } }, - "9eccf4ebb6614d048aa3dea0de4dafc1": { + "57ebae26eb144742b0db082068d1624b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -14586,7 +14586,7 @@ "description_width": "" } }, - "0723cbae223b4068a21867eb4e8208a1": { + "950c5dd7030248b39433414af8da3ea9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14638,7 +14638,7 @@ "width": null } }, - "5d117ccba1ec42b6bc209b5219f80dbf": { + "dcec676639ad4f22b3f116a03e99e415": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -14654,7 +14654,7 @@ "description_width": "" } }, - "bcb143743d5d4f08a23caea35a193350": { + "c95ed7861c44453dbe2badfe211b6d67": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14706,7 +14706,7 @@ "width": null } }, - "81acb66d95e94e818b99b5b559eeed4d": { + "72d2fff683e94a86aefb98c46c85abe8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -14721,7 +14721,7 @@ "description_width": "" } }, - "6d2189ea99be4b75b826aa0cf7ed25ca": { + "697a2e72542348378d8b72496b8527ef": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -14736,14 +14736,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d0281eee993f4823a4fa2537811c0682", - "IPY_MODEL_312aafaeebe04e3e9edf169a6e30b9cf", - "IPY_MODEL_327591a55c744c7491e8ddec7595705a" + "IPY_MODEL_8190fa8a15d34c689193fa8e031d08dd", + "IPY_MODEL_8538fe7d93b54c4590db797cf7045636", + "IPY_MODEL_c203f9dd2d034a56a9c150ce7290d969" ], - "layout": "IPY_MODEL_1f5fe8c48f14493c96fe8145b7262c31" + "layout": "IPY_MODEL_00f4ae63235342f8a38a8ad3aa523111" } }, - "d0281eee993f4823a4fa2537811c0682": { + "8190fa8a15d34c689193fa8e031d08dd": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -14758,13 +14758,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_38791bd579c44dc08695961119086e05", + "layout": "IPY_MODEL_328d1dd21b494e96ab7a87a182cd44b9", "placeholder": "​", - "style": "IPY_MODEL_7a7fa2356dfc4da38354e0c2e5d35589", + "style": "IPY_MODEL_70e996b1e5cc488e9252bb1c4da0a7ff", "value": "Stoichiometry: 100%" } }, - "312aafaeebe04e3e9edf169a6e30b9cf": { + "8538fe7d93b54c4590db797cf7045636": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -14780,15 +14780,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a36e17bd31ef45c1985bcf342bab87ad", + "layout": "IPY_MODEL_438ef74390c6409ab8addfcf031aef4e", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_28fdd22b35ab4a47ad9d07d7bb2297a1", + "style": "IPY_MODEL_d3efd5514b7341d282907fbbe7c7bbe6", "value": 62 } }, - "327591a55c744c7491e8ddec7595705a": { + "c203f9dd2d034a56a9c150ce7290d969": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -14803,13 +14803,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d15f721635794f4ca23eb45f0a1c9a3a", + "layout": "IPY_MODEL_c88a184f21774621ab9fbb27b8a890da", "placeholder": "​", - "style": "IPY_MODEL_a54bb51f98ae4a2caac6b22663548cb6", - "value": " 62/62 [00:00<00:00,  7.08it/s]" + "style": "IPY_MODEL_f02bab9888bc48dabbe79e51584164a8", + "value": " 62/62 [00:00<00:00,  6.83it/s]" } }, - "1f5fe8c48f14493c96fe8145b7262c31": { + "00f4ae63235342f8a38a8ad3aa523111": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14861,7 +14861,7 @@ "width": null } }, - "38791bd579c44dc08695961119086e05": { + "328d1dd21b494e96ab7a87a182cd44b9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14913,7 +14913,7 @@ "width": null } }, - "7a7fa2356dfc4da38354e0c2e5d35589": { + "70e996b1e5cc488e9252bb1c4da0a7ff": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -14928,7 +14928,7 @@ "description_width": "" } }, - "a36e17bd31ef45c1985bcf342bab87ad": { + "438ef74390c6409ab8addfcf031aef4e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -14980,7 +14980,7 @@ "width": null } }, - "28fdd22b35ab4a47ad9d07d7bb2297a1": { + "d3efd5514b7341d282907fbbe7c7bbe6": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -14996,7 +14996,7 @@ "description_width": "" } }, - "d15f721635794f4ca23eb45f0a1c9a3a": { + "c88a184f21774621ab9fbb27b8a890da": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15048,7 +15048,7 @@ "width": null } }, - "a54bb51f98ae4a2caac6b22663548cb6": { + "f02bab9888bc48dabbe79e51584164a8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -15063,7 +15063,7 @@ "description_width": "" } }, - "a3d84153d98d490c9ec4a9df76f5e327": { + "335d63914bef4280af5373c5175b8830": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -15078,14 +15078,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7b11166e85914cfc826e10503bf4cc2d", - "IPY_MODEL_560b2f64078d4e9a9afa41d93cb15a86", - "IPY_MODEL_e769e37935d04401a4fdc2fca0d24c62" + "IPY_MODEL_a122b1462274402f8e07f628f87f4939", + "IPY_MODEL_7f3bccb5e3614c0c8a4f47aa256969d3", + "IPY_MODEL_8326ee29b3434a488830123bb6df3dd7" ], - "layout": "IPY_MODEL_88a869de65d14eaab3c1b4320a96c8ba" + "layout": "IPY_MODEL_190e76cff2c74e9787be39eb7116829f" } }, - "7b11166e85914cfc826e10503bf4cc2d": { + "a122b1462274402f8e07f628f87f4939": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -15100,13 +15100,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c9d3ac73d2724df5ba9115078938486f", + "layout": "IPY_MODEL_3266906c4d3645f696a18a471e9629ee", "placeholder": "​", - "style": "IPY_MODEL_715180fbf87f4927af1be2fda1137d93", + "style": "IPY_MODEL_54f5a6f6542d45eba3c22df3681e6366", "value": "Meredig: 100%" } }, - "560b2f64078d4e9a9afa41d93cb15a86": { + "7f3bccb5e3614c0c8a4f47aa256969d3": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -15122,15 +15122,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a8f6089d155448e2870d685b2959c39d", + "layout": "IPY_MODEL_131259eff44040a385c01dd97e908c68", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_84602f41a7804f0e9ea8f9837f145a32", + "style": "IPY_MODEL_e7621e8983ba46e38610c0e320fdf3e3", "value": 62 } }, - "e769e37935d04401a4fdc2fca0d24c62": { + "8326ee29b3434a488830123bb6df3dd7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -15145,13 +15145,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_61b8ac066f2b4cdd911d7a2928575828", + "layout": "IPY_MODEL_fadd727d81af48beaecb927010496e90", "placeholder": "​", - "style": "IPY_MODEL_f8575e04aecc49f1a6ccaaf789fd19b1", - "value": " 62/62 [00:04<00:00, 15.40it/s]" + "style": "IPY_MODEL_1e859e90d95f498cb2777ec5440194bf", + "value": " 62/62 [00:00<00:00,  6.79it/s]" } }, - "88a869de65d14eaab3c1b4320a96c8ba": { + "190e76cff2c74e9787be39eb7116829f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15203,7 +15203,7 @@ "width": null } }, - "c9d3ac73d2724df5ba9115078938486f": { + "3266906c4d3645f696a18a471e9629ee": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15255,7 +15255,7 @@ "width": null } }, - "715180fbf87f4927af1be2fda1137d93": { + "54f5a6f6542d45eba3c22df3681e6366": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -15270,7 +15270,7 @@ "description_width": "" } }, - "a8f6089d155448e2870d685b2959c39d": { + "131259eff44040a385c01dd97e908c68": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15322,7 +15322,7 @@ "width": null } }, - "84602f41a7804f0e9ea8f9837f145a32": { + "e7621e8983ba46e38610c0e320fdf3e3": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -15338,7 +15338,7 @@ "description_width": "" } }, - "61b8ac066f2b4cdd911d7a2928575828": { + "fadd727d81af48beaecb927010496e90": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15390,7 +15390,7 @@ "width": null } }, - "f8575e04aecc49f1a6ccaaf789fd19b1": { + "1e859e90d95f498cb2777ec5440194bf": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -15405,7 +15405,7 @@ "description_width": "" } }, - "ce1e3e8f96004313937cdce517cc202c": { + "2d83d96f346d4b13aa662a21646c6281": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -15420,14 +15420,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f55d5486aac5423fb0100df37da67b4f", - "IPY_MODEL_1eece7ce60794a86a02f81242eccd140", - "IPY_MODEL_61443cb995024528873b782741ef059a" + "IPY_MODEL_566a6f4e1757441c91e2fbdda20f3efc", + "IPY_MODEL_ed8e0de8b6b14dc198e091eb731c3a8a", + "IPY_MODEL_206d8f77201a4efa87d29942f74fb59f" ], - "layout": "IPY_MODEL_b6fd7a4d23cc48dd88fd8715295fe172" + "layout": "IPY_MODEL_7ad74b6fdf8b45d5a46b37f200ac47ed" } }, - "f55d5486aac5423fb0100df37da67b4f": { + "566a6f4e1757441c91e2fbdda20f3efc": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -15442,13 +15442,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec71f5588d9f4126aea65ce353fcb270", + "layout": "IPY_MODEL_2c05716b4662435a90d3fa78eb37ccdd", "placeholder": "​", - "style": "IPY_MODEL_a26db00da3164c1c9909338b8ab90c64", + "style": "IPY_MODEL_398054c1fcde45b0a3d894fd1c1c6a67", "value": "BandCenter: 100%" } }, - "1eece7ce60794a86a02f81242eccd140": { + "ed8e0de8b6b14dc198e091eb731c3a8a": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -15464,15 +15464,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9b1780530cae4e778e9dfd62f944180a", + "layout": "IPY_MODEL_51862f48c0ee4f9a98edc242f2e0b671", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_59ad2df672534babba19c2ee436c9673", + "style": "IPY_MODEL_66534aa95e3644f6bd7fc14cd6ae6745", "value": 250 } }, - "61443cb995024528873b782741ef059a": { + "206d8f77201a4efa87d29942f74fb59f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -15487,13 +15487,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d97eec0936ac43699e4da29ac988051d", + "layout": "IPY_MODEL_260a1daeaff64491941b0565d4812207", "placeholder": "​", - "style": "IPY_MODEL_370b0ae594894aba99fa73e7e0bb3ba9", - "value": " 250/250 [00:00<00:00, 959.18it/s]" + "style": "IPY_MODEL_093f5131de9a425aa4cd3b7b45a4e3cc", + "value": " 250/250 [00:00<00:00,  6.93it/s]" } }, - "b6fd7a4d23cc48dd88fd8715295fe172": { + "7ad74b6fdf8b45d5a46b37f200ac47ed": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15545,7 +15545,7 @@ "width": null } }, - "ec71f5588d9f4126aea65ce353fcb270": { + "2c05716b4662435a90d3fa78eb37ccdd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15597,7 +15597,7 @@ "width": null } }, - "a26db00da3164c1c9909338b8ab90c64": { + "398054c1fcde45b0a3d894fd1c1c6a67": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -15612,7 +15612,7 @@ "description_width": "" } }, - "9b1780530cae4e778e9dfd62f944180a": { + "51862f48c0ee4f9a98edc242f2e0b671": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15664,7 +15664,7 @@ "width": null } }, - "59ad2df672534babba19c2ee436c9673": { + "66534aa95e3644f6bd7fc14cd6ae6745": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -15680,7 +15680,7 @@ "description_width": "" } }, - "d97eec0936ac43699e4da29ac988051d": { + "260a1daeaff64491941b0565d4812207": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15732,7 +15732,7 @@ "width": null } }, - "370b0ae594894aba99fa73e7e0bb3ba9": { + "093f5131de9a425aa4cd3b7b45a4e3cc": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -15747,7 +15747,7 @@ "description_width": "" } }, - "b13ac64be8ec4d488709ffaf4cf12c54": { + "46182337bdae4082b323b923f94a78a1": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -15762,14 +15762,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5250266ebe38421689a71943f4facaae", - "IPY_MODEL_be5b38767ef749ca847e45779eced2d5", - "IPY_MODEL_566222d6592449c2995c6bc1c03763ab" + "IPY_MODEL_4139f2f4ceb7488c96bcaf7f8afcb890", + "IPY_MODEL_a1899db227b34e9aa4339a4f09404179", + "IPY_MODEL_8646a84a3348486b89315991dad6e7e2" ], - "layout": "IPY_MODEL_8a57b8c91eda451d92dbb9e5c51b7394" + "layout": "IPY_MODEL_9ed8ee9e61294ee48b917f090466ba37" } }, - "5250266ebe38421689a71943f4facaae": { + "4139f2f4ceb7488c96bcaf7f8afcb890": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -15784,13 +15784,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_94bb4a85649d4025910d5f3d7fbccece", + "layout": "IPY_MODEL_a2044edb872a4bf9b43973555c7ad16a", "placeholder": "​", - "style": "IPY_MODEL_97564050e8d945c694f474991d085993", + "style": "IPY_MODEL_84b4eebfbb40484ab562f6a4d4c12133", "value": "ElementFraction: 100%" } }, - "be5b38767ef749ca847e45779eced2d5": { + "a1899db227b34e9aa4339a4f09404179": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -15806,15 +15806,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a15c8e0dd67d48f6bef07df1a33e7dae", + "layout": "IPY_MODEL_359a266265f843dea8dd233f500a56fa", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e713133e02c14c2ab973240b69bda10b", + "style": "IPY_MODEL_1a3a5df13dc74ecc9e91ed4616b9b987", "value": 250 } }, - "566222d6592449c2995c6bc1c03763ab": { + "8646a84a3348486b89315991dad6e7e2": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -15829,13 +15829,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ecf8588a30a54a6d87d4ecdf688801df", + "layout": "IPY_MODEL_089b37dfc975455c9daa64ec50134bc9", "placeholder": "​", - "style": "IPY_MODEL_d7fa96c8c5a34ea692d9fd6a077c240d", - "value": " 250/250 [00:00<00:00, 995.26it/s]" + "style": "IPY_MODEL_be9bcaa7e638416885bbca203b48a030", + "value": " 250/250 [00:00<00:00,  6.93it/s]" } }, - "8a57b8c91eda451d92dbb9e5c51b7394": { + "9ed8ee9e61294ee48b917f090466ba37": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15887,7 +15887,7 @@ "width": null } }, - "94bb4a85649d4025910d5f3d7fbccece": { + "a2044edb872a4bf9b43973555c7ad16a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -15939,7 +15939,7 @@ "width": null } }, - "97564050e8d945c694f474991d085993": { + "84b4eebfbb40484ab562f6a4d4c12133": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -15954,7 +15954,7 @@ "description_width": "" } }, - "a15c8e0dd67d48f6bef07df1a33e7dae": { + "359a266265f843dea8dd233f500a56fa": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16006,7 +16006,7 @@ "width": null } }, - "e713133e02c14c2ab973240b69bda10b": { + "1a3a5df13dc74ecc9e91ed4616b9b987": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -16022,7 +16022,7 @@ "description_width": "" } }, - "ecf8588a30a54a6d87d4ecdf688801df": { + "089b37dfc975455c9daa64ec50134bc9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16074,7 +16074,7 @@ "width": null } }, - "d7fa96c8c5a34ea692d9fd6a077c240d": { + "be9bcaa7e638416885bbca203b48a030": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -16089,7 +16089,7 @@ "description_width": "" } }, - "f24e5bb46da44f7ba8265ab54f692cdb": { + "6e7b625db09844848632a37dfdeae6d3": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -16104,14 +16104,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1ca3e39a56f54f01a0c64593d78c4d67", - "IPY_MODEL_7b722ae022c740809468c7472a225c8b", - "IPY_MODEL_95c48bd7bf0943669b91727bac46bc59" + "IPY_MODEL_195dc212cf3c46e3a706d599a3ede713", + "IPY_MODEL_8c4f06378bd3481a819c1bd79ab15f49", + "IPY_MODEL_cd6499459c0045818a8f9c14b041c602" ], - "layout": "IPY_MODEL_bfabcbe0957843819d28ed978b634542" + "layout": "IPY_MODEL_9586be012a3b44f2989eafc8ec986abf" } }, - "1ca3e39a56f54f01a0c64593d78c4d67": { + "195dc212cf3c46e3a706d599a3ede713": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -16126,13 +16126,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_74220daec776475c9b7196231f483d7a", + "layout": "IPY_MODEL_f0b05928eeb14d50b718316f2cdfd1d9", "placeholder": "​", - "style": "IPY_MODEL_48fc283d838f4e90a160aaaef2fa872e", + "style": "IPY_MODEL_fd4dfea3c54a4f99a0f5b55145db30c4", "value": "TMetalFraction: 100%" } }, - "7b722ae022c740809468c7472a225c8b": { + "8c4f06378bd3481a819c1bd79ab15f49": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -16148,15 +16148,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a948535abdb4487b8e8aacc2b78b25ea", + "layout": "IPY_MODEL_f60c24764f2443299f2d724715bbd64c", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_a6beec75d9da4a9081c1f9911ebf3145", + "style": "IPY_MODEL_21aacfad733246af9f5fa121d547c8a9", "value": 250 } }, - "95c48bd7bf0943669b91727bac46bc59": { + "cd6499459c0045818a8f9c14b041c602": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -16171,13 +16171,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4395d92860c34ef5930bb27f1079fe97", + "layout": "IPY_MODEL_c7925198bcee4e34ad00d0531fc10a82", "placeholder": "​", - "style": "IPY_MODEL_ab3bdb3cfe34462685c4a899f2c71bbe", - "value": " 250/250 [00:00<00:00, 972.18it/s]" + "style": "IPY_MODEL_15015d1fe1ad41b9a3288a95e42536c0", + "value": " 250/250 [00:00<00:00,  7.13it/s]" } }, - "bfabcbe0957843819d28ed978b634542": { + "9586be012a3b44f2989eafc8ec986abf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16229,7 +16229,7 @@ "width": null } }, - "74220daec776475c9b7196231f483d7a": { + "f0b05928eeb14d50b718316f2cdfd1d9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16281,7 +16281,7 @@ "width": null } }, - "48fc283d838f4e90a160aaaef2fa872e": { + "fd4dfea3c54a4f99a0f5b55145db30c4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -16296,7 +16296,7 @@ "description_width": "" } }, - "a948535abdb4487b8e8aacc2b78b25ea": { + "f60c24764f2443299f2d724715bbd64c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16348,7 +16348,7 @@ "width": null } }, - "a6beec75d9da4a9081c1f9911ebf3145": { + "21aacfad733246af9f5fa121d547c8a9": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -16364,7 +16364,7 @@ "description_width": "" } }, - "4395d92860c34ef5930bb27f1079fe97": { + "c7925198bcee4e34ad00d0531fc10a82": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16416,7 +16416,7 @@ "width": null } }, - "ab3bdb3cfe34462685c4a899f2c71bbe": { + "15015d1fe1ad41b9a3288a95e42536c0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -16431,7 +16431,7 @@ "description_width": "" } }, - "b3da7e59b18c40fea9d3b9aaf8e2ade3": { + "3f0cbf90e2c54a3a844a4d120a3fee5a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -16446,14 +16446,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bcf6f5e6e761441cbd1d486b28aaeea2", - "IPY_MODEL_adb8ea4598f546808eef6b609ef04419", - "IPY_MODEL_b5b1149a45f040e0a7e870b86eb7685d" + "IPY_MODEL_2319c679073b4ea784f759ff45594fd1", + "IPY_MODEL_bd36e7d35c284afea77406c50fa0f971", + "IPY_MODEL_652625335d1249e3a1f313379c9a28a1" ], - "layout": "IPY_MODEL_0ea78a44a4404284ab74830913994f02" + "layout": "IPY_MODEL_16ae468861fb4af78cb18bbddeb1bb5a" } }, - "bcf6f5e6e761441cbd1d486b28aaeea2": { + "2319c679073b4ea784f759ff45594fd1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -16468,13 +16468,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_92db1c3a321a4346b0cc48df642a58d9", + "layout": "IPY_MODEL_51c08398da9749a58ec9fc0f47f9edb6", "placeholder": "​", - "style": "IPY_MODEL_be93502b3d154a8c8a304a3a54f89547", + "style": "IPY_MODEL_5f8ee12a7dd54685bc353f431d6eff6c", "value": "Stoichiometry: 100%" } }, - "adb8ea4598f546808eef6b609ef04419": { + "bd36e7d35c284afea77406c50fa0f971": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -16490,15 +16490,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ef70837d8c164e81be14d166f2e44dd6", + "layout": "IPY_MODEL_bf381af745d249bc9c7369786003bfbe", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_00e7783811da4a9f870389f4af03dfff", + "style": "IPY_MODEL_1083eb9024584c0b9e89a17df66fd24d", "value": 250 } }, - "b5b1149a45f040e0a7e870b86eb7685d": { + "652625335d1249e3a1f313379c9a28a1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -16513,13 +16513,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1c987b91a17b41e1ace1a3092ca2b1a5", + "layout": "IPY_MODEL_8af8d5dbf5fe4e29a1f08c7bbc635152", "placeholder": "​", - "style": "IPY_MODEL_217597bce9bd4f12b5bcbe50520ebf8b", - "value": " 250/250 [00:00<00:00, 942.00it/s]" + "style": "IPY_MODEL_8826ba68545d4021a940862b0f4f2433", + "value": " 250/250 [00:00<00:00,  7.19it/s]" } }, - "0ea78a44a4404284ab74830913994f02": { + "16ae468861fb4af78cb18bbddeb1bb5a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16571,7 +16571,7 @@ "width": null } }, - "92db1c3a321a4346b0cc48df642a58d9": { + "51c08398da9749a58ec9fc0f47f9edb6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16623,7 +16623,7 @@ "width": null } }, - "be93502b3d154a8c8a304a3a54f89547": { + "5f8ee12a7dd54685bc353f431d6eff6c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -16638,7 +16638,7 @@ "description_width": "" } }, - "ef70837d8c164e81be14d166f2e44dd6": { + "bf381af745d249bc9c7369786003bfbe": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16690,7 +16690,7 @@ "width": null } }, - "00e7783811da4a9f870389f4af03dfff": { + "1083eb9024584c0b9e89a17df66fd24d": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -16706,7 +16706,7 @@ "description_width": "" } }, - "1c987b91a17b41e1ace1a3092ca2b1a5": { + "8af8d5dbf5fe4e29a1f08c7bbc635152": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16758,7 +16758,7 @@ "width": null } }, - "217597bce9bd4f12b5bcbe50520ebf8b": { + "8826ba68545d4021a940862b0f4f2433": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -16773,7 +16773,7 @@ "description_width": "" } }, - "a317a600d4d745769075b7f0f409f2b8": { + "86f11e04d22d47bdab3c2915f11e3824": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -16788,14 +16788,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4e856378f57b49c68882e5de96dc9b85", - "IPY_MODEL_497202a5992a41f59baeb585fa5f9af5", - "IPY_MODEL_8925090f047b4ecfb3cf82494c8589c9" + "IPY_MODEL_41b860d199944123ab5104f4de038749", + "IPY_MODEL_f78a5ff40db34724a6b6f8c97412ff14", + "IPY_MODEL_fd4a9a4ca6084de89daf29328daa8ea5" ], - "layout": "IPY_MODEL_848fd76e6b764888a368360e22df8909" + "layout": "IPY_MODEL_46df5181551748ee8ef87e2793c7f498" } }, - "4e856378f57b49c68882e5de96dc9b85": { + "41b860d199944123ab5104f4de038749": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -16810,13 +16810,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_32fc069695ea416693c151466b0702dc", + "layout": "IPY_MODEL_546995e626a94a61926732739f03f4a7", "placeholder": "​", - "style": "IPY_MODEL_173b8e2e71564a31ae8500edd8786036", + "style": "IPY_MODEL_251e1bc40bb54101aad2fe2dbd5a5da1", "value": "Meredig: 100%" } }, - "497202a5992a41f59baeb585fa5f9af5": { + "f78a5ff40db34724a6b6f8c97412ff14": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -16832,15 +16832,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_62b06812de464dee82b2add0ba2f4840", + "layout": "IPY_MODEL_8293e436c24f4016b590bfd92b840931", "max": 250, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_a51e6fefae05425689eb356bf04ad3c3", + "style": "IPY_MODEL_263121b2846e401fad1e89b41465637f", "value": 250 } }, - "8925090f047b4ecfb3cf82494c8589c9": { + "fd4a9a4ca6084de89daf29328daa8ea5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -16855,13 +16855,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8f6d90ac9a0c4100aa73d107e7993218", + "layout": "IPY_MODEL_038c9cf612ad404bae84e968d67c4999", "placeholder": "​", - "style": "IPY_MODEL_9a28ea356df34a24afba5a80d9b6c3b4", - "value": " 250/250 [00:21<00:00, 10.07it/s]" + "style": "IPY_MODEL_a310ad0d4d4c47ecb78c19473999a9db", + "value": " 250/250 [00:02<00:00, 147.66it/s]" } }, - "848fd76e6b764888a368360e22df8909": { + "46df5181551748ee8ef87e2793c7f498": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16913,7 +16913,7 @@ "width": null } }, - "32fc069695ea416693c151466b0702dc": { + "546995e626a94a61926732739f03f4a7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -16965,7 +16965,7 @@ "width": null } }, - "173b8e2e71564a31ae8500edd8786036": { + "251e1bc40bb54101aad2fe2dbd5a5da1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -16980,7 +16980,7 @@ "description_width": "" } }, - "62b06812de464dee82b2add0ba2f4840": { + "8293e436c24f4016b590bfd92b840931": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17032,7 +17032,7 @@ "width": null } }, - "a51e6fefae05425689eb356bf04ad3c3": { + "263121b2846e401fad1e89b41465637f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -17048,7 +17048,7 @@ "description_width": "" } }, - "8f6d90ac9a0c4100aa73d107e7993218": { + "038c9cf612ad404bae84e968d67c4999": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17100,7 +17100,7 @@ "width": null } }, - "9a28ea356df34a24afba5a80d9b6c3b4": { + "a310ad0d4d4c47ecb78c19473999a9db": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -17115,7 +17115,7 @@ "description_width": "" } }, - "c6062aa576854fd9a1f4b001ac0bab72": { + "c59b452c7c70457d90cab50eb3bfb9e7": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -17130,14 +17130,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_357f38ad98314fdda8eaf0b924f0d4da", - "IPY_MODEL_798d9ec5e6ea4487ba87467f5107292a", - "IPY_MODEL_82751038f5304698b9cbdddd5caf4210" + "IPY_MODEL_f5350c516c2441cf959bbfe737f3cec2", + "IPY_MODEL_f663ca0e559a404daef610f853568a52", + "IPY_MODEL_3ac41b09938449f9b6564fc9841c2e8c" ], - "layout": "IPY_MODEL_4501663cef33496fa9b10df6d9348bd5" + "layout": "IPY_MODEL_f6ab565122ff426093097c0b2a1a6cb5" } }, - "357f38ad98314fdda8eaf0b924f0d4da": { + "f5350c516c2441cf959bbfe737f3cec2": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -17152,13 +17152,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8297225fbb74404fb4a0ad77eba67435", + "layout": "IPY_MODEL_1421264f1bc540dcbbcd17d51fbb02c6", "placeholder": "​", - "style": "IPY_MODEL_303b28756efd48b4a50513293942d930", + "style": "IPY_MODEL_5eae4f451ccf4495a9c22ba55682423f", "value": "BandCenter: 100%" } }, - "798d9ec5e6ea4487ba87467f5107292a": { + "f663ca0e559a404daef610f853568a52": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -17174,15 +17174,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_215c8772bb3946a29d48a4dba6b95631", + "layout": "IPY_MODEL_e8e029e42c28496d9cc2c1a35cb03110", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e6347c02645b40f8868f5d8a73291e6c", + "style": "IPY_MODEL_05108f324ed944bb842665cb9f7e5959", "value": 62 } }, - "82751038f5304698b9cbdddd5caf4210": { + "3ac41b09938449f9b6564fc9841c2e8c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -17197,13 +17197,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_162ee99cb10c4e508b726fcf4144595a", + "layout": "IPY_MODEL_8437b2dd678b49f58238a4aae604baea", "placeholder": "​", - "style": "IPY_MODEL_397a474f0dab480098d775e7ec36b315", - "value": " 62/62 [00:00<00:00,  9.47it/s]" + "style": "IPY_MODEL_2a81973d5a1b4c8d88ab375cdfb5e95c", + "value": " 62/62 [00:00<00:00,  7.38it/s]" } }, - "4501663cef33496fa9b10df6d9348bd5": { + "f6ab565122ff426093097c0b2a1a6cb5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17255,7 +17255,7 @@ "width": null } }, - "8297225fbb74404fb4a0ad77eba67435": { + "1421264f1bc540dcbbcd17d51fbb02c6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17307,7 +17307,7 @@ "width": null } }, - "303b28756efd48b4a50513293942d930": { + "5eae4f451ccf4495a9c22ba55682423f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -17322,7 +17322,7 @@ "description_width": "" } }, - "215c8772bb3946a29d48a4dba6b95631": { + "e8e029e42c28496d9cc2c1a35cb03110": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17374,7 +17374,7 @@ "width": null } }, - "e6347c02645b40f8868f5d8a73291e6c": { + "05108f324ed944bb842665cb9f7e5959": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -17390,7 +17390,7 @@ "description_width": "" } }, - "162ee99cb10c4e508b726fcf4144595a": { + "8437b2dd678b49f58238a4aae604baea": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17442,7 +17442,7 @@ "width": null } }, - "397a474f0dab480098d775e7ec36b315": { + "2a81973d5a1b4c8d88ab375cdfb5e95c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -17457,7 +17457,7 @@ "description_width": "" } }, - "6c06e4696b0e477f80dfb55e3daaab47": { + "93a5fd9c0fda425fac53f5c74c2e04c5": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -17472,14 +17472,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ab98baac8e9f4589852528acb007b1a4", - "IPY_MODEL_589e2d12b5a648888b3a51e6fd6e4ce8", - "IPY_MODEL_18b80d342e7d4a308f87d30a30fa188f" + "IPY_MODEL_b0e93c8c1c6e48d1ae1d54ad3a675015", + "IPY_MODEL_6645d32f3bc24fb29cc9d680b28a0a05", + "IPY_MODEL_b88faa411d9245ef9cf6c47bf7e7ffc4" ], - "layout": "IPY_MODEL_8fbdc893fb454c15b0ee99a237e5ada5" + "layout": "IPY_MODEL_f9ffc0297e1a4328a6517402001c5e4f" } }, - "ab98baac8e9f4589852528acb007b1a4": { + "b0e93c8c1c6e48d1ae1d54ad3a675015": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -17494,13 +17494,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_09a82fe9c2fc43829f7ab016d462dc6b", + "layout": "IPY_MODEL_cb076ffcff3c4642b840731566214470", "placeholder": "​", - "style": "IPY_MODEL_60001a7ab5374801a966efa903d704fb", + "style": "IPY_MODEL_7c4f127d07ba49be8e7afc942935e8c1", "value": "ElementFraction: 100%" } }, - "589e2d12b5a648888b3a51e6fd6e4ce8": { + "6645d32f3bc24fb29cc9d680b28a0a05": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -17516,15 +17516,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f43bc2cb4bef4eb394ab5e559060ede8", + "layout": "IPY_MODEL_78f5d5d8904c4a1ba18ba41ec541c556", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_c46071a47e0c470ca7cdea87296adcbf", + "style": "IPY_MODEL_b8674907c59b4af5b347c93d66977236", "value": 62 } }, - "18b80d342e7d4a308f87d30a30fa188f": { + "b88faa411d9245ef9cf6c47bf7e7ffc4": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -17539,13 +17539,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1e1e7d6f4d67480b8dcf8472c0641dfe", + "layout": "IPY_MODEL_94bf3929e70c4bd9bd53bac1f9c0f65e", "placeholder": "​", - "style": "IPY_MODEL_362f11d2978f49f7aece3d69385774cd", - "value": " 62/62 [00:00<00:00, 94.45it/s]" + "style": "IPY_MODEL_bfd910843a6b44a9ab9291d0d74f488c", + "value": " 62/62 [00:00<00:00,  6.75it/s]" } }, - "8fbdc893fb454c15b0ee99a237e5ada5": { + "f9ffc0297e1a4328a6517402001c5e4f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17597,7 +17597,7 @@ "width": null } }, - "09a82fe9c2fc43829f7ab016d462dc6b": { + "cb076ffcff3c4642b840731566214470": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17649,7 +17649,7 @@ "width": null } }, - "60001a7ab5374801a966efa903d704fb": { + "7c4f127d07ba49be8e7afc942935e8c1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -17664,7 +17664,7 @@ "description_width": "" } }, - "f43bc2cb4bef4eb394ab5e559060ede8": { + "78f5d5d8904c4a1ba18ba41ec541c556": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17716,7 +17716,7 @@ "width": null } }, - "c46071a47e0c470ca7cdea87296adcbf": { + "b8674907c59b4af5b347c93d66977236": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -17732,7 +17732,7 @@ "description_width": "" } }, - "1e1e7d6f4d67480b8dcf8472c0641dfe": { + "94bf3929e70c4bd9bd53bac1f9c0f65e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17784,7 +17784,7 @@ "width": null } }, - "362f11d2978f49f7aece3d69385774cd": { + "bfd910843a6b44a9ab9291d0d74f488c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -17799,7 +17799,7 @@ "description_width": "" } }, - "5bbc4748398e4d12b865bb8593392f51": { + "53cb593b9e7b45ee8f7eff8908f2d0ab": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -17814,14 +17814,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_93e27bdd23174e5a84396db64f93993f", - "IPY_MODEL_504798a073d6401ebc9ac4b535b7ba75", - "IPY_MODEL_4e52035e7d164bbdb8b345b58e0f1a7b" + "IPY_MODEL_33fef66e0a1f4b85b7e3d9f197d0ced9", + "IPY_MODEL_ef2afff3eb9841e684546244e92e35bb", + "IPY_MODEL_b490851acfae4a37bd9418e6fcfcb2ba" ], - "layout": "IPY_MODEL_88455b33d4074bde8f49f9abc47e8255" + "layout": "IPY_MODEL_b16ea94a6e95476588ecf08b73a2150d" } }, - "93e27bdd23174e5a84396db64f93993f": { + "33fef66e0a1f4b85b7e3d9f197d0ced9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -17836,13 +17836,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_884e49eba56d47fb938a3e0b7b710666", + "layout": "IPY_MODEL_e8d28cb6075c4efe838740c6ba810a61", "placeholder": "​", - "style": "IPY_MODEL_01136e3ea94844ca9ab34161aa4d3141", + "style": "IPY_MODEL_e4e6214afbe742f6ba30287bc90b7704", "value": "TMetalFraction: 100%" } }, - "504798a073d6401ebc9ac4b535b7ba75": { + "ef2afff3eb9841e684546244e92e35bb": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -17858,15 +17858,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e612a61d1284419c8a4f19a5427ac5b1", + "layout": "IPY_MODEL_4aea5d7541c0455f815136ac3674d5e9", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_213eddd34dec4dd0aed3d213245c406c", + "style": "IPY_MODEL_75d9a229afa54fd0840758490e73fc8c", "value": 62 } }, - "4e52035e7d164bbdb8b345b58e0f1a7b": { + "b490851acfae4a37bd9418e6fcfcb2ba": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -17881,13 +17881,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_97996231ce924657bd64e935de2adc8c", + "layout": "IPY_MODEL_218dc4565e63487d914e2d9c38b4d43f", "placeholder": "​", - "style": "IPY_MODEL_4b0c1cd85bae486ca7dd78b11d9ba676", - "value": " 62/62 [00:00<00:00,  7.53it/s]" + "style": "IPY_MODEL_a30ae8a9b4054811807d0ea0920f3120", + "value": " 62/62 [00:00<00:00,  7.07it/s]" } }, - "88455b33d4074bde8f49f9abc47e8255": { + "b16ea94a6e95476588ecf08b73a2150d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17939,7 +17939,7 @@ "width": null } }, - "884e49eba56d47fb938a3e0b7b710666": { + "e8d28cb6075c4efe838740c6ba810a61": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -17991,7 +17991,7 @@ "width": null } }, - "01136e3ea94844ca9ab34161aa4d3141": { + "e4e6214afbe742f6ba30287bc90b7704": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -18006,7 +18006,7 @@ "description_width": "" } }, - "e612a61d1284419c8a4f19a5427ac5b1": { + "4aea5d7541c0455f815136ac3674d5e9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18058,7 +18058,7 @@ "width": null } }, - "213eddd34dec4dd0aed3d213245c406c": { + "75d9a229afa54fd0840758490e73fc8c": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -18074,7 +18074,7 @@ "description_width": "" } }, - "97996231ce924657bd64e935de2adc8c": { + "218dc4565e63487d914e2d9c38b4d43f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18126,7 +18126,7 @@ "width": null } }, - "4b0c1cd85bae486ca7dd78b11d9ba676": { + "a30ae8a9b4054811807d0ea0920f3120": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -18141,7 +18141,7 @@ "description_width": "" } }, - "cb2c96aa5d6e406e997ec0f2914371d4": { + "82a52acd41034e48b6e37c2f79931b5f": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -18156,14 +18156,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7050bebaaca843c486fed7f8071e631d", - "IPY_MODEL_b8eaa12acac04a02b4c4018b6b5a060b", - "IPY_MODEL_073dbb77b667409eb3a77fb08d293749" + "IPY_MODEL_22a1cc72a4fd401bbe2f02a1b5488401", + "IPY_MODEL_fac6e36be05048c4bc559233b21ddc3c", + "IPY_MODEL_8a53133379274c04970a59cf0cf557d6" ], - "layout": "IPY_MODEL_95a64b3bb8d343d39ac19de385e6b1fd" + "layout": "IPY_MODEL_337099bd22c5463586a9b8c4a38e1c9b" } }, - "7050bebaaca843c486fed7f8071e631d": { + "22a1cc72a4fd401bbe2f02a1b5488401": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -18178,13 +18178,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dbe768fea0d441f291efed84ff58e926", + "layout": "IPY_MODEL_9b3a9fe11d8b46678e33231d25ee641a", "placeholder": "​", - "style": "IPY_MODEL_44ee46d342fa440391065eb8b7e8078e", + "style": "IPY_MODEL_50738fc09b11451fb7c02feb3e03495d", "value": "Stoichiometry: 100%" } }, - "b8eaa12acac04a02b4c4018b6b5a060b": { + "fac6e36be05048c4bc559233b21ddc3c": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -18200,15 +18200,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0a9d216451914b999bb4a7ad50e393d5", + "layout": "IPY_MODEL_fa4be32395ab4eeba7fddaa5fdf76fd6", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_7e57064ce37e45f2bc1fc91113fc4e55", + "style": "IPY_MODEL_3c9c616de7054dc1a15edf1f823d85b4", "value": 62 } }, - "073dbb77b667409eb3a77fb08d293749": { + "8a53133379274c04970a59cf0cf557d6": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -18223,13 +18223,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4c8e5e58d83a4b8eae9d70b4c3edcc2b", + "layout": "IPY_MODEL_a7ca0f0d40974f2a88f2ac074cfa8632", "placeholder": "​", - "style": "IPY_MODEL_b3696cc227f347218a44775e2a9ac8e9", - "value": " 62/62 [00:00<00:00,  6.82it/s]" + "style": "IPY_MODEL_a3f432d74847438a9ef7fa9948ba1d12", + "value": " 62/62 [00:00<00:00,  7.30it/s]" } }, - "95a64b3bb8d343d39ac19de385e6b1fd": { + "337099bd22c5463586a9b8c4a38e1c9b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18281,7 +18281,7 @@ "width": null } }, - "dbe768fea0d441f291efed84ff58e926": { + "9b3a9fe11d8b46678e33231d25ee641a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18333,7 +18333,7 @@ "width": null } }, - "44ee46d342fa440391065eb8b7e8078e": { + "50738fc09b11451fb7c02feb3e03495d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -18348,7 +18348,7 @@ "description_width": "" } }, - "0a9d216451914b999bb4a7ad50e393d5": { + "fa4be32395ab4eeba7fddaa5fdf76fd6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18400,7 +18400,7 @@ "width": null } }, - "7e57064ce37e45f2bc1fc91113fc4e55": { + "3c9c616de7054dc1a15edf1f823d85b4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -18416,7 +18416,7 @@ "description_width": "" } }, - "4c8e5e58d83a4b8eae9d70b4c3edcc2b": { + "a7ca0f0d40974f2a88f2ac074cfa8632": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18468,7 +18468,7 @@ "width": null } }, - "b3696cc227f347218a44775e2a9ac8e9": { + "a3f432d74847438a9ef7fa9948ba1d12": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -18483,7 +18483,7 @@ "description_width": "" } }, - "6e56d785fd6e48328301bd9f59eaeb84": { + "eb82b6ad57df4b7a95c03dfce5865a2e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -18498,14 +18498,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9beb2c27834c47f58d0828a56fc0c4eb", - "IPY_MODEL_73316c6ca8624080838ac6a759cb9b50", - "IPY_MODEL_66bb8213fa8e454e9a124f6d2ba033a6" + "IPY_MODEL_5668dd1f1b5943ea9119f32cb2da4986", + "IPY_MODEL_4bd9030c572c4594a5e344c5982eadd9", + "IPY_MODEL_c85eb2e60ecc4803a798275132856457" ], - "layout": "IPY_MODEL_0748b98cd73146eda7459d0860147fcf" + "layout": "IPY_MODEL_4b41b23c14754556a02a28c5ed653636" } }, - "9beb2c27834c47f58d0828a56fc0c4eb": { + "5668dd1f1b5943ea9119f32cb2da4986": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -18520,13 +18520,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_41d31b0bd5134e198aac234022f700b2", + "layout": "IPY_MODEL_fd1668d9e47f4c53882d670975ce061e", "placeholder": "​", - "style": "IPY_MODEL_d8e3374ff2cd45ada94f99a17102bd32", + "style": "IPY_MODEL_50b75f18541240d28a4b10f245b594f8", "value": "Meredig: 100%" } }, - "73316c6ca8624080838ac6a759cb9b50": { + "4bd9030c572c4594a5e344c5982eadd9": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -18542,15 +18542,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_578bd888db2c42e2ac808e0b93bce3d8", + "layout": "IPY_MODEL_192940c1da884c4a96952c0d6e1aae67", "max": 62, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_f4244b5a535e44e8a331b77bd38183a4", + "style": "IPY_MODEL_0e7cea53c882436a86cc94cb6246da96", "value": 62 } }, - "66bb8213fa8e454e9a124f6d2ba033a6": { + "c85eb2e60ecc4803a798275132856457": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -18565,13 +18565,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e1c10f56a9144c1faa30063e207f3774", + "layout": "IPY_MODEL_742d302cfc074d399dc0cb243949fd16", "placeholder": "​", - "style": "IPY_MODEL_a38f7dd92d704a2aad67bb2947600b8f", - "value": " 62/62 [00:04<00:00, 11.38it/s]" + "style": "IPY_MODEL_2af170da050f47e5baa6c2bbafe130ac", + "value": " 62/62 [00:00<00:00,  6.78it/s]" } }, - "0748b98cd73146eda7459d0860147fcf": { + "4b41b23c14754556a02a28c5ed653636": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18623,7 +18623,7 @@ "width": null } }, - "41d31b0bd5134e198aac234022f700b2": { + "fd1668d9e47f4c53882d670975ce061e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18675,7 +18675,7 @@ "width": null } }, - "d8e3374ff2cd45ada94f99a17102bd32": { + "50b75f18541240d28a4b10f245b594f8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -18690,7 +18690,7 @@ "description_width": "" } }, - "578bd888db2c42e2ac808e0b93bce3d8": { + "192940c1da884c4a96952c0d6e1aae67": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18742,7 +18742,7 @@ "width": null } }, - "f4244b5a535e44e8a331b77bd38183a4": { + "0e7cea53c882436a86cc94cb6246da96": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -18758,7 +18758,7 @@ "description_width": "" } }, - "e1c10f56a9144c1faa30063e207f3774": { + "742d302cfc074d399dc0cb243949fd16": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -18810,7 +18810,7 @@ "width": null } }, - "a38f7dd92d704a2aad67bb2947600b8f": { + "2af170da050f47e5baa6c2bbafe130ac": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -18861,7 +18861,7 @@ "base_uri": "https://localhost:8080/" }, "id": "ltnsYDADJMe0", - "outputId": "fd594291-156e-42f1-b46c-d79c5417d9bc" + "outputId": "63956c0f-73d6-47ff-fd57-8482100191bf" }, "execution_count": 2, "outputs": [ @@ -18872,44 +18872,12 @@ "Cloning into 'pystacknet'...\n", "remote: Enumerating objects: 42, done.\u001b[K\n", "remote: Total 42 (delta 0), reused 0 (delta 0), pack-reused 42\u001b[K\n", - "Receiving objects: 100% (42/42), 1.57 MiB | 19.38 MiB/s, done.\n", + "Receiving objects: 100% (42/42), 1.57 MiB | 19.86 MiB/s, done.\n", "Resolving deltas: 100% (10/10), done.\n" ] } ] }, - { - "cell_type": "code", - "source": [ - "\n", - "\n", - "os.getcwd()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 - }, - "id": "JCQng-CZYL6a", - "outputId": "c0fae35e-7b73-45c3-8b32-d9e96e0b8b7a" - }, - "execution_count": 3, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "'/content'" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - } - }, - "metadata": {}, - "execution_count": 3 - } - ] - }, { "cell_type": "code", "source": [ @@ -18931,7 +18899,7 @@ "base_uri": "https://localhost:8080/" }, "id": "rffuTw_bZfAD", - "outputId": "634797a3-038e-4c24-fb5e-19970e3cbf0c" + "outputId": "81520e67-32ce-4921-b2fd-e58e942891db" }, "execution_count": 5, "outputs": [ @@ -19086,7 +19054,7 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "cfd47fc7-2bec-418d-899b-3e9c208aeffb" + "outputId": "b7e3830b-f1d4-49a9-bcd8-7468794a33bd" }, "execution_count": 7, "outputs": [ @@ -19099,9 +19067,8 @@ "remote: Counting objects: 100% (1043/1043), done.\u001b[K\n", "remote: Compressing objects: 100% (279/279), done.\u001b[K\n", "remote: Total 10388 (delta 584), reused 963 (delta 523), pack-reused 9345\u001b[K\n", - "Receiving objects: 100% (10388/10388), 367.01 MiB | 32.27 MiB/s, done.\n", - "Resolving deltas: 100% (6749/6749), done.\n", - "Updating files: 100% (382/382), done.\n" + "Receiving objects: 100% (10388/10388), 367.01 MiB | 21.28 MiB/s, done.\n", + "Resolving deltas: 100% (6749/6749), done.\n" ] } ] @@ -19116,7 +19083,7 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "506b14a5-8905-4b23-d139-dc1884c16ff7" + "outputId": "78a3052e-98f5-41a4-c791-e1d07217ef41" }, "execution_count": 8, "outputs": [ @@ -19130,11 +19097,11 @@ " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", "Collecting matminer>=0.7.4 (from matbench==0.6)\n", " Downloading matminer-0.9.2-py3-none-any.whl (1.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from matbench==0.6) (1.11.4)\n", "Collecting monty>=2022.4.26 (from matbench==0.6)\n", " Downloading monty-2024.5.24-py3-none-any.whl (67 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.9/67.9 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.9/67.9 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: scikit-learn>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matbench==0.6) (1.2.2)\n", "Requirement already satisfied: numpy<2,>=1.23 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (1.25.2)\n", "Requirement already satisfied: requests~=2.31 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (2.31.0)\n", @@ -19142,14 +19109,14 @@ "Requirement already satisfied: tqdm~=4.66 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (4.66.4)\n", "Collecting pymongo~=4.5 (from matminer>=0.7.4->matbench==0.6)\n", " Downloading pymongo-4.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (670 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m670.0/670.0 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m670.0/670.0 kB\u001b[0m \u001b[31m24.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting scikit-learn>=1.0.1 (from matbench==0.6)\n", " Downloading scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.3/13.3 MB\u001b[0m \u001b[31m46.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.3/13.3 MB\u001b[0m \u001b[31m75.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: sympy~=1.11 in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (1.12)\n", "Collecting pymatgen>=2023 (from matminer>=0.7.4->matbench==0.6)\n", " Downloading pymatgen-2024.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.8/4.8 MB\u001b[0m \u001b[31m75.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.8/4.8 MB\u001b[0m \u001b[31m113.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.1->matbench==0.6) (1.4.2)\n", "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.1->matbench==0.6) (3.5.0)\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.5->matminer>=0.7.4->matbench==0.6) (2.8.2)\n", @@ -19159,24 +19126,24 @@ "Requirement already satisfied: networkx>=2.2 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (3.3)\n", "Collecting palettable>=3.1.1 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", " Downloading palettable-3.3.3-py2.py3-none-any.whl (332 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m332.3/332.3 kB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m332.3/332.3 kB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: plotly>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (5.15.0)\n", "Collecting pybtex (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", " Downloading pybtex-0.24.0-py2.py3-none-any.whl (561 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m561.4/561.4 kB\u001b[0m \u001b[31m48.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m561.4/561.4 kB\u001b[0m \u001b[31m58.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting ruamel.yaml>=0.17.0 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", " Downloading ruamel.yaml-0.18.6-py3-none-any.whl (117 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.8/117.8 kB\u001b[0m \u001b[31m16.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.8/117.8 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting spglib>=2.0.2 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", " Downloading spglib-2.4.0-cp310-cp310-manylinux_2_17_x86_64.whl (809 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m809.2/809.2 kB\u001b[0m \u001b[31m61.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m809.2/809.2 kB\u001b[0m \u001b[31m66.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (0.9.0)\n", "Collecting uncertainties>=3.1.4 (from pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", " Downloading uncertainties-3.1.7-py2.py3-none-any.whl (98 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.4/98.4 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.4/98.4 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting dnspython<3.0.0,>=1.16.0 (from pymongo~=4.5->matminer>=0.7.4->matbench==0.6)\n", " Downloading dnspython-2.6.1-py3-none-any.whl (307 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m307.7/307.7 kB\u001b[0m \u001b[31m28.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m307.7/307.7 kB\u001b[0m \u001b[31m37.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (3.7)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests~=2.31->matminer>=0.7.4->matbench==0.6) (2.0.7)\n", @@ -19193,15 +19160,15 @@ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas<3,>=1.5->matminer>=0.7.4->matbench==0.6) (1.16.0)\n", "Collecting ruamel.yaml.clib>=0.2.7 (from ruamel.yaml>=0.17.0->pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", " Downloading ruamel.yaml.clib-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (526 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m526.7/526.7 kB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m526.7/526.7 kB\u001b[0m \u001b[31m49.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from uncertainties>=3.1.4->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (0.18.3)\n", "Requirement already satisfied: PyYAML>=3.01 in /usr/local/lib/python3.10/dist-packages (from pybtex->pymatgen>=2023->matminer>=0.7.4->matbench==0.6) (6.0.1)\n", "Collecting latexcodec>=1.0.4 (from pybtex->pymatgen>=2023->matminer>=0.7.4->matbench==0.6)\n", " Downloading latexcodec-3.0.0-py3-none-any.whl (18 kB)\n", "Building wheels for collected packages: matbench\n", " Building wheel for matbench (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for matbench: filename=matbench-0.6-py3-none-any.whl size=5449480 sha256=8eb4d6b440ead1d42a0e22ad53f321117f04ca698d73a126513b36775ec3c5b9\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-_27kz6xs/wheels/0d/71/69/39ae3b7c60edd18e46ed290a09bc2fe0c344372520cd165c70\n", + " Created wheel for matbench: filename=matbench-0.6-py3-none-any.whl size=5449480 sha256=21118a50e093168124303d796628ed4d15a24ef227a5125d3c15d93dcf56ecc9\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-o8vzp4k6/wheels/0d/71/69/39ae3b7c60edd18e46ed290a09bc2fe0c344372520cd165c70\n", "Successfully built matbench\n", "Installing collected packages: uncertainties, spglib, ruamel.yaml.clib, palettable, monty, latexcodec, dnspython, scikit-learn, ruamel.yaml, pymongo, pybtex, pymatgen, matminer, matbench\n", "\u001b[33m WARNING: The scripts pybtex, pybtex-convert and pybtex-format are installed in '/root/.local/bin' which is not on PATH.\n", @@ -19234,7 +19201,7 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "efef4a6d-1539-4b9b-c843-dfc247ba3395" + "outputId": "19c35786-9fa1-4ddd-8011-5e86a3c121c1" }, "execution_count": 10, "outputs": [ @@ -19250,21 +19217,21 @@ "Requirement already satisfied: pytest in /usr/local/lib/python3.10/dist-packages (from -r requirements-dev.txt (line 1)) (7.4.4)\n", "Collecting coverage==6.4.3 (from -r requirements-dev.txt (line 2))\n", " Downloading coverage-6.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting wheel==0.37.1 (from -r requirements-dev.txt (line 3))\n", " Downloading wheel-0.37.1-py2.py3-none-any.whl (35 kB)\n", "Collecting monty==2022.4.26 (from -r requirements-dev.txt (line 4))\n", " Downloading monty-2022.4.26-py3-none-any.whl (65 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.0/66.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.0/66.0 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting isort==5.10.1 (from -r requirements-dev.txt (line 5))\n", " Downloading isort-5.10.1-py3-none-any.whl (103 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.4/103.4 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.4/103.4 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting black==22.3.0 (from -r requirements-dev.txt (line 6))\n", " Downloading black-22.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting flake8==4.0.1 (from -r requirements-dev.txt (line 7))\n", " Downloading flake8-4.0.1-py2.py3-none-any.whl (64 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.1/64.1 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.1/64.1 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from black==22.3.0->-r requirements-dev.txt (line 6)) (8.1.7)\n", "Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.10/dist-packages (from black==22.3.0->-r requirements-dev.txt (line 6)) (4.2.2)\n", "Collecting pathspec>=0.9.0 (from black==22.3.0->-r requirements-dev.txt (line 6))\n", @@ -19276,10 +19243,10 @@ " Downloading mccabe-0.6.1-py2.py3-none-any.whl (8.6 kB)\n", "Collecting pycodestyle<2.9.0,>=2.8.0 (from flake8==4.0.1->-r requirements-dev.txt (line 7))\n", " Downloading pycodestyle-2.8.0-py2.py3-none-any.whl (42 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.1/42.1 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.1/42.1 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting pyflakes<2.5.0,>=2.4.0 (from flake8==4.0.1->-r requirements-dev.txt (line 7))\n", " Downloading pyflakes-2.4.0-py2.py3-none-any.whl (69 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.7/69.7 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.7/69.7 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: matminer>=0.7.4 in /root/.local/lib/python3.10/site-packages (from matbench==0.6) (0.9.2)\n", "Requirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from matbench==0.6) (1.11.4)\n", "Requirement already satisfied: scikit-learn>=1.0.1 in /root/.local/lib/python3.10/site-packages (from matbench==0.6) (1.5.0)\n", @@ -19296,13 +19263,13 @@ "INFO: pip is looking at multiple versions of matminer to determine which version is compatible with other requirements. This could take a while.\n", "Collecting matminer>=0.7.4 (from matbench==0.6)\n", " Downloading matminer-0.9.1-py3-none-any.whl (1.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m29.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting pandas~=1.5 (from matminer>=0.7.4->matbench==0.6)\n", " Downloading pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.1/12.1 MB\u001b[0m \u001b[31m44.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.1/12.1 MB\u001b[0m \u001b[31m81.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting matminer>=0.7.4 (from matbench==0.6)\n", " Downloading matminer-0.9.0-py3-none-any.whl (1.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m58.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from matminer>=0.7.4->matbench==0.6) (0.18.3)\n", "Requirement already satisfied: pymatgen in /root/.local/lib/python3.10/site-packages (from matminer>=0.7.4->matbench==0.6) (2024.5.1)\n", "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.1->matbench==0.6) (1.4.2)\n", @@ -19313,19 +19280,19 @@ "INFO: pip is looking at multiple versions of pymatgen to determine which version is compatible with other requirements. This could take a while.\n", "Collecting pymatgen (from matminer>=0.7.4->matbench==0.6)\n", " Downloading pymatgen-2024.4.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m12.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m76.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pymatgen-2024.4.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m14.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m57.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pymatgen-2024.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m38.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m38.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pymatgen-2024.2.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m54.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pymatgen-2024.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pymatgen-2024.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m51.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pymatgen-2024.1.27.tar.gz (7.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m97.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m20.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", " Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n", @@ -19357,10 +19324,10 @@ "Requirement already satisfied: latexcodec>=1.0.4 in /root/.local/lib/python3.10/site-packages (from pybtex->pymatgen->matminer>=0.7.4->matbench==0.6) (3.0.0)\n", "Building wheels for collected packages: matbench, pymatgen\n", " Building editable for matbench (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for matbench: filename=matbench-0.6-0.editable-py3-none-any.whl size=3622 sha256=9faa20e2edea9128712a28871e4f9de0b8a9dd24c7a49a3aeb03a74cdb88ac3e\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-id9pupbj/wheels/0d/71/69/39ae3b7c60edd18e46ed290a09bc2fe0c344372520cd165c70\n", + " Created wheel for matbench: filename=matbench-0.6-0.editable-py3-none-any.whl size=3622 sha256=2543740d086d28759c38528a7a709a1f9380a26a1f71387e128484223259d533\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-8dxz848k/wheels/0d/71/69/39ae3b7c60edd18e46ed290a09bc2fe0c344372520cd165c70\n", " Building wheel for pymatgen (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for pymatgen: filename=pymatgen-2024.1.27-cp310-cp310-linux_x86_64.whl size=8767375 sha256=52f748f354052fc925f62a0dc53b0197421299982ff51b46efbf7880fb6d99db\n", + " Created wheel for pymatgen: filename=pymatgen-2024.1.27-cp310-cp310-linux_x86_64.whl size=8767378 sha256=9fe1528bfeb13e80a7c4e417544d291be54286e3c6891b56f4305b648270faf3\n", " Stored in directory: /root/.cache/pip/wheels/ee/58/93/14b5660717b7cf0223df12fcdf754c2ee6aa4daba441b337f1\n", "Successfully built matbench pymatgen\n", "Installing collected packages: mccabe, wheel, pyflakes, pycodestyle, pathspec, mypy-extensions, monty, isort, coverage, pandas, flake8, black, pymatgen, matminer, matbench\n", @@ -19415,7 +19382,7 @@ "base_uri": "https://localhost:8080/" }, "id": "AbCvuaICLFaw", - "outputId": "961ab1c0-b9da-44ca-cc72-586ef399cd0f" + "outputId": "30c87ce5-79ff-4b10-9633-4d9d9935d63c" }, "execution_count": 11, "outputs": [ @@ -19444,7 +19411,7 @@ "base_uri": "https://localhost:8080/" }, "id": "h3DfACJ1LPK9", - "outputId": "b4cffa60-aa35-4013-e766-c90adee1a715" + "outputId": "ee9f24e5-9342-4dfb-c126-dea6002f0a8c" }, "execution_count": 12, "outputs": [ @@ -19518,9 +19485,9 @@ "base_uri": "https://localhost:8080/", "height": 658 }, - "outputId": "a028548b-c35e-41f5-df46-ab31aaed9b2e" + "outputId": "05c48a03-777d-49a8-8b58-27bec5e2e562" }, - "execution_count": 16, + "execution_count": 18, "outputs": [ { "output_type": "stream", @@ -19529,16 +19496,13 @@ "Collecting scikit-learn==1.5\n", " Using cached scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB)\n", "Collecting numpy>=1.19.5 (from scikit-learn==1.5)\n", - " Downloading numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting scipy>=1.6.0 (from scikit-learn==1.5)\n", - " Downloading scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.6/38.6 MB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting joblib>=1.2.0 (from scikit-learn==1.5)\n", - " Downloading joblib-1.4.2-py3-none-any.whl (301 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m301.8/301.8 kB\u001b[0m \u001b[31m35.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting threadpoolctl>=3.1.0 (from scikit-learn==1.5)\n", - " Downloading threadpoolctl-3.5.0-py3-none-any.whl (18 kB)\n", + " Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n", + "Collecting scipy>=1.6.0 (from scikit-learn==1.5)\n", + " Using cached scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB)\n", + "Collecting joblib>=1.2.0 (from scikit-learn==1.5)\n", + " Using cached joblib-1.4.2-py3-none-any.whl (301 kB)\n", + "Collecting threadpoolctl>=3.1.0 (from scikit-learn==1.5)\n", + " Using cached threadpoolctl-3.5.0-py3-none-any.whl (18 kB)\n", "Installing collected packages: threadpoolctl, numpy, joblib, scipy, scikit-learn\n", "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "cudf-cu12 24.4.1 requires pandas<2.2.2dev0,>=2.0, but you have pandas 1.5.3 which is incompatible.\u001b[0m\u001b[31m\n", @@ -19551,7 +19515,10 @@ "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/sklearn already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/threadpoolctl.py already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/joblib-1.4.2.dist-info already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/scikit_learn-1.5.0.dist-info already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/scipy already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/scipy-1.13.1.dist-info already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/numpy-1.26.4.dist-info already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/numpy already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/scipy.libs already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Target directory /usr/local/lib/python3.10/dist-packages/bin already exists. Specify --upgrade to force replacement.\u001b[0m\u001b[33m\n", @@ -19567,7 +19534,7 @@ "joblib" ] }, - "id": "abc79fed5601455dba6602de390012fd" + "id": "b10b4d1bee714f3f8d9d2cc94cf00a2f" } }, "metadata": {} @@ -19609,7 +19576,7 @@ "metadata": { "id": "mmcr8nDFBpIV" }, - "execution_count": 13, + "execution_count": 1, "outputs": [] }, { @@ -19622,7 +19589,7 @@ "metadata": { "id": "tUYFfnGjDHwn" }, - "execution_count": null, + "execution_count": 2, "outputs": [] }, { @@ -19633,7 +19600,7 @@ "metadata": { "id": "WNgvKuttDPL-" }, - "execution_count": 1, + "execution_count": 3, "outputs": [] }, { @@ -19655,7 +19622,7 @@ "metadata": { "id": "94r1T6YADSzO" }, - "execution_count": 2, + "execution_count": 4, "outputs": [] }, { @@ -19702,9 +19669,9 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "3386b7f8-7319-4ef8-b3f9-1f9e36455309" + "outputId": "8f63b269-742c-4ed2-84a1-ee35feb92bf6" }, - "execution_count": null, + "execution_count": 5, "outputs": [ { "output_type": "stream", @@ -19717,7 +19684,7 @@ "output_type": "stream", "name": "stderr", "text": [ - "Fetching https://ml.materialsproject.org/projects/matbench_steels.json.gz in MB: 0.010239999999999999MB [00:00, 3.64MB/s] \n" + "Fetching https://ml.materialsproject.org/projects/matbench_steels.json.gz in MB: 0.010239999999999999MB [00:00, 3.07MB/s] \n" ] } ] @@ -19737,9 +19704,9 @@ "base_uri": "https://localhost:8080/" }, "id": "jtSDRvkJbQhv", - "outputId": "995fbec2-87c7-43c2-cedf-4d56069b44c3" + "outputId": "071daed9-ce7e-4625-d125-c0f946242f4e" }, - "execution_count": null, + "execution_count": 6, "outputs": [ { "output_type": "stream", @@ -19773,9 +19740,9 @@ "base_uri": "https://localhost:8080/", "height": 206 }, - "outputId": "96c7f4a6-763e-4e79-b193-d063fbdafc58" + "outputId": "30f6dab2-3004-4e4c-b687-f503ea440879" }, - "execution_count": null, + "execution_count": 7, "outputs": [ { "output_type": "execute_result", @@ -19790,7 +19757,7 @@ ], "text/html": [ "\n", - "
\n", + "
\n", "
\n", "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
compositionyield strength
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df_steels", - "summary": "{\n \"name\": \"df_steels\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 7 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels.info()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "dSWjjt_Kr4cY", - "outputId": "5feca44c-0d2a-4071-efc5-8a7de7c4d45a" - }, - "execution_count": 8, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "Int64Index: 312 entries, 0 to 311\n", - "Data columns (total 2 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 composition 312 non-null object \n", - " 1 yield strength 312 non-null float64\n", - "dtypes: float64(1), object(1)\n", - "memory usage: 7.3+ KB\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels = df_steels.rename(columns={\"composition\": \"comp\"})" - ], - "metadata": { - "id": "LcXNyf94bg4r" - }, - "execution_count": 9, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "\n", - "stc = StrToComposition()\n", - "df_steels = stc.featurize_dataframe(df_steels, \"comp\", pbar=False)" - ], - "metadata": { - "id": "K6SDhmODbluy" - }, - "execution_count": 10, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "\n", - "ef = ElementFraction()\n", - "tm = TMetalFraction()\n", - "st = Stoichiometry()\n", - "meredig = Meredig()\n", - "bc = BandCenter()" - ], - "metadata": { - "id": "ZB4sR5T_bp1-" - }, - "execution_count": 11, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "df_steels_bc = bc.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - "df_steels_bc.head()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 342, - "referenced_widgets": [ - "5951387c8ad44e6e8c3bc221d26f95a7", - "c5eb5ffe4b8449909dec01cbb8398204", - "a87cb9a4619e4f2e94cd225305c4c164", - "42a9587733e34474b004bc6e50c70d93", - "6ff853f5aea441edb579cfb8e554b5ee", - "a0e10959e52c48c6819b7b905db963a7", - "68372a1748d14422abc0230d19bd65bf", - "771770e147864184b3bcd09aa2b68919", - "f1115dee46654033ad55d0e5616b5e31", - "9e680338dd8e455f970e034e10ef7c1d", - "268ee68148c54f2d83dfd3ca5c510173" - ] - }, - "id": "g9quj-ozbscO", - "outputId": "3bcf8f38-7ab3-46c0-d56f-c6c861ec0558" - }, - "execution_count": 12, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "BandCenter: 0%| | 0/312 [00:00\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
compyield strengthcompositionband center
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.120851
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)4.045671
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.066023
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.113411
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)4.119559
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df_steels_bc", - "summary": "{\n \"name\": \"df_steels_bc\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"band center\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03576132884772068,\n \"min\": 3.9737310841836684,\n \"max\": 4.183584674157245,\n \"num_unique_values\": 312,\n \"samples\": [\n 4.025966262189159,\n 4.028123275178089,\n 4.056867709895318\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 12 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_ef = ef.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - "df_steels_ef.head()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 495, - "referenced_widgets": [ - "b05a8377886f40fea22ccd259614aaa6", - "b3c7332bcc4847958fc76bdeff06151c", - "8ea1d829587e4eada5054b704d192bc9", - "fd754937f10e45fe9670b1287eaf8684", - "97248511cf4c421bb274ffd5e7c68177", - "20af95800c9843a09dc7310cb81de0c7", - "0860619ace6a499fb6bbd61ff7770ae2", - "34aafcb4af2643c3a9328cdd900fb7dd", - "51158415b05041b5b4f14e7080ba7881", - "8a44b63f70464cc7b9b65ff32ab51bfd", - "6711f2a4a09d4516b0e1d24f06501524" - ] - }, - "id": "O3Ix7UEbbu5B", - "outputId": "762b94bf-b5c5-437b-d122-47fb6e3507f9" - }, - "execution_count": 13, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "ElementFraction: 0%| | 0/312 [00:00\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
compyield strengthcompositionHHeLiBeBCN...PuAmCmBkCfEsFmMdNoLr
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0009530.00000...0000000000
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)000000.0085420.00163...0000000000
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0000000.00000...0000000000
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004780.00000...0000000000
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004740.00000...0000000000
\n", - "

5 rows × 106 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - " \n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df_steels_ef" - } - }, - "metadata": {}, - "execution_count": 13 - } - ] - }, - { - "cell_type": "code", - "source": [ - "# Видаляємо стовпці, де кількість нулів перевищує 80%\n", - "df_steels_ef = df_steels_ef.loc[:, (df_steels_ef == 0).mean() <= 0.6]\n", - "df_steels_ef\n" - ], - "metadata": { - "id": "yPOx0rSwqRqz", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 825 - }, - "outputId": "bb1b62ad-f46c-4d44-cd2e-64fffbf44d4d" - }, - "execution_count": 14, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " comp yield strength \\\n", - "0 Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N... 2411.5 \n", - "1 Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0.... 1123.1 \n", - "2 Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0.... 1736.3 \n", - "3 Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N... 2487.3 \n", - "4 Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N... 2249.6 \n", - ".. ... ... \n", - "307 Fe0.823C0.0176Mn0.00183Si0.000198Cr0.0779Ni0.0... 1722.5 \n", - "308 Fe0.823Mn0.000618Si0.00101Cr0.0561Ni0.0984Mo0.... 1019.0 \n", - "309 Fe0.825C0.0174Mn0.00175Si0.000201Cr0.0565Ni0.0... 1860.3 \n", - "310 Fe0.858C0.0191Mn0.00194Si0.000199Cr0.0753Ni0.0... 1812.1 \n", - "311 Fe0.860C0.0125Mn0.00274Si0.000198Cr0.00439Ni0.... 1139.7 \n", - "\n", - " composition C Al \\\n", - "0 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000953 0.003180 \n", - "1 (Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al) 0.008542 0.000845 \n", - "2 (Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000000 0.008123 \n", - "3 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000478 0.002772 \n", - "4 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000474 0.002740 \n", - ".. ... ... ... \n", - "307 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.017600 0.000620 \n", - "308 (Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti) 0.000000 0.000629 \n", - "309 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.017401 0.000628 \n", - "310 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.019106 0.000623 \n", - "311 (Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al) 0.012505 0.000619 \n", - "\n", - " Si Ti V Cr Mn Fe Co \\\n", - "0 0.001020 0.018499 0.000112 0.000110 0.000521 0.619964 0.145992 \n", - "1 0.000203 0.000000 0.005151 0.147026 0.000104 0.623112 0.188034 \n", - "2 0.000200 0.006692 0.000110 0.093630 0.000102 0.625199 0.132042 \n", - "3 0.001021 0.017611 0.000113 0.000111 0.000523 0.634395 0.146091 \n", - "4 0.001010 0.018400 0.000112 0.000109 0.000518 0.635985 0.143997 \n", - ".. ... ... ... ... ... ... ... \n", - "307 0.000198 0.000000 0.010500 0.077900 0.001830 0.822998 0.046300 \n", - "308 0.001010 0.001060 0.000111 0.056101 0.000618 0.823012 0.000096 \n", - "309 0.000201 0.000000 0.011601 0.056505 0.001750 0.825070 0.046804 \n", - "310 0.000199 0.000000 0.010103 0.075322 0.001941 0.858251 0.000190 \n", - "311 0.000198 0.000000 0.000765 0.004392 0.002741 0.860334 0.036914 \n", - "\n", - " Ni Nb Mo \n", - "0 0.191989 0.000062 0.017599 \n", - "1 0.000097 0.000061 0.017903 \n", - "2 0.129041 0.000060 0.004802 \n", - "3 0.173108 0.000062 0.023715 \n", - "4 0.187995 0.000061 0.008600 \n", - ".. ... ... ... \n", - "307 0.000095 0.000060 0.021900 \n", - "308 0.098401 0.000061 0.018900 \n", - "309 0.000096 0.005540 0.034403 \n", - "310 0.000095 0.000060 0.034110 \n", - "311 0.078631 0.000060 0.002841 \n", - "\n", - "[312 rows x 15 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
compyield strengthcompositionCAlSiTiVCrMnFeCoNiNbMo
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.1459920.1919890.0000620.017599
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)0.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.1880340.0000970.0000610.017903
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.1320420.1290410.0000600.004802
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.1460910.1731080.0000620.023715
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.1439970.1879950.0000610.008600
................................................
307Fe0.823C0.0176Mn0.00183Si0.000198Cr0.0779Ni0.0...1722.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.0463000.0000950.0000600.021900
308Fe0.823Mn0.000618Si0.00101Cr0.0561Ni0.0984Mo0....1019.0(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.0000960.0984010.0000610.018900
309Fe0.825C0.0174Mn0.00175Si0.000201Cr0.0565Ni0.0...1860.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.0468040.0000960.0055400.034403
310Fe0.858C0.0191Mn0.00194Si0.000199Cr0.0753Ni0.0...1812.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.0001900.0000950.0000600.034110
311Fe0.860C0.0125Mn0.00274Si0.000198Cr0.00439Ni0....1139.7(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al)0.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.0369140.0786310.0000600.002841
\n", - "

312 rows × 15 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df_steels_ef", - "summary": "{\n \"name\": \"df_steels_ef\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005088563568682925,\n \"min\": 0.0,\n \"max\": 0.020105653709823198,\n \"num_unique_values\": 286,\n \"samples\": [\n 0.00047699823510653,\n 0.00046767024570975,\n 0.0018905108160224894\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Al\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.007022409097348201,\n \"min\": 0.00020785917540866065,\n \"max\": 0.03761387952154345,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.00496659291725876,\n 0.0008360611996798165,\n 0.00061102260783649\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Si\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011228752706333433,\n \"min\": 0.00019683316421001556,\n \"max\": 0.08997806496916724,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0008036057510185505,\n 0.00020101471427708505,\n 0.02940108784025009\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ti\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.006606511803469801,\n \"min\": 0.0,\n \"max\": 0.029509422358559086,\n \"num_unique_values\": 195,\n \"samples\": [\n 0.0023498634729322222,\n 0.002420134801508444,\n 0.024088386988632776\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"V\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.004991944168276904,\n \"min\": 0.0,\n \"max\": 0.0474201013809754,\n \"num_unique_values\": 309,\n \"samples\": [\n 0.00011094557010330734,\n 0.005310388720454336,\n 0.00010800399614785747\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cr\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.058074181251770926,\n \"min\": 0.00010208857204510633,\n \"max\": 0.1859655777715545,\n \"num_unique_values\": 310,\n \"samples\": [\n 0.04957567817228868,\n 0.1580115664466639,\n 0.13400495818345282\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.003994275428386101,\n \"min\": 9.904104260805677e-05,\n \"max\": 0.03000857645114974,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0007186474315700719,\n 0.00010300754015193911,\n 0.00010000370013690507\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146692352022514,\n \"min\": 0.6199642900568927,\n \"max\": 0.860333809518093,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735131699655,\n 0.6480474370723937,\n 0.6770250499268474\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Co\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05968062978906907,\n \"min\": 9.027832547518227e-05,\n \"max\": 0.18984015458983536,\n \"num_unique_values\": 311,\n \"samples\": [\n 9.575302356663823e-05,\n 0.1490109075984362,\n 0.12900477317660755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ni\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06121709210362406,\n \"min\": 9.489972479079811e-05,\n \"max\": 0.2028409524092159,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.09803274953381981,\n 9.610703503496455e-05,\n 0.008810325982061338\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Nb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0009819534237412472,\n \"min\": 0.0,\n \"max\": 0.0152009576603326,\n \"num_unique_values\": 310,\n \"samples\": [\n 6.077018614667645e-05,\n 6.070444356526897e-05,\n 0.00047401753864893\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mo\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010889034334196392,\n \"min\": 0.00011109638722555688,\n \"max\": 0.057567370814222495,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.011292253514089334,\n 0.028802108314328605,\n 0.011300418115470272\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 14 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_tm = tm.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - "df_steels_tm.head()" - ], - "metadata": { - "id": "3M7Nhm9oqVr-", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 342, - "referenced_widgets": [ - "d0daf63c6916499f807afb3b3302c662", - "574c7d34957643f7b4192a926b354482", - "bcfe83cdd141416bada4514f39f6bd70", - "445e32c93bb7431aba57e215a70134d5", - "822bbd8a845342d5b3fbfd33d73428ae", - "df501797e87e4aaa8adaa8ff618aaa37", - "40e20b82119b4e6ab3ae3547a7c3d72a", - "0d0a7c45234f4edebd46ab00c5001acf", - "b497c552ba9b46678348226d871c5c8f", - "f48e20d6f312489ca8b8595bb1019c49", - "66de8d54a3d04c8cb61e1d250269b991" - ] - }, - "outputId": "40ae39ab-4aaa-46b5-e3f5-94832b57ffa1" - }, - "execution_count": 15, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "TMetalFraction: 0%| | 0/312 [00:00\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
compyield strengthcompositiontransition metal fraction
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.994847
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)0.988780
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.991677
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.995729
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)0.995776
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - " \n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df_steels_tm", - "summary": "{\n \"name\": \"df_steels_tm\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"transition metal fraction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011952777170137955,\n \"min\": 0.8939169623565406,\n \"max\": 0.9987510327998004,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.9921144095150726,\n 0.989442227171029,\n 0.960827550619373\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 15 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_st = st.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - "df_steels_st.head()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 466, - "referenced_widgets": [ - "2b18104da42c48048538d8d3764c56a5", - "15d342846ad8447fa580836d08d5db9f", - "3658c78af95c442b8b844f132e2a1c3e", - "3cd57e0df1fe4519a6097e2ab878dbd7", - "7926f670a4ae41fc808be2cb5b82389f", - "2874ec35ac914ddfb6666a04825db409", - "512cb2509ee4464f82350d6f5ae92bb4", - "51f67fa34c5443e9991e00a1d71b667d", - "a00e609aef554eee9335a611aef79b7e", - "6670c2c8e9134888a8feae69a2e25100", - "abcfe2a54ce145018aa5488d8aa80b63" - ] - }, - "id": "gsTpmAj9b7ZK", - "outputId": "a696b976-723d-4d2d-ed47-f3d55509373d" - }, - "execution_count": 16, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Stoichiometry: 0%| | 0/312 [00:00\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
compyield strengthcomposition0-norm2-norm3-norm5-norm7-norm10-norm
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)120.6657280.6286870.6204070.6199920.619965
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)130.6676210.6314420.6235140.6231360.623112
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)110.6586810.6296630.6253070.6252020.625199
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)120.6742760.6412160.6346690.6344090.634395
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)120.6789520.6438290.6363470.6360050.635985
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - " \n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df_steels_st", - "summary": "{\n \"name\": \"df_steels_st\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"comp\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768C0.000931Mn0.00244Si0.00199Cr0.110Ni0.0981Mo0.0113V0.000110Nb0.0000602Co0.0000948Al0.00497Ti0.00269\",\n \"Fe0.648C0.00751Mn0.000103Si0.000201Cr0.158Ni0.0000961Mo0.0288V0.00531N0.00201Nb0.0000607Co0.149Al0.000836\",\n \"Fe0.677C0.00916Mn0.000100Si0.0294Cr0.134Ni0.00881Mo0.0113V0.000108Nb0.000474Co0.129Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"composition\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 312,\n \"samples\": [\n \"Fe0.768 C0.000931 Mn0.00244 Si0.00199 Cr0.11 Ni0.0981 Mo0.0113 V0.00011 Nb6.02e-05 Co9.48e-05 Al0.00497 Ti0.00269\",\n \"Fe0.648 C0.00751 Mn0.000103 Si0.000201 Cr0.158 Ni9.61e-05 Mo0.0288 V0.00531 N0.00201 Nb6.07e-05 Co0.149 Al0.000836\",\n \"Fe0.677 C0.00916 Mn0.0001 Si0.0294 Cr0.134 Ni0.00881 Mo0.0113 V0.000108 Nb0.000474 Co0.129 Al0.000611\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 10,\n \"max\": 13,\n \"num_unique_values\": 4,\n \"samples\": [\n 13,\n 10,\n 12\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.04427563902277603,\n \"min\": 0.6586807276305723,\n \"max\": 0.8648190235908033,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7815878887528689,\n 0.6841464463613443,\n 0.7029343890609197\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0502036084544961,\n \"min\": 0.6286870284058237,\n \"max\": 0.8605762694650622,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7687571292960343,\n 0.6537736176672051,\n 0.6803406503478145\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"5-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05142045677636951,\n \"min\": 0.6204065864012965,\n \"max\": 0.8603349319303369,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674879845946792,\n 0.6482423499881135,\n 0.6771002024176017\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"7-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146484306447001,\n \"min\": 0.6199920325968773,\n \"max\": 0.8603338160979437,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674737095769911,\n 0.6480553263549956,\n 0.6770270831463305\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"10-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.051466897588403095,\n \"min\": 0.619964825439261,\n \"max\": 0.8603338095215936,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735135375647,\n 0.6480475119780384,\n 0.6770250604470499\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 16 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_meredig = meredig.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - "df_steels_meredig.head()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 513, - "referenced_widgets": [ - "46103e6b769c4772b0e0c8dd0dfc9bb7", - "9444b59122c34e0994e2b6e07b011181", - "2499b8324cf14821a3a0a217fa54570a", - "b3806645f9dd4037a30d1609871a7b2f", - "3c67b7d2e8ee457d9e776e4cc405baad", - "a99d5fca2b1748218cb2314e993307c7", - "4437b7f662c740a1bbad1a99ff62ecf0", - "8540d60b1c3c43b5af090689dc02dfab", - "87cbc8f15e994a28ae17f27b6acba1e2", - "f2e1b59432094113b79d80511c6a1b6a", - "ca6e973b53d2456f967aa48bc9e66fe9" - ] - }, - "id": "KcFtL7GHb9bj", - "outputId": "bc227fc1-aea6-46ad-fa1d-d2ac14402421" - }, - "execution_count": 17, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Meredig: 0%| | 0/312 [00:00\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
compyield strengthcompositionH fractionHe fractionLi fractionBe fractionB fractionC fractionN fraction...range Electronegativitymean Electronegativityavg s valence electronsavg p valence electronsavg d valence electronsavg f valence electronsfrac s valence electronsfrac p valence electronsfrac d valence electronsfrac f valence electrons
0Fe0.620C0.000953Mn0.000521Si0.00102Cr0.000110N...2411.5(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0009530.00000...1.011.8529581.9822290.0071266.4063680.0000000.2361000.0008490.7630510.000000
1Fe0.623C0.00854Mn0.000104Si0.000203Cr0.147Ni0....1123.1(Fe, C, Mn, Si, Cr, Ni, Mo, V, N, Nb, Co, W, Al)000000.0085420.00163...1.491.8310651.8350090.0232255.9257160.1020780.2326910.0029450.7514200.012944
2Fe0.625Mn0.000102Si0.000200Cr0.0936Ni0.129Mo0....1736.3(Fe, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0000000.00000...0.621.8288151.9015080.0085236.2144350.0000000.2340470.0010490.7649040.000000
3Fe0.634C0.000478Mn0.000523Si0.00102Cr0.000111N...2487.3(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004780.00000...1.011.8534761.9761120.0057706.3714270.0000000.2365660.0006910.7627430.000000
4Fe0.636C0.000474Mn0.000518Si0.00101Cr0.000109N...2249.6(Fe, C, Mn, Si, Cr, Ni, Mo, V, Nb, Co, Al, Ti)000000.0004740.00000...1.011.8493511.9912300.0057086.4113610.0000000.2368170.0006790.7625040.000000
\n", - "

5 rows × 123 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - " \n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df_steels_meredig" - } - }, - "metadata": {}, - "execution_count": 17 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_st.columns" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "anLmvoVFcAKV", - "outputId": "9d71875b-2809-4ec9-b708-b1e8fb79107b" - }, - "execution_count": 18, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Index(['comp', 'yield strength', 'composition', '0-norm', '2-norm', '3-norm',\n", - " '5-norm', '7-norm', '10-norm'],\n", - " dtype='object')" - ] - }, - "metadata": {}, - "execution_count": 18 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_tm.columns" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qVpVgxO3cCMr", - "outputId": "e29fdb89-000d-4445-c483-d290a840fe42" - }, - "execution_count": 19, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Index(['comp', 'yield strength', 'composition', 'transition metal fraction'], dtype='object')" - ] - }, - "metadata": {}, - "execution_count": 19 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_bc.columns" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "RAsnJRD3cEPc", - "outputId": "42e63af5-c214-4e98-fd40-146e00948d17" - }, - "execution_count": 20, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Index(['comp', 'yield strength', 'composition', 'band center'], dtype='object')" - ] - }, - "metadata": {}, - "execution_count": 20 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df_steels_ef.columns" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "xPb0axf5cGft", - "outputId": "70e74ee9-a9ce-449d-949d-d668ed613855" - }, - "execution_count": 21, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Index(['comp', 'yield strength', 'composition', 'C', 'Al', 'Si', 'Ti', 'V',\n", - " 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Nb', 'Mo'],\n", - " dtype='object')" - ] - }, - "metadata": {}, - "execution_count": 21 - } - ] - }, - { - "cell_type": "code", - "source": [ - "data_steel = df_steels_ef.drop(['comp', 'composition'], axis=1)\n", - "data_steel" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 461 - }, - "id": "4zwuY5BrcKL9", - "outputId": "67c9f145-cf2f-49f5-b21e-7b446b658ee5" - }, - "execution_count": 22, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " yield strength C Al Si Ti V \\\n", - "0 2411.5 0.000953 0.003180 0.001020 0.018499 0.000112 \n", - "1 1123.1 0.008542 0.000845 0.000203 0.000000 0.005151 \n", - "2 1736.3 0.000000 0.008123 0.000200 0.006692 0.000110 \n", - "3 2487.3 0.000478 0.002772 0.001021 0.017611 0.000113 \n", - "4 2249.6 0.000474 0.002740 0.001010 0.018400 0.000112 \n", - ".. ... ... ... ... ... ... \n", - "307 1722.5 0.017600 0.000620 0.000198 0.000000 0.010500 \n", - "308 1019.0 0.000000 0.000629 0.001010 0.001060 0.000111 \n", - "309 1860.3 0.017401 0.000628 0.000201 0.000000 0.011601 \n", - "310 1812.1 0.019106 0.000623 0.000199 0.000000 0.010103 \n", - "311 1139.7 0.012505 0.000619 0.000198 0.000000 0.000765 \n", - "\n", - " Cr Mn Fe Co Ni Nb Mo \n", - "0 0.000110 0.000521 0.619964 0.145992 0.191989 0.000062 0.017599 \n", - "1 0.147026 0.000104 0.623112 0.188034 0.000097 0.000061 0.017903 \n", - "2 0.093630 0.000102 0.625199 0.132042 0.129041 0.000060 0.004802 \n", - "3 0.000111 0.000523 0.634395 0.146091 0.173108 0.000062 0.023715 \n", - "4 0.000109 0.000518 0.635985 0.143997 0.187995 0.000061 0.008600 \n", - ".. ... ... ... ... ... ... ... \n", - "307 0.077900 0.001830 0.822998 0.046300 0.000095 0.000060 0.021900 \n", - "308 0.056101 0.000618 0.823012 0.000096 0.098401 0.000061 0.018900 \n", - "309 0.056505 0.001750 0.825070 0.046804 0.000096 0.005540 0.034403 \n", - "310 0.075322 0.001941 0.858251 0.000190 0.000095 0.000060 0.034110 \n", - "311 0.004392 0.002741 0.860334 0.036914 0.078631 0.000060 0.002841 \n", - "\n", - "[312 rows x 13 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
yield strengthCAlSiTiVCrMnFeCoNiNbMo
02411.50.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.1459920.1919890.0000620.017599
11123.10.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.1880340.0000970.0000610.017903
21736.30.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.1320420.1290410.0000600.004802
32487.30.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.1460910.1731080.0000620.023715
42249.60.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.1439970.1879950.0000610.008600
..........................................
3071722.50.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.0463000.0000950.0000600.021900
3081019.00.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.0000960.0984010.0000610.018900
3091860.30.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.0468040.0000960.0055400.034403
3101812.10.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.0001900.0000950.0000600.034110
3111139.70.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.0369140.0786310.0000600.002841
\n", - "

312 rows × 13 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "data_steel", - "summary": "{\n \"name\": \"data_steel\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"yield strength\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.89416859686656,\n \"min\": 1005.9,\n \"max\": 2510.3,\n \"num_unique_values\": 270,\n \"samples\": [\n 1529.6,\n 1743.5,\n 1729.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005088563568682925,\n \"min\": 0.0,\n \"max\": 0.020105653709823198,\n \"num_unique_values\": 286,\n \"samples\": [\n 0.00047699823510653,\n 0.00046767024570975,\n 0.0018905108160224894\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Al\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.007022409097348201,\n \"min\": 0.00020785917540866065,\n \"max\": 0.03761387952154345,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.00496659291725876,\n 0.0008360611996798165,\n 0.00061102260783649\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Si\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011228752706333433,\n \"min\": 0.00019683316421001556,\n \"max\": 0.08997806496916724,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0008036057510185505,\n 0.00020101471427708505,\n 0.02940108784025009\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ti\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.006606511803469801,\n \"min\": 0.0,\n \"max\": 0.029509422358559086,\n \"num_unique_values\": 195,\n \"samples\": [\n 0.0023498634729322222,\n 0.002420134801508444,\n 0.024088386988632776\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"V\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.004991944168276904,\n \"min\": 0.0,\n \"max\": 0.0474201013809754,\n \"num_unique_values\": 309,\n \"samples\": [\n 0.00011094557010330734,\n 0.005310388720454336,\n 0.00010800399614785747\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cr\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.058074181251770926,\n \"min\": 0.00010208857204510633,\n \"max\": 0.1859655777715545,\n \"num_unique_values\": 310,\n \"samples\": [\n 0.04957567817228868,\n 0.1580115664466639,\n 0.13400495818345282\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.003994275428386101,\n \"min\": 9.904104260805677e-05,\n \"max\": 0.03000857645114974,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0007186474315700719,\n 0.00010300754015193911,\n 0.00010000370013690507\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146692352022514,\n \"min\": 0.6199642900568927,\n \"max\": 0.860333809518093,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735131699655,\n 0.6480474370723937,\n 0.6770250499268474\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Co\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05968062978906907,\n \"min\": 9.027832547518227e-05,\n \"max\": 0.18984015458983536,\n \"num_unique_values\": 311,\n \"samples\": [\n 9.575302356663823e-05,\n 0.1490109075984362,\n 0.12900477317660755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ni\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06121709210362406,\n \"min\": 9.489972479079811e-05,\n \"max\": 0.2028409524092159,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.09803274953381981,\n 9.610703503496455e-05,\n 0.008810325982061338\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Nb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0009819534237412472,\n \"min\": 0.0,\n \"max\": 0.0152009576603326,\n \"num_unique_values\": 310,\n \"samples\": [\n 6.077018614667645e-05,\n 6.070444356526897e-05,\n 0.00047401753864893\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mo\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010889034334196392,\n \"min\": 0.00011109638722555688,\n \"max\": 0.057567370814222495,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.011292253514089334,\n 0.028802108314328605,\n 0.011300418115470272\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 22 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df = pd.concat([data_steel,\n", - " df_steels_st['0-norm'], df_steels_st['2-norm'],\n", - " df_steels_st['3-norm'], df_steels_st['5-norm'],\n", - " df_steels_st['7-norm'], df_steels_st['10-norm'],\n", - " df_steels_tm['transition metal fraction'],\n", - " df_steels_bc['band center']\n", - " ], axis=1)\n", - "df" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 478 - }, - "id": "J1_tJwtRcPOu", - "outputId": "fbe389e3-b4ea-44a7-9c3c-c327df4c698a" - }, - "execution_count": 23, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " yield strength C Al Si Ti V \\\n", - "0 2411.5 0.000953 0.003180 0.001020 0.018499 0.000112 \n", - "1 1123.1 0.008542 0.000845 0.000203 0.000000 0.005151 \n", - "2 1736.3 0.000000 0.008123 0.000200 0.006692 0.000110 \n", - "3 2487.3 0.000478 0.002772 0.001021 0.017611 0.000113 \n", - "4 2249.6 0.000474 0.002740 0.001010 0.018400 0.000112 \n", - ".. ... ... ... ... ... ... \n", - "307 1722.5 0.017600 0.000620 0.000198 0.000000 0.010500 \n", - "308 1019.0 0.000000 0.000629 0.001010 0.001060 0.000111 \n", - "309 1860.3 0.017401 0.000628 0.000201 0.000000 0.011601 \n", - "310 1812.1 0.019106 0.000623 0.000199 0.000000 0.010103 \n", - "311 1139.7 0.012505 0.000619 0.000198 0.000000 0.000765 \n", - "\n", - " Cr Mn Fe Co ... Nb Mo 0-norm \\\n", - "0 0.000110 0.000521 0.619964 0.145992 ... 0.000062 0.017599 12 \n", - "1 0.147026 0.000104 0.623112 0.188034 ... 0.000061 0.017903 13 \n", - "2 0.093630 0.000102 0.625199 0.132042 ... 0.000060 0.004802 11 \n", - "3 0.000111 0.000523 0.634395 0.146091 ... 0.000062 0.023715 12 \n", - "4 0.000109 0.000518 0.635985 0.143997 ... 0.000061 0.008600 12 \n", - ".. ... ... ... ... ... ... ... ... \n", - "307 0.077900 0.001830 0.822998 0.046300 ... 0.000060 0.021900 11 \n", - "308 0.056101 0.000618 0.823012 0.000096 ... 0.000061 0.018900 11 \n", - "309 0.056505 0.001750 0.825070 0.046804 ... 0.005540 0.034403 11 \n", - "310 0.075322 0.001941 0.858251 0.000190 ... 0.000060 0.034110 11 \n", - "311 0.004392 0.002741 0.860334 0.036914 ... 0.000060 0.002841 11 \n", - "\n", - " 2-norm 3-norm 5-norm 7-norm 10-norm \\\n", - "0 0.665728 0.628687 0.620407 0.619992 0.619965 \n", - "1 0.667621 0.631442 0.623514 0.623136 0.623112 \n", - "2 0.658681 0.629663 0.625307 0.625202 0.625199 \n", - "3 0.674276 0.641216 0.634669 0.634409 0.634395 \n", - "4 0.678952 0.643829 0.636347 0.636005 0.635985 \n", - ".. ... ... ... ... ... \n", - "307 0.828517 0.823287 0.822999 0.822998 0.822998 \n", - "308 0.830987 0.823571 0.823017 0.823012 0.823012 \n", - "309 0.829324 0.825232 0.825070 0.825070 0.825070 \n", - "310 0.862498 0.858466 0.858252 0.858251 0.858251 \n", - "311 0.864819 0.860576 0.860335 0.860334 0.860334 \n", - "\n", - " transition metal fraction band center \n", - "0 0.994847 4.120851 \n", - "1 0.988780 4.045671 \n", - "2 0.991677 4.066023 \n", - "3 0.995729 4.113411 \n", - "4 0.995776 4.119559 \n", - ".. ... ... \n", - "307 0.981582 4.043178 \n", - "308 0.998361 4.046132 \n", - "309 0.981769 4.046924 \n", - "310 0.980072 4.034904 \n", - "311 0.986678 4.089606 \n", - "\n", - "[312 rows x 21 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
yield strengthCAlSiTiVCrMnFeCo...NbMo0-norm2-norm3-norm5-norm7-norm10-normtransition metal fractionband center
02411.50.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.145992...0.0000620.017599120.6657280.6286870.6204070.6199920.6199650.9948474.120851
11123.10.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.188034...0.0000610.017903130.6676210.6314420.6235140.6231360.6231120.9887804.045671
21736.30.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.132042...0.0000600.004802110.6586810.6296630.6253070.6252020.6251990.9916774.066023
32487.30.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.146091...0.0000620.023715120.6742760.6412160.6346690.6344090.6343950.9957294.113411
42249.60.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.143997...0.0000610.008600120.6789520.6438290.6363470.6360050.6359850.9957764.119559
..................................................................
3071722.50.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.046300...0.0000600.021900110.8285170.8232870.8229990.8229980.8229980.9815824.043178
3081019.00.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.000096...0.0000610.018900110.8309870.8235710.8230170.8230120.8230120.9983614.046132
3091860.30.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.046804...0.0055400.034403110.8293240.8252320.8250700.8250700.8250700.9817694.046924
3101812.10.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.000190...0.0000600.034110110.8624980.8584660.8582520.8582510.8582510.9800724.034904
3111139.70.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.036914...0.0000600.002841110.8648190.8605760.8603350.8603340.8603340.9866784.089606
\n", - "

312 rows × 21 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df" - } - }, - "metadata": {}, - "execution_count": 23 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df.info()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "OxCxxRLzqsmr", - "outputId": "74169263-6156-4dec-d5ea-bada476d7076" - }, - "execution_count": 24, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "Int64Index: 312 entries, 0 to 311\n", - "Data columns (total 21 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 yield strength 312 non-null float64\n", - " 1 C 312 non-null float64\n", - " 2 Al 312 non-null float64\n", - " 3 Si 312 non-null float64\n", - " 4 Ti 312 non-null float64\n", - " 5 V 312 non-null float64\n", - " 6 Cr 312 non-null float64\n", - " 7 Mn 312 non-null float64\n", - " 8 Fe 312 non-null float64\n", - " 9 Co 312 non-null float64\n", - " 10 Ni 312 non-null float64\n", - " 11 Nb 312 non-null float64\n", - " 12 Mo 312 non-null float64\n", - " 13 0-norm 312 non-null int64 \n", - " 14 2-norm 312 non-null float64\n", - " 15 3-norm 312 non-null float64\n", - " 16 5-norm 312 non-null float64\n", - " 17 7-norm 312 non-null float64\n", - " 18 10-norm 312 non-null float64\n", - " 19 transition metal fraction 312 non-null float64\n", - " 20 band center 312 non-null float64\n", - "dtypes: float64(20), int64(1)\n", - "memory usage: 53.6 KB\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "corr = df.corr()\n", - "plt.figure(figsize=(15, 15))\n", - "sns.heatmap(corr, annot=True, cmap=\"coolwarm\", fmt=\".1f\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 932 - }, - "id": "twAWYH6ysBj_", - "outputId": "d821262e-b813-445f-8bd1-8c8c7bdd8c8d" - }, - "execution_count": 25, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 25 - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAVOCAYAAAAKGBUDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hTVwMG8DdBCJswRED2FgVRnB3uWbd+tmrr3lZttc627t2qtc666t6iOHBrXa1aR92KeysIJGzCSL4/0EAkQSgkIfb9PU+eNtdzbl4u9557OTn3XIFCoVCAiIiIiIiIiIiISA2hvgMQERERERERERFR6cUORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERERacPLkSbRq1QouLi4QCASIiIh4b53jx4+jatWqEIlE8PX1xerVq/OVWbRoETw9PWFqaoqaNWvi77//LvnwebADkYiIiIiIiIiISAtSUlJQuXJlLFq0qFDlHz58iBYtWqB+/fq4fPkyvv32W/Tp0wcHDx5UltmyZQuGDx+OCRMm4NKlS6hcuTKaNm2KmJgYbf0YECgUCoXW1k5EREREREREREQQCATYuXMn2rZtq7HM6NGjERkZievXryuXderUCVKpFAcOHAAA1KxZE9WrV8fChQsBAHK5HG5ubhgyZAjGjBmjlewcgUhERERERERERFQIMpkMiYmJKi+ZTFZi6z9z5gwaNWqksqxp06Y4c+YMACAjIwMXL15UKSMUCtGoUSNlGW0oo7U1E5VCkcYB+o5QZFWvbdF3hCJ5IXTXd4QikaRb6DtCkXx0aaa+IxRZelhDfUcokuVRH+k7QpEEe2frO0KRlTEyrJsfqgm1O59MSSuTkaLvCEXyXFxJ3xGKzBgZ+o5QJInZ1vqOUCTx6Zb6jlBkhnZPlwICfUegUsbP8om+IxSJc9QxfUcoEtPP+uk7gk4Y4t/b/8b5Hzpj0qRJKssmTJiAiRMnlsj6X716hXLlyqksK1euHBITE5GWlgaJRILs7Gy1ZW7fvl0iGdRhByIREREREREREVEhjB07FsOHD1dZJhKJ9JRGd9iBSEREREREREREVAgikUirHYZOTk6Ijo5WWRYdHQ1ra2uYmZnByMgIRkZGass4OTlpLRfnQCQiIiIiIiIiIioFateujaNHj6osO3z4MGrXrg0AMDExQVhYmEoZuVyOo0ePKstoA0cgEhERERERERFRsQiMOb+qOsnJybh3757y/cOHD3H58mXY2dnB3d0dY8eOxfPnz7F27VoAwIABA7Bw4UKMGjUKvXr1wrFjx7B161ZERkYq1zF8+HB0794d1apVQ40aNTBv3jykpKSgZ8+eWvs52IFIRERERERERESkBRcuXED9+vWV79/On9i9e3esXr0aL1++xJMnuQ8y8vLyQmRkJIYNG4Zff/0Vrq6uWLFiBZo2baos88UXX+D169cYP348Xr16hdDQUBw4cCDfg1VKEjsQiYiIiIiIiIiItKBevXpQKBQa/3316tVq6/zzzz8Frnfw4MEYPHhwceMVGudAJCIiIiIiIiIiIo3YgUhEREREREREREQa8RZmIiIiIiIiIiIqFmEZPkTlQ8YRiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiIpFYMwxah8y/naJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGvEhKkREREREREREVCzCMgJ9RyAt4ghEIiIiIiIiIiIi0ogdiERERERERERERKQROxB1aOLEiQgNDS10+UePHkEgEODy5csayxw/fhwCgQBSqbTY+Uqz/8rPSURERERERERU2nAORB0aMWIEhgwZou8YKjw9PfHtt9/i22+/1XcUpXr16iE0NBTz5s3TdxQAgN0n1eD9XW/YVK0EUxdHXOgwCNG7jxZcp04NBM0eA8sgP6Q/fYl7M5bg2dqdOkqcY2fkQWyO2IN4iRS+nh4Y2q8nKvj7qi378MlTrNq4FVH3HyI65jW+7t0NHVu30GlehUKB7RuW449Du5GSkgT/CiHoNWgUnF3cCqx3KHI79u7YgARJPNy9fNG9/3D4+lfUWebILYvx59FwpKUkwTswFJ36/ghHZw+Nde7evIAju1fj6YNbSJC8Rr+R81C5RgOd5N1y8Q7WnLuFuOQ0+DvaYnSTMFRycVBbdvfVB5gQeVZlmYmREOdGddJFVADA9v3HsGH3AcRLE+Dr4Ybhvbugop+32rK7Dp/A/hNn8ODpcwBAgLcHBnRpr7G8NigUCvxzdAGizm9DRnoSHD2q4KPWE2Dj4Fmo+ldOLMfFQ3MR9FFX1GrxvXbDvqFQKHBg+yKcObYd6SlJ8Ayogo69xqFsAfvwkYjluHr+CGJePISxiSk8/UPRqvMwOLp46STvvq2L8NebY84rMBRf9BlX4DF37+YFHN29Gk8e3kSi5DX6jJiHyjUaaj0rYHj78NZDJ7F+7zHEJSTCz708Rnb/Hyr6qt+2x/6+gtW7DuFpdCyysrPh5lQWX31WH599WkNneQFg354I7AzfAqkkHp5ePug7cAj8AypoLP/nqePYuG4VYqJfwdnFFd169UW16rV0lnfvnt0ID98OiUQCLy9vDBg4CAEBAWrLPn78COvXrcO9e3cRExODvv36o23bdjrLCrw9N6/AsTfn5oAKIeg1aGQhzs3h2JPn3Nyj/3D4+gfpLLMhnZsVCgUity5WtmvegaH4ok/Bee+9yfvk4S0kSl6j7wjd5jWkdtgQMxta3t179mJ7eDgkEgm8vbwwaOAAje3ao8ePsW7dety9dw8xMTHo368v2rVtq5Ocb20+/Q/WHLuA2KQU+LuUxZj2DRDs4fzeevsv3caYdZGoX8kH83q31X5QAyUw5hyIHzKOQNQhS0tL2Nvb6ztGkWVnZ0Mul+s7ht4YWZgj8WoUrg+dVKjyZp6uqL57KeKOn8Ppam3wcMEaBC+dCofGn2g5aa5jp/7C4t/XoscXHbB87kz4eHlg5MTpkEgT1JaXyWRwLlcO/bp2hp2tWGc589oTvh4H925Dr0GjMGX2SpiammHm+G+RkSHTWOfMqSNYv2I+2nfujWnzVsPdyw8zxw9DgjReJ5kP71qF4/s3olO/cRg5YwNMRGZYOHUAMgvInCFLg6tHAD7vrZsOorcO3nyMOUcvof8nlbCxV3P4lxNj0JY/EJ+SrrGOpcgYh4e0U772fd1GZ3mP/Pk35q/Zgt4dW2P1TxPg5+mGYVN/QXxCotryl25EofEnNbBw4kgsm/49yjnY4dspcxETJ9FZ5munVuDmmfX4qM1EtBq4BcbG5ji4ui+yMjXvD2+9fnYNUee3wNZJ/QW3thzb8ztOHtiAjr3H49spGyESmeG3mf0L3Ifv37qAT5p0xjeTN2LA98uQnZWJ32b0gyw9Vet5j+z6HSf2b8QXfcfhu+kbIBKZYfG0gvPKZGko7+mPz3v/oPV8eRnaPnzozCXMW78Tfdo3w7ppI+HnXh5DZi5GfEKS2vI2lubo2bYJfp80DJtmjkarOjUxeelGnLlySyd5AeD0iT/w+/Il6NSlG+YuWApPbx9MGjcaUqn6bXb75nXMmTUVjZo0x9wFy1Cz9seYOWU8Hj96qJO8J0+cwPLly9Gly1eYv2AhvLy9MW7cDxrvrpDJZHBydkKPnr1ga2urk4zv2hO+Hgf2bkPvQSMxZfYKiExNMXP8sPeem9etmI8OnXth+rxV8PDy5bm5AEd2rcKJ/RvRqe84jJiek3fRtILz5rRrAfhCL3kNpx1+y9AyG1LeEydOYvny5fiqSxcsXDAf3t5e+GHcuPe2a7169tBLu3bgn9uYHXEC/ZvWxubvuiLApSwGLg1HXFLB1zDP4xMwd/cJVPUur6OkRKUTOxBLyNq1a2Fvbw+ZTLVhb9u2Lbp27QpA/S3MK1asQIUKFWBqaorAwEAsXry4wM/Zt28f/P39YWZmhvr16+PRo0cFllcoFJg4cSLc3d0hEong4uKCoUOHAsgZ6ff48WMMGzYMAoEAAkHOtwWrV6+GWCzG7t27ERQUBJFIhCdPnkAmk2HEiBEoX748LCwsULNmTRw/flz5WW/rHTx4EBUqVIClpSWaNWuGly9fKstkZWVh6NChEIvFsLe3x+jRo9G9e3e0ffPNU48ePXDixAn8+uuvykx5f8aLFy+iWrVqMDc3x0cffYSoqKgCf/6S8PrgSdyZMA/Ru44UqrxHv05Ie/gMt0bNQvLtB3i8eANehR+E1zc9tBs0j227ItGiSUM0b1Qfnu6uGD6wD0xFJth35A+15QP9fDGw51doWOdjGBsb6yznWwqFAgd2b0Hbz3ugWq06cPfyxcBh4yGNj8WFsyc11tsXsQn1m7ZGvUYt4eruhd6DRkEkEuHE4b06yfxH5Ho069AXlavXR3kPf3QfPA0Jkte4cv6YxnoVq3yKVp2HILSm7r55B4D1f99G+8o+aBPiAx8HG/zQrAZMy5RBxNX7BdZzsDRTvuwtzHSUFti05xBaN6qDlg0+gZebC0b16wqRyAR7j51WW37St/3QoVkD+Hu5w7O8M8YO6AG5QoEL13TTmaFQKHDjz7WoXG8APIIaws4pAHU6zkRaUgye3Cq47ciUpeDE1pH4uO1kiMysdZIXyMl8Yv86NGnXD8HVGsDFIwBdBk1HoiQG1y5oHmXdf+xS1KjbFs5uvijvEYguA6dBEvsSzx7e1Hre4/vWo2n7fgip3gDlPQLQdfB0JEhe4+p7jrmWnYbqdLQLYHj78MZ9f6Bt/Y/Qul4teLs6Y2zvz2EqMsHuE2fVlg8L8kP96pXhVd4JruXKonPzevB1d8HlqAc6yQsAu3ZuQ5Nmn6Fhk+Zwc/fEwMHDIBKJcPTQfrXl9+zagaphNdDuf53g5u6BL7v1grePH/btidBJ3p07d6BZs2Zo3KQJ3N09MHjwEJiKRDh06KDa8v7+Aejduy/q1q2nt3Pz/t1b0e7NudnDyxeDho2H5D3n5siIzWjwzrnZRCTCcZ6b81EoFPhj33o0bd8XIW/ydits3k5DdN6uGVo7DBheZkPLu2PnTjRr1gxNmjSGh7s7hgweDJHIFAcPHVJbPsDfH31790a9unX10q6tO34R7WsHo23NSvBxssePHRvD1MQYEeeuaayTLZfj+3X7MLDZR3C1F+suLFEpxA7EEtKxY0dkZ2dj9+7dymUxMTGIjIxEr1691NbZsGEDxo8fj2nTpuHWrVuYPn06xo0bhzVr1qgt//TpU7Rv3x6tWrXC5cuX0adPH4wZM6bAXOHh4fjll1+wdOlS3L17FxEREQgODgYA7NixA66urpg8eTJevnyp0tGXmpqKWbNmYcWKFbhx4wYcHR0xePBgnDlzBps3b8bVq1fRsWNHNGvWDHfv3lWpN3v2bKxbtw4nT57EkydPMGLECOW/z5o1Cxs2bMCqVavw559/IjExEREREcp///XXX1G7dm307dtXmcnNLfc2mR9++AFz5szBhQsXUKZMGY3bVp/EtUIRe+yMyrLXh0/DtlaoTj4/MzMLUfcfIKxysHKZUChEWOVg3Iy6W0BN/YmJfgGpJA6VQqsrl5lbWMLHPwh3b19XWycrMxMP70WhUuXcOkKhEJVCq+NulPo6JSku5jkSpbEICM699c3MwgqevsF4GHVF659fFJnZ2bj1Kh41vZyUy4QCAWp6OuHq81iN9dIystB8UQSaLYzAt9tP4P5rqQ7SvtmHHzxG9ZDc2xCFQiGqBwfhelTBHZ5vpWfIkJWdDWtLC23FVJEkeYa05Fi4+NRWLjMxtUJZ1xDEPCl4fzizZwrcAuqivO9H2o6pIi7mGZKksfCvlJvZzNwKHj4heHS38PtwWmoyAMDc0qbEM+YVF/Ms55gLyXPMmb855u6UsmPOwPbhzKws3H74FDUq5Y6AFQqFqFEpANfuvn90nkKhwN/Xo/D4ZQyqVvDRZlSlzMxM3L93ByGhYcplQqEQlUPDEHVbfWd21O2bCKlSVWVZlbDqiLp9Q6tZgZy89+7dRWhoFeUyoVCI0NAquH1bd6M2iyL33FxNuazw5+bcOjw3a/Y2b6Cadu1RKWvXAMNqh98ytMyGlDczMxN3791DlTwDZIRCIaqEhuLW7dv6C6ZBZlY2bj2LRi1/d+UyoVCAWn7uuPr4pcZ6Sw+ega2VOdrXCtZYhui/gnMglhAzMzN06dIFq1atQseOHQEA69evh7u7O+rVq6e2zoQJEzBnzhy0b98eAODl5YWbN29i6dKl6N69e77yS5YsgY+PD+bMmQMACAgIwLVr1zBr1iyNuZ48eQInJyc0atQIxsbGcHd3R40aOfMT2dnZwcjICFZWVnByclKpl5mZicWLF6Ny5crK9axatQpPnjyBi4sLgJw5HQ8cOIBVq1Zh+vTpynq//fYbfHxy/oAYPHgwJk+erFzvggULMHbsWLRrlzOHz8KFC7Fv3z7lv9vY2MDExATm5ub5MgHAtGnTULduXQDAmDFj0KJFC6Snp8PU1DRfWZlMlm9EaKZCDmOBdvvNReUcIItW7ZSRRcfC2MYKQlMR5Onvv52xOBISEyGXy2EnVv1j3lZsgyfPXmj1s/+tBEkcAMBGbKey3EZsp/y3dyUlSiGXZ8PGNn+dF88eaydoHonSnN+xtVh1WgIrsT0Speoz64skVYZshQJ25qrHib2FKR7Fqb+d0sPOChNa1IS/oy2SZBlYd+4Weqw7jO19WqCctblW80qTkpAtl8PORnU0np3YGo+fa77Ay2vx+u0oaytG9RDdzLmVlpSzP5hZqu4PppYOSEt+rbHeg6uRiHtxE60GbtNqPnWSEnIyW9qoZra0sUeSVHPHcl5yuRwRa2fCK6AKnN38SjxjXm+PK6t38lrZ2CuPx9LC0PZhaVLKm7xWKsvtbKzw6EW0xnrJqWn47OtxyMjKgpFQiNE9O6JmcKC24wIAkhITIJfLIX7nFjgbsS2ePX2ito5UEg+xOH95iUT7t4knvjk3i9+ZJkQsFuPp06da//x/I0GSc8uxunOzVKL+duREnpuL5G1e9e1aacxrOO3wW4aW2ZDyGlq7JklJQ7ZcAXsr1S/m7K3M8TBGfZt26cEz7Dx3HVtHdNVFRKJSjx2IJahv376oXr06nj9/jvLly2P16tXo0aOH8tbgvFJSUnD//n307t0bffv2VS7PysqCjY36URy3bt1CzZo1VZbVrl1bbdm3OnbsiHnz5sHb2xvNmjXDZ599hlatWqFMmYJ/9SYmJggJCVG+v3btGrKzs+Hv769STiaTqczraG5uruw8BABnZ2fExMQAABISEhAdHa3swAQAIyMjhIWFFXqOxbyZnJ1zJruNiYmBu7t7vrIzZszApEmq8xZ2FtjhSyP1D40g3Tl9/CBWLsrt+B41frYe0xTO36cisWlpbmf4oLGL9JhG+yq7lkVl17K578uXRYdle7H9n7v4um5lPSZ7v7U79+Hwn39j8cRREJlo5/aY+5f34M9dE5XvG3dbUuR1JEtf4uzeGWjWayXKGItKMJ16F0/vxdYVuW1i31EFT5lRGOGrpuLl03sYOnFtsdf1rvOn9mLzstxjbsAHfszlpYt9uCSYm4qwYcZopKbLcP7GHfyyPgLlHR0QFqTdzmTSjtPHD2LFop+U73luLnnnT0ViU552bWCpz2t47bChZTa0vP8lKekZ+GHDfkz4oglsLbX75fmHRFiGD1H5kLEDsQRVqVIFlStXxtq1a9GkSRPcuHEDkZGRassmJ+fc8rV8+fJ8nYJGRkYllsnNzQ1RUVE4cuQIDh8+jEGDBuHnn3/GiRMnCpx3wszMTKXjMzk5GUZGRrh48WK+fJaWlsr/f3edAoEACoWihH4a1fW/zaep83Hs2LEYPny4yrJjdmFqy5YkWXQsROVUOylF5RyQmZCk9dGHAGBjbQ2hUIj4dx6YIpEm6O0BKe8Kq/GJytMYszIzAQAJ0njY2uVuuwRpPDy8/fPVBwArazGEQiPlCIm8dcS2Jf+wopBq9eDpm3vrQlZWBoCcb4ptbHM72pKkcXD11O2DMN7H1lwEI4EA8amqD0yJS0mHvWX+0bvqGBsJEeBki6eSZG1EVCG2soKRUJjvYRPx0kTYiwu+TXbDrgNYt3Mf5o8fAV/Pgp8SWhzuFRqgrFvuFxrZb/aHtOQ4mFs7KpenJ8fCzln9E2HjXtxAekocdi3qoFymkGfj1aMLuHV2I7pPugKhsOTOBxXD6mOEb27mrMyczMkJqvtwckIcXAqxD4evmoabl05g8IQ1ENvnHzFeXMHV6sPTL3/epHfyJiXEobynbka9FZYh7MN5ia0s3uRVfWBKfEIS7MVWGmrl3Krm5pTzuwjwdMWj56+wetdhnXQgWlnbQCgUQvrO6MEEqQS2dnZq64ht7fI9YCVBKtHJRP7Wb87NUolUZblUKoWtnX4ekPKunHNzReX7zDfHnLpzs6e3+t+xdYHnZvW/l+IwtHNzcLV68PTLk7eAdq105DW8dtjQMhta3rwMoV3Ly9bCDEZCAeKSUlSWxyWlwsE6/3QhT+OkeBGfiKErdiqXyd/8XVv1u7nYNbYX3BzEWs1MVNpwDsQS1qdPH6xevRqrVq1Co0aNVObvy6tcuXJwcXHBgwcP4Ovrq/Ly8vJSW6dChQr4+++/VZadPat+cvO8zMzM0KpVK8yfPx/Hjx/HmTNncO1azkSxJiYmyM7Ofu86qlSpguzsbMTExOTLq+5WY3VsbGxQrlw5nD9/XrksOzsbly5dUilX2EzvIxKJYG1trfLS9u3LACA9exn2DWqpLHNo+BEkZy9r/bMBwNi4DAJ8vHHpau5kwHK5HBevXkdQQOkYFWJmbgEnFzflq7y7F8S29rhx5YKyTGpqCu7fuQm/wEpq11HG2BhevgG4cTW3jlwux40rF+AXoL5OcZiaWcDR2V35cnb1gbXYAVHXzynLpKUm49G9a/AKKF0j9IyNjFDByQ7nHuXeiihXKPD341cIKV+4EbnZcjnuxSTAoZAdjsVhbFwGAd4eKg+PkMvluHDtFioFaJ5fbX3EfqwK34tffhyGCr6e2s0osoC1vYfyJXb0hZmlA148yG2TM9KT8frZVTi6q98fXHxqo93QXWg7eIfy5VC+Enwqt0TbwTtKtPMQyNmHyzq5K19Orj6wEjvgzvXczOmpyXh8/yo8/TTvwwqFAuGrpuHa+aMY9OPvsHd0LdGcBeW1Fjsg6pqaY86/lB1zBrAP52VcpgwCvdxw/sYd5TK5XI7zN6IQ7Kf+mkQduUKBjKwsbUTMx9jYGD6+/rh6JfcaQi6X4+rlSwgIVH/bd0BgEK5eVr3muPzPBQQEVlRbviQZGxvD19cPl69cVi6Ty+W4fPkyAgPVf8mgaznnZlfly/XNufn6vzg3X796UbmM5+ZcRWnXPEtBu2aI7bChZTa0vHkZGxvDz9dXbbtWIbB0dXYCgHEZI1RwLYdzd3KnuZDLFTh39wlCPJzzlfdytMP2Ud2xZUQ35ateRR9U93XHlhHd4FTAF2xEHyqOQCxhXbp0wYgRI7B8+XKsXVvwLV2TJk3C0KFDYWNjg2bNmkEmk+HChQuQSCT5Rs4BwIABAzBnzhyMHDkSffr0wcWLF7F69eoCP2P16tXIzs5GzZo1YW5ujvXr18PMzAweHh4AAE9PT5w8eRKdOnWCSCSCg4P6zgR/f398+eWX6NatG+bMmYMqVarg9evXOHr0KEJCQtCiRYtCbZ8hQ4ZgxowZ8PX1RWBgIBYsWACJRKIy2tHT0xPnzp3Do0ePYGlpCTsNIwl0xcjCHBa+ubdIm3u5wrpyIDLiE5D+9CUCpg6HaflyuNJzNADg8bLN8Bj0JQJnjMTT1eFwqF8Lzh2b43zr/jrL3LFNC8z4dTECfH1Qwc8H2/fsQ3q6DM0b1QMATP9lIRzs7dCvWxcAORP+P3r6DACQlZmF2DgJ7j54BDMzU7g6l/zIoncJBAI0a/0Fdm5ZDScXN5Qt54xt65dDbOeAarXqKMtN+2EwqtWui6Ytc+YZ/axtZ/z2yxR4+wbCx78i9u/ajPT0dNRt1FInmeu3+AoHwpfB0ckd9o7lsXfLItjYlkXl6g2U5X6d1AeVazREveadAQDpaal4/Sr3wiUu5jmePrwNC0sb2JXNf/FSUr6qEYjxe88gyMkOlVzssfF8FNIys9AmxBsA8OOev+BoZY6h9UIBAEtPX0OIiwPcbK2QJMvAmrO38DIxBe1CfbWWMa/OrZpgysKVCPTxREVfL2yOPIJ0mQwt638MAJg0fwXK2tti0Jc5o/fW7dyH5Vt2YdK3feFc1gFxkpwRuGamIpibab/TUyAQoOLH3XDlj99gY+8BS1tXXDoyH2ZWjnCv0EhZbv/KnvAIaoSg2l/CWGQB23KqI2zLmJhBZC7Ot1xbmes274rDEctQ1skDdo7lsX/bQljbOiK4Wu5THBdP7Y3g6g3xadOc9iL896m4+Nc+9P5uPkRmFso5mUzNLWFior1tLRAIUO+zr3Bwx1I4Or855jYvhI1tWYTkOeYWTO6DkBoNULdZTl5Zev5j7tmj2zC3tIGdg/aOOUPbh7t8Vh+TfluPCt5uqOjjgU37jyMtPQOt6ubcJTFh8TqUtbPB4E6tAQCrdh1CkLc7yjs6IDMrC39evol9p89jTK/PtZ71rTbtOuLXuTPh6xcAP/9A7NkVjnRZOho2bgYAmDd7BuztHdC1Z85UMa3atMcPo4chYsdWVKteC6dOHMP9u3cwaMh3Osnbrl17zJ07G35+fvD3D8CuXTuRLktH48ZNAABzZv8Me3t79OiZ84C4zMxMPHmSs+9mZWUhLi4W9+/fh5mZmXI+am0SCARo3vpzRGxZAycXNziWc8G29ctg+865eeoPQ1C9dl00bfk/AECLtp2w5Jep8PYNhK9/EPbv2gIZz82a8372FQ7sWIayb9q1yM35886fnJO3brOcvPpq1wytHTbEzIaWt327dpg9dy78/PwQ4O+Pnbt2IV2WjiaNGwMAfp49B/b29ujVsweA/O1abFycTtu1rvXCMG7jAVR0c0IlDyesP3EJaRmZaFsz5wuOHzbsh6ONJb5p+SlExmXg56z6t7HVm/Pxu8uJ/ivYgVjCbGxs0KFDB0RGRqJt27YFlu3Tpw/Mzc3x888/Y+TIkbCwsEBwcDC+/fZbteXd3d0RHh6OYcOGYcGCBahRowamT59e4JOIxWIxZs6cieHDhyM7OxvBwcHYs2ePct7CyZMno3///vDx8YFMJivwduNVq1Zh6tSp+O677/D8+XM4ODigVq1aaNmy8BeEo0ePxqtXr9CtWzcYGRmhX79+aNq0qcpt0SNGjED37t0RFBSEtLQ0PHz4/idAapNNWCXUPrpO+T5o9vcAgKdrd+Bq77EQOZeFmVvuiTnt0TOcb90fQXPGwnNIN6Q/e4Vr/X9E7OHTOsvc4NOPIE1MxKqNWxEvkcLXyxM/TRgLO7EYABAdGweBMHc0Zmx8PPoOG618vyViD7ZE7EHlSkH4ddoEnWRu1eEryNLTsGLhTKSmJMM/KARjJv0CE5PcueGiXz1HUmLurdm1P22ExAQJtm9YAakkDh7efhgz6Zd8k7drS+M2PZGRnoaNSycjLTUJPoFV8PUPS2CcJ3Ns9DOkJOXeMvfkwQ38OrG38n34mp8BADXrtka3wVO1lrVpkAckqelYcuoq4lLSEeBoi0Wf14e9hRkA4FViKoR5OvKT0jMwef85xKWkw9rUBBWc7LC6a2P4OGj3SbtvNfq4BiSJSVixOQJx0kT4ebrhlx+GKR8OFB0bD6EwN++OQ8eRmZWF72erzkXYu2Nr9PmijU4yB3/aB1kZafgzYgIy0hPh6FEVTXssU5nfMCn+CdJTtf/AhsJq0KoXMmRp2LpiItJSk+AVUBX9x/z2zj78VGUf/vPIFgDAoik9VdbVecBU1KjbVqt5G7XJybtp6SSkpSbBO7AKBn2vJm+iVPn+yf0bmD8p9zy5c23OMVejbmt0/Xqa9rIa2D7cpHZVSBOTsXT7PsRJE+Hv4Yr5YwbC/s2DYF7FSSDIkzddloFZv29DTLwUIhNjeLg4YvKgbmhSu6qmjyhxn9Stj4REKTatWwWJRAIvbx9MmDxLeavs69cxKue6wKBKGD7qB2xY+zvWr14Jl/LlMWbcZHh4Fn6UZXHUqVsXCYkJWL9uHSQSCby9vTF58lTlLdQ5eXO3cXx8HIYO+Vr5fkd4OHaEhyM4OBgzZ/2sk8w55+Z0rFg4C6kpyQgICsGYSXPVnJulyvc552Yptm9YDqkk/s25ea5WbmFWx5DOzQDQqE1PyGRp2JQn76Dv8+dNTszN+/j+DcyflJt3x9rcvF2/1nZew2mHDTWzIeWtW7cOEhITsG7demW7NnXyZGW7FvP6tUq7Fhcfj6+HDFW+Dw/fgfDwHQgODsbPs2ZqLedbzaoEQpKchsUH/kRsYioCypfF4v4dlA9WeSVJVLkepqITGHP7fcgEipKcoI4AAA0bNkTFihUxf/58fUcp9eRyOSpUqIDPP/8cU6ZM0frnRRrrfz6Zoqp6bYu+IxTJC2H+B9qUZpL0/HOelGYfXdL+xVVJSw9r+P5CpcjyqI/0HaFIgr2LP+WDrpUxMqxLj2rCv99fqBQpk5Hy/kKlyHNxyd/aqm3GyNB3hCJJzLZ+f6FSJD7d8v2FShlD+4tKAf6RT6r8LNU/wb60co46pu8IRWL6WT99R9CJPwqYBudDUv/uFX1H0AuOQCxBEokEx48fx/Hjx7F4cfGfbvkhevz4MQ4dOoS6detCJpNh4cKFePjwIbp06aLvaEREREREREREpAY7EEtQlSpVIJFIMGvWLAQEGN5IN10QCoVYvXo1RowYAYVCgUqVKuHIkSOoUKF0TCBORERERERERESq2IFYgh49eqTvCKWem5sb/vzzT33HICIiIiIiIiKiQmIHIhERERERERERFYuwDOdX/ZAJ31+EiIiIiIiIiIiI/qvYgUhEREREREREREQasQORiIiIiIiIiIiINOIciEREREREREREVCwCI86B+CHjCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERFYuQD1H5oHEEIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBHnQCQiIiIiIiIiomIRCDkH4oeMIxCJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGvEhKkREREREREREVCwCI45R+5CxA5H+U6pe26LvCEV2KfgLfUcokqsbbuo7QpG0qBKn7whF8qv5j/qOUGTfSML1HaFI+vue1HeEInlh6a/vCEWWLhfpO0KRmN++ou8IRdL7TFt9RyiS6b2T9R2hyEyy0vQdoUiOPPbSd4QiqeYp0XeEIhMIFPqOUCQCGFZe0r7rUk99RyiSVP9W+o5QJBX1HYCoBLB7mIiIiIiIiIiIiDRiByIRERERERERERFpxFuYiYiIiIiIiIioWIRGAn1HIC3iCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERFYtAyIeofMg4ApGIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIcyASEREREREREVGxCI04B+KHjCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBrxISpERERERERERFQsAj5E5YPGEYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFGnAORiIiIiIiIiIiKRSDkGLUPGTsQyaC8evUK06ZNQ2RkJJ4/fw5HR0eEhobi22+/RcOGDbX2uTsjD2JzxB7ES6Tw9fTA0H49UcHfV23Zh0+eYtXGrYi6/xDRMa/xde9u6Ni6hdayvcvuk2rw/q43bKpWgqmLIy50GITo3UcLrlOnBoJmj4FlkB/Sn77EvRlL8GztTh0lzvVpRQFCvQUQGQPP4oCDF+WQJBeubq1AAeqHCHH+jhxHLiu0G/QNhUKBLRtW4ujBPUhJSUZghWD0HfQdnMu7FVjvwN4d2L1jE6SSeHh4+aBX/2/hFxCkk8yGtI23/HEOaw6eRlxCMvzdnDC6cwtU8nJVW/bopRtYue8knsbEIys7G+6O9uja5GO0rB2q9ZxvbTv4BzbsOYw4aQL8PFzxXc9OqOjrpbZsxNFT2HfyLB48fQEACPRyx8DObTWW14Z9e3ciInwLpJJ4eHr5oM+AofAPqKCx/J+njmPT+t8RE/0Kzi6u6NazH8Kq19JZXiDnmNu+YQWOHdqNlJQkBFQIQa9BI+HsUvAxdygyHHt2bECCJB7uXr7o0X84fP21f8xt/vMK1py4hNikVPg7O2BM27oIdnd6b739l+9gzIYDqF/RG/N6tNR6znd1aGSF+tUtYGEmxJ3HMvweIUV0XLbG8vNGlUNZ2/yXlIfPJGP17gRtRsXuvZHYFr4T8RIJvL288PWAfggM8Fdb9tHjJ1i7fgPu3ruP6JgYDOjbG+3bttFqvncZ0vUEkHPMndk3H9fObIMsLREuXlXR8POJsHX01FjnyqmNuPrnJiTGPQcA2Dv7oWazQfAKqquzzOEbl+OPQ7uQkpIM/wrB6DVwFJxc3AusdyhyOyJ3rle2E937fQcf/4o6ybt9w3L88aZd868Qgl6DRhWiXduOvXnate79h8NXZ3kNpx02xMyGmPfg9oU498d2pKUkwcu/Ctr3Go+yzh4a6xzdtRzXzh/G6xcPUcbEFJ5+oWjReTgcXbR/HbR/705EhG9+c/3jiz4DhsKvgOufv04dx6b1K5XXP1179tf59Q9RacHuYTIYjx49QlhYGI4dO4aff/4Z165dw4EDB1C/fn18/fXXWvvcY6f+wuLf16LHFx2wfO5M+Hh5YOTE6ZBI1f9RJJPJ4FyuHPp17Qw7W7HWcmliZGGOxKtRuD50UqHKm3m6ovrupYg7fg6nq7XBwwVrELx0Khwaf6LlpKpqBQpQzU+AAxflWHNUjsws4Is6QhgVopVytgWqeAsQLdVNx+Fbu8I3Yv+ecPT7egRmzFkKkakZpo7/DhkZMo11/jx5FGtWLETHzj0w69cV8PDyxbTx3yFBKtF6XkPaxgfPX8OcrfvRv1V9bBw3EP6uThg0bw3iE9X3dtpYmKPPZ3WxZmxfbJ0wGG0+roqJq3fir+t3dZL38F/n8eva7ejdoQXWzPwBvh6u+Gb6fMQnJKotf+nGHTT5qDoWjx+OFVNGw9HeFkOn/YqYeO3vBwBw+uQxrFq+BF906Y4585fB08sHk8eNglTDfnj75nXM/WkKGjb5DHPmL0fN2p9g5tRxePzooU7yvrUnfD0O7N2G3oNGYsrsFRCZmmLm+GEFHnNnTh3BuhXz0aFzL0yftwoeXr6YOX4YEqTxWs164PIdzN5zCv0b18TmbzshwMUBA1fsQlxyaoH1nscnYu7eU6jq5aLVfJq0rGOJph9ZYlWEFOMXx0CWocCYXg4wLuAr53GLXmPQtJfK1/QVsQCAc9fStJr1+MlTWLp8Jb7q0gmL5/8Cby9PfD9uAiRSqdryMpkMTk5O6NWjG+xsbbWaTR1Du54AgAtHluPyyXVo9PlEdB6+FcYmZtixpDeyMjUfc5ZiJ3zSagS6jNyBLiPD4eZfC7uXf43Yl7ppj/fuWIeDe7ei58DRmPzzCohEZpg54dv3tBOHsWHlr2jfqQ+m/rIG7p5+mDnhW623E0BOu3Zw7zb0GjQKU2avhKmpGWaOf1/eI1i/Yj7ad+6NafNWw93LTyft2tu8htIOG2pmQ8v7x56VOH1wAzr0moChUzbBxNQMy2f2Q2YBeR/cOo+PG3fGkMmb0H/scmRnZ2HZzL6QpRd8jiyunOufxfi8Sw/Mnr/8zfXPyPdc/0xGwyYtMGf+CtSo/QlmTf0Rjx890GpOotKKHYhkMAYNGgSBQIC///4bHTp0gL+/PypWrIjhw4fj7NmzWvvcbbsi0aJJQzRvVB+e7q4YPrAPTEUm2HfkD7XlA/18MbDnV2hY52MYGxtrLZcmrw+exJ0J8xC960ihynv064S0h89wa9QsJN9+gMeLN+BV+EF4fdNDu0HfUd1PgD9vKXD3BfA6Adj7txxWZoB/eUGB9YzLAK1rCbH/ghzpGToKi5xvWyN3bUWHL7qheq1P4eHli8HDf4AkPg7nz5zSWG9vxBY0bNoK9Ru3gJu7F/p9PQImIlMcOxyp9cyGtI3XH/4L7T+thjYfV4WPiyN++KoVTE2MEfHnJbXlqwV4oUHVIHg7O8LN0Q5dGtWGn2s5/HPvsU7yboo8gjYNP0Gr+h/D29UFY/p8CVMTE+z54y+15ScP7Y3/Na0Hf083eJZ3wg8DukGuUODCtds6ybt75zY0btYCDRs3h5u7JwYMHg6RqSmOHtqvtvze3eGoElYD7Tp0gpu7B7p07QVvHz/s26u7kcoKhQL7d29Fu897oFqtOvDw8sWgYeMhiY/FhbMnNdaLjNiMBk1bo16jlnB190LvQaNgIhLh+OG9Ws277uQ/aF+zEtpWD4JPOXv82L4BTI3LIOLvmxrrZMvl+H7jQQxsUguudjZazadJs48tEfFHEi7eSsfTV1lYslUCsZURwoLMNNZJSpEjITn3VaWCKV7FZeHWQ+02GOE7d6F5syZo2rgRPNzd8c3gQRCZinDwkPrzX4C/H/r17on6devo5fxsaNcTCoUCl06sRY0mA+ET0ghlyweiWdefkJIQg/tXNV9j+AQ3gFfFurB19IStoxc+bjkMxiJzvHp0WSeZD+zegraf90S1WnXg7uWHgcMmQBofi4sFtBP7d21C/SZtUPdNO9Fr0GiIRKY4cUS77URu3h5v8vpi4LDxkL6nXdsXsQn132nXRCIRTmi5XTO0dtgQMxti3lMH1qFR2/6oVK0BXNwD0GngDCRKY3D9guY7oPqOWYbqddvBydUXLh6B6DRgGqSxL/HsoeZzZEnY8871T/831z/HDu1TW/7t9U/bDp3g6u6BLl17w8vHD/t1eP1DVJqwA5EMQnx8PA4cOICvv/4aFhYW+f5dLBZr5XMzM7MQdf8BwioHK5cJhUKEVQ7GzSjdfJOubeJaoYg9dkZl2evDp2FbK1R3GSwASzMBHkXnjm6TZQIv4oDy9gXXbVpVgHsvFXgUo+WQ74iJfgmpJB7BodWUyywsLOEbUAFRt2+orZOZmYkH9+4gJDRMuUwoFCIktBruaKhTUgxpG2dmZeHW4xeoWcFbuUwoFKJmBR9cvf/0vfUVCgXO3bqPR69iEebvqcWkOTKzsnD7wRPUCM69/UUoFKJ6cCCu3S3cN9TpsgxkZ2XD2jJ/+1bSMjMzcf/eHVTOtx9W1bjvRt2+qVIeAEKrVtf6fptXTPQLSCVxqJTnmDO3sISPfxDu3r6utk5WZiYe3otCpcq5dYRCISqFVsfdKPV1SkJmVjZuPY9BLb/c282EQgFq+bnh6uOXGustPfw3bC3N0L6G9m9DVKesrRFsrY1w417uqJE0mQL3n2bAz92kUOswMgI+CTXDiQsp2ooJIGc/vnvvHqqEhiqXCYVCVAmtjFu3ddMRXxSGeD2REPcMqYmv4R7wkXKZyMwKTh6V8eLRP4Vah1yejaiLkciSpcLZs4q2oiq9ftNOVKxcXbksp52oiLtR19TWUbYTobl1hEIhKlWujru31dcpKbnt2rt5C9OuvZNXy+2aat7S3w4bamZDyxsf8wxJ0lj4Vcq9pdfM3AruPiF4fPdKodeTnpoEADC31N6XZznXP1FqrsPDEHVbfcflnds3VMoDQJWqNTSWJ/rQcQ5EMgj37t2DQqFAYGBgoevIZDLIZKpD52UZGRCZFO6PIABISEyEXC6HnVj1ZGYrtsGTZy8KvZ7STFTOAbLoWJVlsuhYGNtYQWgqgjxd8+0HJcXCNOe/Kemqy1NkCuW/qVPBTYByYgFWH5FrL5wGUkkcAEAsVr0NTiy2g1TD7SJJiQmQy7NhI7ZTWW4jtsXzZ9odKWdI21iSnIpsuRx21pYqy+2tLfHoVayGWkBSajqajvoZmVlZEAqEGPtlS9QKUj+3WEmSJibn5LWxUlluZ2ONxy9eFWodizbsgIOdDaoHa56Dp6Tk7Idy2OTbd23x/OkTtXWkkng1+7otJBLd3HINAAmSnOMq//FjB6lE/TGXmCjNOeZs89d5ocVjTpKShmy5AvaW5irL7S3N8TBG/Ta79PAFdp6/ga3Dumgt1/uIrYwAAAnJqvMdJiRnQ2xVuO+cqwWZwdxUiJMXtXsbWuKb87PtO18g2orFePr0uVY/+98wxOuJ1MTXAABzK9Vvmcyt7JGaqLktBoDYF1HYPLcTsrJkMBGZo1WfRbB31kF7/ObcrL6diFNbJ+ltO/FOHWuxLV48f6SVnG8lFJA34X15ddyuAYbVDr9laJkNLW9SQk5bYGXjoLLc0sZe+W/vI5fLsWvdLHj6V4Gzm1+JZ3zr7fWP+J1t+/7rn/zX7Zp+FwQIhAXf2USGjR2IZBAUiqLPuzZjxgxMmqQ6D+Dwr/tjxOABJRWL/qWK7gI0C8s9uWw9XfTOKSszoHEVATadkCNbB31bp/44hKWLZivfj50wS/sfWgyGuI2Ly8LUBJvHD0JaegbO3X6AOVsPwLWsHaoF6O7BJP/GmogDOPzXeSye8B1EJrq/TbG0On38IFYs+kn5ftT42QWUNmwp6Rn4YdMhTPhfQ9haaL5VuKR9FGqG3m3Fyvc/r1HfYVEU9aqZ48qddEiTDKDRIBW3zu/G0S0TlO/b9l/6r9dl6+iFr0ZHQJaWhLuXD+Lg+tHoOHR9iXci/nn8AFYuzj0fjxw/p0TXX9JOHz+IlYty85b2ds0Q22FDy2xoeS+d3ovtKycq3/cetaTY69y5aipePb2LryesK/a6iEi72IFIBsHPzw8CgQC3i3Bb0tixYzF8+HCVZfGPinZbk421NYRCIeLfmeBcIk3Q24TmJU0WHQtROdVvDUXlHJCZkKS10Yd3XyjwIj63U/jtQzwsTFVHyFmIND+0w8kWsDAVoFfj3FExQqEA7mWBMF8BfgqX41/0O2tUreYn8M3zpOSszEwAgFQqga1d7vaTSuPh6aX+21MraxsIhUb5JrROkEogtn3PfcRFZIjb+C1bS3MYCYX5HpgSl5gM+3dGJeYlFArh7pizHQPcnfHw5Wv8vu+k1jsQxdaWOXkTklSWxyck5htt9K71ew5h7a4DWPjjt/DzUP+E6ZKWsx8K8z24RyqVQPzO6IW3xLZ2+SYYl0olsNXigyjCanyi8kTRzMyc+fQSpPEqx1yCNB6e3uqPOWtrcc4xJ3n3mIvX+LOWBFsLMxgJBfkemBKXnAoHK/N85Z/GJeCFJBFDV+1RLpO/Obiqjl6AXSO7ws1BXOI5L91Mx/2nuXMTlDHK+dLBxtJIpQPQxtIIj19mvnd9DmIjVPIVYd567Y/MsH5zfn73gSkSqbRUnp8N4XrCJ7gBnD0rK99nZeUcc6lJcbC0cVQuT02KQ1nXgu8IMSpjAnHZnCewlnOvhFdPruGfE2vRqNPkEs1ctcanKk9KzsrK2U/VtRMeGtoJq7ftxDvn5kSpBDbikj0357Rr+a8l1OdV/zRxqwLbNW3kNax22NAyG1reoLD6GO6bOxXD22MuKSEW1rZllcuTE+Lg4vH+O8d2rJqKm/+cwKDxayC2dyrRrO96e/3z7p1C77/+UXfdrr1rCKLSjHMgkkGws7ND06ZNsWjRIqSk5J9XSarmiYsikQjW1tYqr6LcvgwAxsZlEODjjUtXc+fAkcvluHj1OoICtDfEXpekZy/DvkEtlWUODT+C5OxlrX1mRhYgSc59xSYCyWkKeDrmjpgzKQO42APPNQyIeRwDLD+QjZWH5MrXy3gFbjxWYOWhku/YMjM3h7OLq/Ll6u4Jsa0drl++qCyTmpqCe1G3EBCofv4yY2NjePv649qV3DpyuRzXrlyEv4Y6/5YhbuO3jMuUQQUPF5y7lTt/oFwux9+3HiDEx62AmqoUCgUysrK0EVGFcZkyCPR2x/lrt5TL5HI5zl+/jWA/b4311u06iN/DIzFv7FBU8PHUes63jI2N4ePrj6uXcx9II5fLce3yJY37bkBgEK5eUX2AzZV/Sn6/zcvM3AJOLq7Kl6u7F8S29rh+5YKyTGpqCu7fuQm/wEpq11HG2BhevgG4flX1mLtx5QL8AtTXKQnGZYxQobwjzt3LnbNTLlfg3L2nCPFwzlfey9EW27/7EluGdVG+6gV5o7qPK7YM6wInsVW+OiUhPUOB6Lhs5et5TBYkidmo6CNSljETCeDjZoK7T97/QJQ6YeZISJbjn6j095YtLmNjY/j5+uLy5dw5tuRyOS5fvooKRZjuRFcM4XrCxNQS4rIeype9ky/Mrcvi6Z3ceZJlacl49fgKXIo6n6FCjuyskn+oTk474aZ8lXfLaSduXDmvLJPTTtyAX0Cw2nW8bSfy1pHL5bh+9Tz8AtXXKbG87m/zFr1du3E1t4622jVDbIcNLbOh5TU1s4CDk4fyVa68D6zEDrh745yyTHpqMp7cvwoPv8oa16NQKLBj1VRcv3AUA374HfaO2v8SNef6JyDf9c/VyxcREBikto5/YEVcy3f9c0FjeaIPHUcgksFYtGgRPv74Y9SoUQOTJ09GSEgIsrKycPjwYSxZsgS3bt16/0r+hY5tWmDGr4sR4OuDCn4+2L5nH9LTZWjeqB4AYPovC+Fgb4d+3XLmrcrMzMKjp88AAFmZWYiNk+Dug0cwMzOFq7N2v1kDACMLc1j4uivfm3u5wrpyIDLiE5D+9CUCpg6HaflyuNJzNADg8bLN8Bj0JQJnjMTT1eFwqF8Lzh2b43zr/lrPmtf5uwp8FCRAfLICCSlAnUpCJKUBd57n9lJ1rivEnecKXLynQEZWTqdYXhlZQFpG/uXaIBAI0KLN5wjfsgZO5V3hWM4ZW9avgK2dParX/lRZbtL336BG7Tpo3qoDAKBl2y+w6Jfp8PELhK9/BUTu2gZZehrqN/pM65kNaRt/1fgjjP99B4I8y6OSV3lsPHIGaRkZaPNxVQDAjyu3w9HWGkPbNwEArNx3AhU9y8O1rB0ysrJw+tpdRJ69jLFfttJu0Dc6t2iEyYtXo4KPJ4J8PLF531GkyzLQsl7OwwcmLlyFsnZifN2lHQBg7a4DWLZ1DyYP7Q0XR3vEvRmVZGYqgrlpAZNSlpDW7Tpi/tyZ8PHzh59/BezdtR3p6elo2LgZAODXOdNhZ18WXXv0BQC0bN0BP475Frt2bEVY9Vo4ffIY7t+LwsAh32k961sCgQDNW3+OiC1r4OTiBsdyLti2fhls7RxQrVYdZbmpPwxB9dp10bTl/wAALdp2wpJfpsLbNxC+/kHYv2sLZOnpqNuopVbzdq1TBeO2HEZF13Ko5FYO609dRlpGFtpWz/mj44dNh+BoY4FvPvsYIuMy8HNSHTlkZZrTiffucm078Gcy2jawwqu4LLyOz8L/GltDmpSNizfTlGXG9rbHhZvpOHwm9ws9gQCoG2aOU5dSIdfR3csd2rXBz3Pnwc/PF4H+/tixazfS09PRtHFDAMBPc36Bvb0devfoDiBnAv0nT3I6dTOzshAbF4/79x/A1MwU5V1ctJ7X0K4nBAIBqtbthnMHl0Bc1gM29q74K/JXWNg4wiekkbLc9oXd4RvSGKF1vgIAnN49B55BdWBl64xMWQpuX9iLp/f+RvuBK3WSuVnrLxCxdTWcXNxQtpwLtm9YBrGdA8LytBPTfxyMarXqoknLjgCA5m06Y+m8KfDyrQAf/yAc2P2mnWjYQid5d255m9cZ29Yvh/iddm3aD4NRrXZdNH2T97O2nfHbL1Pg7RsIH/+K2L9rM9J10K4ZWjtsiJkNMe+nzbri6M6lKOvkDruyrjiwbQGsxY6oVK2hstxv03qhUrWG+KTplwCAHaum4J+/9qHndwsgMjNHojRnzlUzcysYm2jvOqhVu45YMHcGfP0C4OdfAXt2bYcsPR0NGjcHkHP9Y2/vgK969AOQc/0zbsw32LVji8r1zwAdXv8YGqER50D8kLEDkQyGt7c3Ll26hGnTpuG7777Dy5cvUbZsWYSFhWHJkuLPv6FJg08/gjQxEas2bkW8RApfL0/8NGEs7N5M3B4dGweBMHcwb2x8PPoOG618vyViD7ZE7EHlSkH4ddqEd1df4mzCKqH20dw5RIJmfw8AeLp2B672HguRc1mYueWOgEl79AznW/dH0Jyx8BzSDenPXuFa/x8Re/i01rPmdfa2AsZGQPMwIUxNgKexwNaTqnPviS0BM5Hmdehamw5dkJ6ehqULfkZqSjICg4Lxw+TZMDHJDRn96gWSEnNvWfu4TkMkJkixZf1KSCXx8PT2xQ+TZ+vkVghD2sZNqwdDkpSCJbuOIi4xGQFuzlj0TTflLcyv4hMgFOQed+myTEzfsAcxkkSIjI3h6eyAqb3/h6bVS3b0iCaNP6oOaWIylm3djThpIvw9XTFv7FDYi60BANFx8RDmmVR6x+GTyMzKwti5qnOM9flfS/TtqP1Oz0/qNEBiQgI2r18NiSQeXt4+GD95lnI/fP06BoI82zcwqBKGjfwRG9f9jvVrVsC5fHmM+XEKPDx1O79kqw5fQZaejhULZyE1JRkBQSEYM2nuO8fccyQlSpXva3/aCIkJUmzfsBxSSc5tjGMmzdX6Mdcs1B+SlDQsPngWsUkpCHApi8V92sD+zS3Mr6RJEApK30X23pPJEJkI0LudGOamQtx5LMOsVXHIzDOYt5x9GViZq97EUslXBAfbMjih5Yen5FWvzqdISEjA2vUbIZFI4O3tjWmTJypvrY95/RqCPNs4Lj4eA4d+q3y/fcdObN+xEyHBlTB75nSt5zW06wkAqNaoLzIz0nBk83jI0hLh4h2G9gNXoIxx7jGXEPsUacm5UxykJsfh4PrRSEmIgYmZFRxcAtB+4Ep4BH6sk8wt23eFLD0dKxfNRGpKMvyDQjB64rx32oln77QTjZGUIMX2jcuRIImDh7cfRk/8BTYlfEuwOjntWhpWLMzNO2bSL2ratdxriZx2TYLtG1ZA+ibvmEm/5HuIhvbyGkY7bKiZDS1v/Va9kSFLw/YVE5GWmgQv/6roO2YpjPPkjYt+ipSk3LxnjmwBACyZ0kNlXV/0n4rqddtpLWvO9Y8Um9avglQSDy9vX4yb/JNyO8W+jlY5N+dc/4zDxnUrseHN9c/oH6fCw1PzHSZEHzKB4t88nYLIQL28fVnfEYrsUvAX+o5QJFc33NR3hCJpUaX4Dw3Qpch/dDsaqSR84xSu7whFkmHt+P5CpcgLS/XzZJVm6fJS0EtdBEG3N+s7QpH0PtNW3xGKZHrv5PcXKmVMstLeX6gU2fU4VN8RiqSap+6e8F5SBALD+pNKAMPKS9r3PKngeZtLG2+b1/qOUCQVffNPYfIhutzk0/cX+gCEHjql7wh6wTkQiYiIiIiIiIiISCN2IBIREREREREREZFGnAORiIiIiIiIiIiKRSAsffM7U8nhCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjzoFIRERERERERETFIhByjNqHjL9dIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUZ8iAoRERERERERERWLQCjQdwTSIo5AJCIiIiIiIiIiIo3YgUhEREREREREREQasQORiIiIiIiIiIiINOIciEREREREREREVCxCI86B+CHjCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERFYtAyIeofMg4ApGIiIiIiIiIiIg04ghE+k95IXTXd4Qiu7rhpr4jFEnIl0H6jlAkT87d0HeEImkSmqDvCEV2LLm9viMUSQXrJ/qOUCTpWSJ9RygyO2GcviMUya8ZA/UdoUgWdjql7whFcjuzir4jFJm1cYq+IxRJa8+r+o5QJGnGlvqOUGRG8ix9RyAqlnsZtvqOUCT7r5bTd4Qiqeir7wRExccRiERERERERERERKQRRyASEREREREREVGxCIQco/Yh42+XiIiIiIiIiIiINGIHIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBEfokJERERERERERMUiEAr0HYG0iCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijTgHIhERERERERERFQvnQPywcQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCM+RIWIiIiIiIiIiIqFD1H5sHEEIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBHnQCQiIiIiIiIiomIRCDlG7UPG3y4ZpOPHj0MgEEAqleo7ChERERERERHRB40jEKlUO3PmDD755BM0a9YMkZGRes2iUCiwfcNy/HFoN1JSkuBfIQS9Bo2Cs4tbgfUORW7H3h0bkCCJh7uXL7r3Hw5f/4o6yfxpRQFCvQUQGQPP4oCDF+WQJBeubq1AAeqHCHH+jhxHLiu0mtPuk2rw/q43bKpWgqmLIy50GITo3UcLrlOnBoJmj4FlkB/Sn77EvRlL8GztTq3mfJdCocDB7Qtx9th2pKUkwSugCjr0Go+yzh4a6xyNWI5r5w8j5sVDGJuYwsM/FC07D4eji5dO8hrSPmxo23fPnj0I374dEokEXt7eGDhwIAICAtSWffz4MdatW4d7d+8iJiYG/fr1Q9t27bSe8V05+8QKHHuzTwRUCEGvQSMLsU+EY0+efaJH/+Hw9Q/Set7deyOxPXwH4iUSeHt5YdCA/ggM8Fdb9tHjx1i7fgPu3buP6JgY9O/bB+3bttF6xrwUCgX+OboAUee3ISM9CY4eVfBR6wmwcfAsVP0rJ5bj4qG5CPqoK2q1+F67YQFsP/AH1u85hHhpAnw9XPFdr86o6Kv+2Ik4cgr7T57Bg6cvAAAB3u4Y2LmdxvLaolAosHPTUpw4HIHUlGT4BYag24AxcHJx11gn6sYl7Nu5Do/v34ZUEoshY35GWK16Osm7f+9ORIRvhlQSD08vX/QZMBR+ARU0lv/r1HFsWr8SMdGv4Oziiq49+yOsei2dZAWAnZEHsGXnbsRLpPDx8sDQfr1Qwd9PbdmHT55i1YYtuHP/AaJjXuPr3j3wvzYtdJYVMMx22NDaNebVPkPLrFAocGznAlw4sQ3pqUlw96uC1t0mwN7JU2OdE3uX4dbFw3j98gGMjU3h5lsFTT7/DmWddXM9fPHIAtw+vw0ZaUko51EFn7Qt/Ln58vHlOH9wLip91BW1W2n/3ExUmnAEIpVqK1euxJAhQ3Dy5Em8ePFCr1n2hK/Hwb3b0GvQKEyZvRKmpmaYOf5bZGTINNY5c+oI1q+Yj/ade2PavNVw9/LDzPHDkCCN13reWoECVPMT4MBFOdYclSMzC/iijhBGhTjqnW2BKt4CREu123H4lpGFORKvRuH60EmFKm/m6Yrqu5ci7vg5nK7WBg8XrEHw0qlwaPyJlpOq+mPPSpw6sAH/6z0B30zZBBORGZbN7IfMAvaJ+7fO46MmnTF08ib0/3455FlZWDajL2TpqVrPa2j7sCFt3xMnTmD5smXo8uWXWLBgAby9vDDuxx81jpKWpafD2ckJPXv2hK2trVazFWRP+Hoc2LsNvQeNxJTZKyAyNcXM8cPeu0+sWzEfHTr3wvR5q+Dh5auTfeL4yVNYtnwFvuzSGYvmz4O3lxd+GDde8zaWyeDs5IRePbrDTk/b+NqpFbh5Zj0+ajMRrQZugbGxOQ6u7ousTM3b963Xz64h6vwW2Dqp7/woaYf/Oo9f125Dn/+1xJpZP8LPww3fTvsV8QmJastfuhmFxh/XwKIJ32H51NEoZ2+Hb6bOQ0y8RCd539q3cy0O792C7gPGYvxPqyAyNcOcSUMK3Idl6Wlw9/JH1/6jdJgUOH3yGFYtX4zPu/TA7PnL4enlg8njRkIqVb/Nbt+8jrk/TUbDJi0wZ/4K1Kj9CWZN/RGPHz3QSd5jp/7EkpVr0L1TRyz7ZRZ8PD0wasI0SKQJasvLZDK4ODmiX7cvYWcr1knGvAyxHTa0do15tc8QM5/atwJnD69H6+4T0X/8FpiIzLFmTt8Cr9ce3T6PGg26oN+4zeg+ciXk2ZlYM7s3MmTavx6+cnIFbvy1Hp+0nYg2g7bA2MQc+38v5Ln56TXc+nsL7HR0biYqbdiBSKVWcnIytmzZgoEDB6JFixZYvXq13rIoFAoc2L0FbT/vgWq16sDdyxcDh42HND4WF86e1FhvX8Qm1G/aGvUatYSruxd6DxoFkUiEE4f3aj1zdT8B/rylwN0XwOsEYO/fcliZAf7lBQXWMy4DtK4lxP4LcqRnaD0mAOD1wZO4M2EeoncdKVR5j36dkPbwGW6NmoXk2w/wePEGvAo/CK9vemg3aB4KhQIn969Do3b9UalaA7h4BKDzoBlIlMTg+gXNoyf7jV2GGnXbwcnNFy4egeg0cBoksS/x7OFNrec1pH3Y0Lbvzp070ax5czRp0gTuHh4YPGQIRCIRDh06pLa8f0AAevfpg7r16sHY2Fir2TRRKBTYv3sr2r3ZJzy8fDFo2HhI3rNPREZsRoN39gkTkQjHtbxP7NgZgWbNmqJp40bwcHfH0MGDIDIV4eChw2rLB/j7o2/vXqhXt45etrFCocCNP9eicr0B8AhqCDunANTpOBNpSTF4cqvgti5TloITW0fi47aTITKz1kneTXsPo03DT9Cy/sfwcnXB6L5fwtTEBHv/+FNt+clD++B/TevB39MNnuWd8f2AbpArFLhw7bZO8gI52/jQnk1o/XkvVK1ZF26efuj7zSRI4mNx6dwJjfVCwj5Ghy8HIqxWfZ1lBYA9O7ehcbMWaNi4OdzcPdF/8HCITE1x7NA+teX37g5HlbAaaNuhE1zdPdCla294+fhh/17djLbftmsvWjRpiOaN6sPT3Q3DB/WDqcgE+48cU1s+0M8XA3p2Q4M6H+vlmDPEdtjQ2jXm1T5Dy6xQKHDm0FrUbT0AFao2hJNbADr0nYkkSQxuXdJ8rus+YjmqftoO5cr7wdk9EO37zEBC3Eu8eHRD63mv/7kWVeoPgGdQQ9g7B6De5zORmhSDxzfff24+tmUk6rTX3bmZqLRhByKVWlu3bkVgYCACAgLw1Vdf4ffff4dCoZsRce+KiX4BqSQOlUKrK5eZW1jCxz8Id29fV1snKzMTD+9FoVLl3DpCoRCVQqvjbpT6OiVFbAFYmgnwKDp3e8kygRdxQHn7gus2rSrAvZcKPIrRasRiEdcKReyxMyrLXh8+DdtaoTrLEB/zDEnSWPhXyr2VzMzcCu4+IXh890qh15OemgQAMLe0KfGMeRnaPmxI2zczMxP37t5FaGiocplQKERoaChu37qltc8trtx9oppyWeH3idw6utgnMjMzcffePVQNrazyuVVCQ3HzdpTWPrc4kiTPkJYcCxef2splJqZWKOsagpgnBe/DZ/ZMgVtAXZT3/UjbMQEAmVlZiHrwBNWDc2+lFQqFqB5cAdfuFG60W7osA9lZ2bC2tNBWzHxeRz9HgiQOQSE1lMty9uGKuB91VWc5CiMzMxP370UhJDRMuUwoFCIkNAxRt9V/wXHn9g2V8gBQpWoNjeVLUmZmJu7ce4Cw0BDlMqFQiKqVQ3Dj9h2tf35RGWI7bGjtGvNqnyFmlrx+huSEWPgE5Z7rTM2t4OoTgqf3i3C9lpZzvWZmod3r4STJM6QlxaK87zvnZrcQRL/n3PznrilwD9TdudlQCY0E/4nXfxU7EKnUWrlyJb766isAQLNmzZCQkIATJzSPKHiXTCZDYmKiyqugW5oKkiCJAwDYiO1UltuI7ZT/9q6kRCnk8mzY2OavI9VQp6RYmOb8NyVddXmKTKH8N3UquAlQTizA8av66agtLFE5B8iiY1WWyaJjYWxjBaGpSCcZEhNyPt/KxkFluZWNPRKlseqq5COXyxGxdhY8A6rA2U39nFIlxdD2YUPavomJiZDL5flugRPb2iJeotvbOYsiQZJzy7G6fUIqUX87cmKB+4T2bmF+u43FYtVtbCsWQ1JKt3FaUs5+amap+q2NqaUD0pJfa6z34Gok4l7cRFiT4VrNl5c0MRnZcjnsxKojKmzFVojTcLvquxZtCIeDnY1KJ6S2JUjftmuq29jaxl5ju6YvSYkJb/Zh1WNHLLbVeOxIJfH5ytsUUL4kJSQm5bRrYtU/5m3FNogvhQ+wM8R22NDaNebVPkPMnPzmes3SRrUdtrB2QHKC5nNdXnK5HPs2zoC7X1WUc1U/12NJ0XRuNrN0QFqS5rz3r0Qi9sVNVG+qu3MzUWnEh6hQqRQVFYW///4bO3fm3KZTpkwZfPHFF1i5ciXq1atXqHXMmDEDkyapzqnXd/Ao9B8y+r11Tx8/iJWLZinfjxo/u/Dh9aCiuwDNwnK/Cdl6Wl7kdViZAY2rCLDphBzZRa/+wbt4ei+2r5iofN9n1JJir3PHqql49fQuBk9cV+x1vcvQ9mFD276G6PTxg1ix6Cfl+9K+Txia+5f34M9dE5XvG3cr+j6cLH2Js3tnoFmvlShjrJsvQ0rC2oj9OPLneSyaOAIiE+3dQvfXif1Ys2SG8v2wH3/R2mcREVF+V/7ag91rJirffzWs+Ndre9dNRsyzu+jzw4Zir+td9/7Zg1MRE5Xvm3X/d+fmM3tnoLmBnZuJtIEdiFQqrVy5EllZWXBxcVEuUygUEIlEWLhwYaHWMXbsWAwfrvot0Y0nKYWqG1bjE5UnimZlZgIAEqTxsLXLHRGVII2Hh7f6b8qsrMUQCo2Uo3zy1hHbvuc+4iK6+0KBF/G5owbfPijFwlR1FKKFSPODUZxsAQtTAXo1zh2YLBQK4F4WCPMV4KdwOfR0B3k+suhYiMqpjkwTlXNAZkIS5On/bpTp+1QMqw8P32Dl+7f7RFJCLKxtyyqXJyXEobxn4HvXt2PVVNy8dAJfT1gDsb1Tiec1tH3Y0LZvXtbW1hAKhflGB0glEr1NaK5Ozj6R+/TszMycSU7V7ROe3upHbFoXuE/Yqa1TEt5u43cfNiGRSvX6EJq83Cs0QFm33Ns9s7Nytm9achzMrR2Vy9OTY2HnrH6UXtyLG0hPicOuRR2UyxTybLx6dAG3zm5E90lXIBQalXh2sbUljIRCxEtVH5gikSbBXlzw7WQbdh/C2ogDWDBuGPw8XEs8W15VatSBj38l5fss5T4cB3GefTgxIQ7uXtodxVJUVtY2b/Zh1WNHKpVoPHbEtnb5yicUUL4k2Vhb5bRr74xAlUgTYCcWa/3zi8pQ2uG8DKFdy4t5tc8QMgdWaQBXn9xzXdabc11yQhysxLnnupTEWDi5v39E+t51UxB15QT6jF0HG7uSv15zD2qA9nnPzdnqz81pybGw13Bujn1+A2nJcdi5UPXc/PLRBdw4uxG9pmjn3ExUGvEWZip1srKysHbtWsyZMweXL19Wvq5cuQIXFxds2rSpUOsRiUSwtrZWeZmYFO5bIzNzCzi5uClf5d29ILa1x40rF5RlUlNTcP/OTfgFVlK7jjLGxvDyDcCNq7l15HI5bly5AL8A9XX+rYwsQJKc+4pNBJLTFPB0zB2VaFIGcLEHnmu4q+txDLD8QDZWHpIrXy/jFbjxWIGVh0pP5yEASM9ehn2DWirLHBp+BMnZy1r7TFMzCzg4eShf5Vx9YCV2wN3r55Rl0lOT8eT+VXj4Vda4HoVCgR2rpuLa+aMY+OPvsHfUzh/chrYPG9r2zcvY2Bi+fn64cvmycplcLsfly5cRWEF3t3O+T84+4ap8ub7ZJ67/i33i+tWLymXa2ifyMjY2hp+vL/65nDuvXc42voKgwNLxJERjkQWs7T2UL7GjL8wsHfDiwVllmYz0ZLx+dhWO7ur3YRef2mg3dBfaDt6hfDmUrwSfyi3RdvAOrf2BYlymDAK83XH+eu4DUORyOc5fv4Vgf2+N9dbtOoDfw/di3vffoIKPp1ay5WVmZoFyzm7Kl4ubN2xs7XHz6nllmbTUZNy/cwM+ASEFrEn3jI2N4eMbgKuXLymXyeVyXL18EQGBQWrr+AdWxLUrl1SWXfnngsbyJcnY2Bj+vt64dOWacplcLselq9dQMbB0dc4ChtMO52UI7VpezKt9hpBZZGYB+3Ieypejiy8sbRzw4GbuuS49LRnP7l+Fm0/B12t7103BzYtH0GvUKtiW1c71monIAjYOHsqXraMvzKwc8Pz+O+fmp1dRTtO52bc2OnyzC+2H7FC+HMpXgm/llmg/RHvnZqLSiCMQqdTZu3cvJBIJevfuDRsb1ZEPHTp0wMqVK/Hzzz/rNJNAIECz1l9g55bVcHJxQ9lyzti2fjnEdg6oVquOsty0HwajWu26aNqyIwDgs7ad8dsvU+DtGwgf/4rYv2sz0tPTUbdRS61nPn9XgY+CBIhPViAhBahTSYikNODO89yewM51hbjzXIGL9xTIyMrpeMwrIwtIy8i/vKQZWZjDwtdd+d7cyxXWlQOREZ+A9KcvETB1OEzLl8OVnjm3nz9ethkeg75E4IyReLo6HA71a8G5Y3Ocb91fu0HzEAgEqNO8K45ELIWDkzvsHV2xf9sCWNs6olK1hspyS6b2QnD1hvik6ZcAgB2/T8Glv/ah13cLIDIzR6I0Z74VM3MrGJsUMEFlCeQ1pH3Y0LZvu3btMHfOHPj5+cE/IAC7IiIgk8nQuHFjAMDs2bNhb2+Pnj17AsiZKP3JkycAcr40iYuLw/3792FmZqYy8lqbBAIBmrf+HBFb1sDJxQ2O5Vywbf0y2L6zT0z9YQiq166Lpi3/BwBo0bYTlvwyFd6+gfD1D8L+XVsg08E+0b5dW8ye+wv8/XwR4O+Pnbt2IT09HU0aNwIA/DRnLhzs7dGrR3cAb7fx05z/V27jBzA1M0V5HWxjgUCAih93w5U/foONvQcsbV1x6ch8mFk5wr1CI2W5/St7wiOoEYJqfwljkQVsy6l2zpQxMYPIXJxveUnr3LIxpixahQreHgjy9cKWfUeQLstAi3ofAwAmLfwdZe3EGNSlPQBgbcQBLN+6G5OG9oazo71yrkQzUxHMTbV3rOUlEAjQpFVn7Nn2O5xc3ODgWB47Nv4GWzsHVK1ZV1lu1ricJy43avE5ACA9LRXRL58q/z025gUeP4iCpZUN7Mtqb8Ryq3YdsWDuDPj6BcDPvwL27NoOWXo6GjRuDgD4dc502Ns74Kse/QAALVt3wLgx32DXji0Iq14Lp08ew/17URgw5DutZcyrY5uWmDlvEfx9fVDB3xfbd0ciPV2GZg1znl49/ZcFKGtnh77dc9rfzMxMPH76DEBOuxYbH4d7Dx7CzNQU5V2ctZ7XENthQ2vXmFf7DC2zQCBA7SbdcHzPb7Bz8oCtgyuO7pgPK1tHVKiae65bNasnKoQ1Qq1GOe3F3nWTcfVMJLp8sxAmphZIenO9ZqqD6+FKH3fDP8dyzs1Wdq64cHg+zK0c4RGUmzdyRU94BjVCxY++hInIAnZOqudgYxMzmJqL8y0nQCD87z5g5L+AHYhU6qxcuRKNGjXK13kI5HQg/vTTT7h6VfdPV2zV4SvI0tOwYuFMpKYkwz8oBGMm/aIyqjH61XMkJebe7lP700ZITJBg+4YVkEri4OHthzGTfsn3AAJtOHtbAWMjoHmYEKYmwNNYYOtJ1fkNxZaAWSmYysMmrBJqH82dpy5o9vcAgKdrd+Bq77EQOZeFmVvuHx9pj57hfOv+CJozFp5DuiH92Stc6/8jYg+f1mnu+q16I0OWhu0rJiItNQleAVXRb8xSGOfZJ+KinyIlSap8/9eRLQCAxVN6qKzriwFTUaNuO63mNbR92JC2b926dZGYkIB169dDEh8Pbx8fTJ4yRXnL0euYGAgFuRdU8fHxGDJ4sPJ9eHg4wsPDERwcjFk//ZRv/dqSs0+kY8XCWUhNSUZAUAjGTJqrZp+QKt/n7BNSbN+wHFJJ/Jt9Yq7Wb6usV+dTJCQkYO36DZBIJPD29sa0yZNyt/Hr1yrbOC4+HoOGfqN8v33HTmzfsRMhwZXw88wZ+davDcGf9kFWRhr+jJiAjPREOHpURdMey1TmUEqKf4L0VP1Pjt/4o+qQJiZh+dbdiJMmws/TFb98PxT2bx6s8io2HoI823fH4RPIzMrC93OXqqyn9/9aou/nrXWW+7N23SBLT8OqxdNz2rUKlfHd+Pkq+3DMO/vww3u3MGvcAOX7Tb/nzKX4cf0W6PvNRK1l/aROAyQmSLFp/SpIJfHw8vbFuMk/KY+d2NfRKvtwYFAlDBs5DhvXrcSGNSvgXL48Rv84FR6emkeFlqQGn36MhIRErN64BfESKXy8PTFr4g+wsxUDAGJex75zzEnQ99tRyvdbdu7Blp17ULlSEOZNn/Tu6kucIbbDhtauMa/2GWLmTz/rg0xZGnavmoD01ES4+1dFt++WqVyvxcc8QWpS7rnu72ObAQC/z+yusq52vaej6qfavR6uXCfn3HxqZ865uZxHVTTrqXpuTowrHedmotJGoFCUphsTibTr4h3tP7mwpB26XPD8U6VNyJfav7WqJCnO3dB3hCJxttTycFAteJls/f5CpUgF8RN9RyiShCzDaiMAwE5Yup6Q+z5bLvvqO0KR9PM7pe8IRXLbpIq+IxSZtXHh5lQuLWyzC/c01NIizdhS3xGKzEiepe8IRMXy92vDOtc9eanvBEUzov1/Y/a4Bz20f6ddaeC9eq++I+jFf2MvJiIiIiIiIiIion+FtzATEREREREREVGxCIQco/Yh42+XiIiIiIiIiIiINGIHIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBEfokJERERERERERMUiEAr0HYG0iCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERExSIQCv4Tr39j0aJF8PT0hKmpKWrWrIm///5bY9l69epBIBDke7Vo0UJZpkePHvn+vVmzZv8qW2HxISpERERERERERERasGXLFgwfPhy//fYbatasiXnz5qFp06aIioqCo6NjvvI7duxARkaG8n1cXBwqV66Mjh07qpRr1qwZVq1apXwvEom090OAHYhERERERERERESFIpPJIJPJVJaJRCKNHXhz585F37590bNnTwDAb7/9hsjISPz+++8YM2ZMvvJ2dnYq7zdv3gxzc/N8HYgikQhOTk7F+VGKhLcwExERERERERERFcKMGTNgY2Oj8poxY4bashkZGbh48SIaNWqkXCYUCtGoUSOcOXOmUJ+3cuVKdOrUCRYWFirLjx8/DkdHRwQEBGDgwIGIi4v79z9UIXAEIhERERERERERUSGMHTsWw4cPV1mmafRhbGwssrOzUa5cOZXl5cqVw+3bt9/7WX///TeuX7+OlStXqixv1qwZ2rdvDy8vL9y/fx/ff/89mjdvjjNnzsDIyKiIP1HhsAORiIiIiIiIiIiKRSD8b9zkWtDtyiVt5cqVCA4ORo0aNVSWd+rUSfn/wcHBCAkJgY+PD44fP46GDRtqJct/47dLRERERERERESkQw4ODjAyMkJ0dLTK8ujo6PfOX5iSkoLNmzejd+/e7/0cb29vODg44N69e8XKWxB2IBIREREREREREZUwExMThIWF4ejRo8plcrkcR48eRe3atQusu23bNshkMnz11Vfv/Zxnz54hLi4Ozs7Oxc6sCTsQiYiIiIiIiIiItGD48OFYvnw51qxZg1u3bmHgwIFISUlRPpW5W7duGDt2bL56K1euRNu2bWFvb6+yPDk5GSNHjsTZs2fx6NEjHD16FG3atIGvry+aNm2qtZ+DcyASEREREREREVGxCIQCfUcolb744gu8fv0a48ePx6tXrxAaGooDBw4oH6zy5MkTCN+ZPzIqKgqnT5/GoUOH8q3PyMgIV69exZo1ayCVSuHi4oImTZpgypQpWp2bkR2IREREREREREREWjJ48GAMHjxY7b8dP34837KAgAAoFAq15c3MzHDw4MGSjFcovIWZiIiIiIiIiIiINOIIRPpPkaRb6DtCkbWoEqfvCEXy5NwNfUcoEkHNivqOUCTR567rO0KRWZpk6jtCkWQotDfsXxtMhTJ9RyiyF5nam9xZGxoGJ+g7QpE8FVbQd4QiMYPh7cOn7hvWPhxYXqzvCEUikhvWeQMAFOBte2TYFsz8U98RimTvBEM7dzTSdwCiYuMIRCIiIiIiIiIiItKIIxCJiIiIiIiIiKhYBEKOUfuQ8bdLREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxDkQiYiIiIiIiIioeAR8Iv2HjCMQiYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBrxISpERERERERERFQsAiEfovIh4whEIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhII86BSERERERERERExSIQcozah4y/XSIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFGfIgKEREREREREREVi0Ao0HcE0iKOQCSDJhAIEBERoe8YREREREREREQfLI5ApFLt9evXGD9+PCIjIxEdHQ1bW1tUrlwZ48ePx8cff4yXL1/C1tZWJ1kUCgUityzGn0fDkZaSBO/AUHTq+yMcnT001rl78wKO7F6Npw9uIUHyGv1GzkPlGg10lnfLhpU4enAPUlKSEVghGH0HfQfn8m4F1juwdwd279gEqSQeHl4+6NX/W/gFBOkk78HtC3H22HakpSTBK6AKOvQaj7IFbN+jEctx7fxhxLx4CGMTU3j4h6Jl5+FwdPHSala7T6rB+7vesKlaCaYujrjQYRCidx8tuE6dGgiaPQaWQX5If/oS92YswbO1O7Wa810KhQIHti/CmWPbkZ6SBM+AKujYa1yB2/hIxHJcPX9EuY09/UPRqvMwrW/jt3n3bF6CU0d2IC01CT4BoejS73uUc9Gc986Nizi0aw2evDnmBo6ai9Caujnm9u2JwM7wLZBK4uHp5YO+A4fAP6CCxvJ/njqOjetWISb6FZxdXNGtV19Uq15LJ1kBYN/enYjIk7fPgKHvzbtp/e+5eXv2Q5gO8wI5+0TEpqU4cXgnUlOS4RdYGV0HjIGTi7vGOlE3LmH/znV4fP8WpJJYDBkzG1Vr1dNZ3vCNy/HHoV1ISUmGf4Vg9Bo4qsC8AHAocjsid65HgiQe7l6+6N7vO/j4V9RZZkM7d2xT5k1CQIVg9Bk04r15D+4Nx548eXv2HwZfHeU9s28+rp3ZBllaIly8qqLh5xNh6+ipsc6VUxtx9c9NSIx7DgCwd/ZDzWaD4BVUVyd5Dakdfpt556alOHE44k07EYJuhWgn9u1ch8f3b79pJ35GmA7bCUNr1wwpryFmNrS8ANC7iwdaNXaCpYURrt1OxJwl9/DsZbrG8kIh0LOTB5rUc4S92Bix8RnYfywaa7Y+1XrWbYdOYP2eI4hLSISfe3mM6PE5Kvp6qi0bcfRPRJ46hwfPXgAAAr3cMeiL1hrLE33oOAKRSrUOHTrgn3/+wZo1a3Dnzh3s3r0b9erVQ1xcHADAyckJIpFIJ1kO71qF4/s3olO/cRg5YwNMRGZYOHUAMjNkGutkyNLg6hGAz3t/r5OMee0K34j9e8LR7+sRmDFnKUSmZpg6/jtkFJD3z5NHsWbFQnTs3AOzfl0BDy9fTBv/HRKkEq3n/WPPSpw6sAH/6z0B30zZBBORGZbN7Ffg9r1/6zw+atIZQydvQv/vl0OelYVlM/pClp6q1axGFuZIvBqF60MnFaq8macrqu9eirjj53C6Whs8XLAGwUunwqHxJ1rN+a5je37HyQMb0LH3eHw7ZSNEIjP8NrP/e7bxBXzSpDO+mbwRA75fhuysTPw2o5/WtzEAHIxYjWP7NuLL/j9gzIx1EJmaYf6UQe8/5jz90bnvWK3ny+v0iT/w+/Il6NSlG+YuWApPbx9MGjcaUg3Hzu2b1zFn1lQ0atIccxcsQ83aH2PmlPF4/OihbvKePIZVy5fgiy7dMWf+Mnh6+WDyuFEF5p370xQ0bPIZ5sxfjpq1P8HMqeN0lvetfTvX4PDezeg2YCzG/bQaJqammDtpSIH7hCw9DW5efviq/2gdJs2xd8c6HNy7FT0Hjsbkn1dAJDLDzAnfFtgOnzl1GBtW/or2nfpg6i9r4O7ph5kTvkWCNF4nmQ3t3LE7fAP279mOPl+PwLQ5y2Bqaobp44cXmPevk0exdsVCdOjcEzN/XQkPL19MHz9cJ3kvHFmOyyfXodHnE9F5+FYYm5hhx5LeyMrUnNdS7IRPWo1Al5E70GVkONz8a2H38q8R+/Ku1vMaUjv81r6da3F47xZ0HzAW439aBZGpGeZMGlLgPiFLT4O7lz+69h+lw6Q5DK1dM7S8gOFlNrS8Xdq7okMLF8xechf9R15GWroccyZWgomx5ltZv2zvhrbNnTFv6T18Nfgiflv7KGc9LV20mvXwmYuYt24H+nT4DGunj4GfhyuGzlyI+IQkteUv3rqDph9Vw5Ifv8HKSSNQzt4WQ2YsREy8VKs5iUordiBSqSWVSnHq1CnMmjUL9evXh4eHB2rUqIGxY8eidevWAHR3C7NCocAfkevRrENfVK5eH+U9/NF98DQkSF7jyvljGutVrPIpWnUegtCaDbWeMS+FQoHIXVvR4YtuqF7rU3h4+WLw8B8giY/D+TOnNNbbG7EFDZu2Qv3GLeDm7oV+X4+AicgUxw5Haj3vyf3r0Khdf1Sq1gAuHgHoPGgGEiUxuH5B88i+fmOXoUbddnBy84WLRyA6DZwGSexLPHt4U6t5Xx88iTsT5iF615FClffo1wlpD5/h1qhZSL79AI8Xb8Cr8IPw+qaHVnPmpVAocGL/OjRp1w/Bb7Zxl0HTkSiJwbUCtnH/sUtRo25bOLv5orxHILroaBsrFAoc3bsBn/2vL0Jr1Ierpz96DpkCqeQ1Lv/9h8Z6lap+grZdBqOKDke7AMCundvQpNlnaNikOdzcPTFw8DCIRCIcPbRfbfk9u3agalgNtPtfJ7i5e+DLbr3g7eOHfXsidJJ3985taNysBRo2zsk7YPBwiExNNebduzscVcJqoF2HnLxdur7Ju1d3o2gVCgUO79mEVp/3RtWa9eDm6Ye+30yGJP41Lp07rrFeSNjH6PDlIITVqq+zrMCbEb+7t6Dt5z1RrVYduHv5YeCwCZDGx+Li2ZMa6+3ftQn1m7RB3UYt4eruhV6DRkMkMsWJI3t1ktnQzh37dm1D+zx5vx7+43vzRkZsVuZ1dfdCn69HwkRkij8Oa3cbKxQKXDqxFjWaDIRPSCOULR+IZl1/QkpCDO5f1Xw+8QluAK+KdWHr6AlbRy983HIYjEXmePXostbzGlI7DORkPrRnE1p/3gtVa9Z9005MgiQ+FpfOndBYL6edGKiXdsLQ2jVDygsYXmZDywsAn7cqj7XbnuD03/G4/zgV0+ZFwd5OhE9rOWisUynQCqfPxeHMRQlexchw/K9Y/P2PFEF+VlrNujHyKNo2+Ait6tWGt6szxvTuBFMTE+w5fkZt+SmDe+J/TerA39MNnuWd8EO/L6FQKHD+epRWcxoygVD4n3j9V/13f3Iq9SwtLWFpaYmIiAjIZJq/cdOFuJjnSJTGIiA493Y9MwsrePoG42HUFT0mUy8m+iWkkngEh1ZTLrOwsIRvQAVE3b6htk5mZiYe3LuDkNAw5TKhUIiQ0Gq4o6FOSYmPeYYkaSz8K+XZvuZWcPcJweO7hd++6ak53x6aW9qUeMbiENcKRewx1QuT14dPw7ZWqM4yxCm3cW3lMjNzK3j4hOBREbZxWmoyAO1v49jonGOuQkhN5TIzCyt4+QXjQSk75jIzM3FfzbFTOTQMUbfVd7RG3b6JkCpVVZZVCauu8fgsSW/zVs53rFfV+PlRt2+qlAeA0KrVtd425PU6+jkSJHGoGFJDuczcwhI+/pVwL+qaznIU1uvoF5BK4lCxcnXlspy8FXFXQ96szEw8vBeFSqG5dYRCISpVro67t7X/MxrauSPmzTYODlXdxr4BQbh7+7raOllv8ub9GYVCIYJDq+GulvMmxD1DauJruAd8pFwmMrOCk0dlvHj0T6HWIZdnI+piJLJkqXD2rKKtqAAMqx1+6207EZSvnaiI+1FX9ZhMPcNr1wwrL2B4mQ0tr3M5U9jbmeDCFalyWUpqNm7dSULFAM2dgddvJyEsRAw3FzMAgI+nBUKCrHH2kvZG22dmZeH2w6eoXilQuUwoFKJ6pUBcu/ugUOtIl2UgKysb1pbm2opJVKpxDkQqtcqUKYPVq1ejb9+++O2331C1alXUrVsXnTp1QkhIyHvry2SyfB2PGRmAiUnRb3lOlMYCAKzF9irLrcT2SJTGFXl92iaV5GQSi1XnhxSL7SDVcBtcUmIC5PJs2IjtVJbbiG3x/Nlj7QR9IzEhZ/ta2ah+U2llY6/c9u8jl8sRsXYWPAOqwNnNr8QzFoeonANk0ao/hyw6FsY2VhCaiiBP134HedKbbWxpo7oPW9rYI6lI23gmvHSwjTUdc9Y2dkgoZcdczrEjh/id+VhtxLZ49vSJ2jpSSXy+49NGbAuJRPu3UL7Na5OvfbDF8yLkFeso71tvf+9q9wlJ6dongNx2OH+baqf8t3clJUrVtsPWYlu8eP5IKznzMrRzh1QSr/ysdz9bU95EjXnt8ELLeVMTXwMAzK1U92FzK3ukJhbcDse+iMLmuZ2QlSWDicgcrfosgr2zr9ayAobVDr/1NpdNvsz2pbKdMLR2zdDyAoaX2dDy2tsaAwAk0gyV5fHSDNjZmmistz78KczNjbB+URjkcgWEQgGWr3+Ewydeay2rNDEZ2XI57GxUOzbtbKzw+MWrQq1j4cYIONjaoEaeTkii/xJ2IFKp1qFDB7Ro0QKnTp3C2bNnsX//fvz0009YsWIFevToUWDdGTNmYNIk1Tnqug74Ad0Gjnvv5/59KhKblk5Wvh80dtG/yq8rp/44hKWLZivfj50wS49p3u/i6b3YvmKi8n2fUUuKvc4dq6bi1dO7GDxxXbHX9SG4eHovtq7I3f/7jlpc7HWGr5qKl0/vYejEtcVe17vOnYzEhqVTle8Hf7+gxD+DDMuZE/uxZsl05ftvf5ynvzCF8OfxA1i5OLftHTl+jh7TFI6hnTtO/XEIyxf9rHw/ZsJPekzzfrfO78bRLROU79v2X/qv12Xr6IWvRkdAlpaEu5cP4uD60eg4dH2JdiIaYjv814n9WLNkhvL9sB9/0WOa9zO0ds3Q8gKGl9nQ8jauWxYjBuZ+iTx6yr8bud3gk7JoXNcRk+dG4eGTFPh5WWJIb2/ExmfgwB8xJRW3RK3ZdQiHz1zEknHfQmRirO84RHrBDkQq9UxNTdG4cWM0btwY48aNQ58+fTBhwoT3diCOHTsWw4cPV1l2+k7hPjOkWj14+gYr32dl5XyrliiNg41tWeXyJGkcXD0DCrdSLapW8xOVp0dmZWYCAKRSCWztckf1SaXx8PRSP3LMytoGQqFRvon6E6QSiG3t1db5tyqG1YdH3u37Jm9SQiys827fhDiU93z/N3w7Vk3FzUsn8PWENRDbO5Vo1pIgi46FqJzq6EpROQdkJiRpbfRhxbD6GOGbO1I3KzNnH05OUN2HkxPi4FKIfTh81TTcvHQCg7W0jStXrwcvv7z7hPpjLjEhHm6e/iX++cWRc+wIIX1nNF6CVAJbOzu1dcS2dvkeWJIglejkqfJv8777wAipVAKxbeHzSrWcN7RGHXj7V1K+z7tPiPO0a4kJ8XDz0v8+UbXGpypPSs7KymnXEqTxKu1wgjQeHt6a2mGx2nY4USrJN6KqJBjauaNazU9Unuyc+WafSHgnb4JUAk8v9R1r1hrzxpd4Xp/gBnD2rKx8//ZaIjUpDpY2jsrlqUlxKOta8LnOqIwJxGVznnxczr0SXj25hn9OrEWjTpMLrFcUhtgOV6lRBz5q2omEfO1EHNxLQTthaO2aoeUFDC+zoeU9/Xc8bkZdUr43Ns6ZEc1WbII4SaZyuZ3YBHcfJmtcz8AeXtgQ/hRHT+WMOHzwOBXlyorw1f/ctNaBKLa2hJFQmO+BKfEJSbAXWxdYd/3eI1iz+xAWfj8Efh7ltZKPyBBwDkQyOEFBQUhJSXlvOZFIBGtra5VXYW9fNjWzgKOzu/Ll7OoDa7EDoq6fU5ZJS03Go3vX4BVQuYA16YaZuTmcXVyVL1d3T4ht7XD98kVlmdTUFNyLuoWAwIpq12FsbAxvX39cu5JbRy6X49qVi/DXUOffMjWzgIOTh/JVztUHVmIH3M2zfdNTk/Hk/lV4+GnevgqFAjtWTcW180cx8MffYe/oWqI5S4r07GXYN6ilssyh4UeQnL2stc80NbNAWSd35cvpzTa+c/2sskx6ajIe378Kz/ds4/BV03Dt/FEM0uI2znfMueUcc7ev/a0sk5aajId3r8G7FBxzeRkbG8PH1x9Xr+ReUMvlcly9fAkBgUFq6wQEBuHq5Usqyy7/c0Hj8VmSlHkvq+a9dvmSxs8PCAxS+fkA4Mo/Jd825GVmZoFyzm7Kl4ubN2xs7XHz6nllmbTUZNy/cx2+AcEFrEk3zMwt4OTipnyVd/OC2NYeN67k5k1NTcH9OzfgpyFvGWNjePkGqNSRy+W4fvU8/AJL/mc0tHOHmbk5nFxclS9X95xtfO3yhXfy3oRfYCW16yijIe/1KxfhV8J5TUwtIS7roXzZO/nC3Losnt7JnRNXlpaMV4+vwKWo8xkq5MjOynh/uSIwxHa48O3EDfgEvH/6G20zuHbNwPIChpfZ0PKmpWXj+at05evR01TExWcgLESsLGNuZoQK/la4EaX+ycYAYGoihEKuukwuV0Co+cHNxWZcpgwCvdxUHoAil8tx4UYUgv28NdZbu/swVu7Yj1/HfI0gHw/tBfxACISC/8Trv4ojEKnUiouLQ8eOHdGrVy+EhITAysoKFy5cwE8//YQ2bdroNItAIED9Fl/hQPgyODq5w96xPPZuWQQb27KoXD33KYO/TuqDyjUaol7zzgCA9LRUvH6VO6dYXMxzPH14GxaWNrAr66zVvC3afI7wLWvgVN4VjuWcsWX9Ctja2aN67U+V5SZ9/w1q1K6D5q06AABatv0Ci36ZDh+/QPj6V0Dkrm2QpaehfqPPtJb1bd46zbviSMRSODi5w97RFfu3LYC1rSMqVct9gvWSqb0QXL0hPmn6JQBgx+9TcOmvfej13QKIzMyRKM35FtPM3ArGJqZay2tkYQ4LX3fle3MvV1hXDkRGfALSn75EwNThMC1fDld6jgYAPF62GR6DvkTgjJF4ujocDvVrwbljc5xv3V9rGd8lEAhQt3lXHI5YhrJOHrBzLI/92xbC2tYRwXm28eKpvRFcvSE+bdoFABD++1Rc/Gsfen83HyIzC+WcWKbmljDR4jYWCARo2PJL7Nu+HI7O7nBwLI9dmxZBbFsWoTVynzA4d2I/VKnRAPU/6wQg/zEXq6Njrk27jvh17kz4+gXAzz8Qe3aFI12WjoaNmwEA5s2eAXt7B3Tt2RcA0KpNe/wwehgidmxFteq1cOrEMdy/eweDhnyntYx5tW7XEfPnzoSPnz/8/Ctg767tSE/PzfvrnOmwsy+Lrj1y8rZs3QE/jvkWu3ZsRVj1Wjh98hju34vCQB3lBXL2icatOmPPtpUo5+IGB8fy2LlxCWztyqJqzXrKcj+NG4iqteqhUYsvAOTsEzEvnyr//XXMczx5EAULKxvYl9XeiGWBQIBmrb9AxNbVcHJxQ9lyLti+YRnEdg4Iq1VHWW76j4NRrVZdNGnZEQDQvE1nLJ03BV6+FeDjH4QDu7dAlp6Oug1baC1r3syGdu74rE1H7NyyBs7l3TTmnfL9N6heuw6avcnbom0nLP5lGnz8AuHjXwH7dm2FLD0N9RppdxsLBAJUrdsN5w4ugbisB2zsXfFX5K+wsHGET0gjZbntC7vDN6QxQut8BQA4vXsOPIPqwMrWGZmyFNy+sBdP7/2N9gNXaj2vIbXDbzM3adUZe7b9Dqc37cSOjb/B1s4BVWvWVZabNS7nicuNWnyuzBydp52IjXmBxw+iYKmDdsLQ2jVDymuImQ0tLwBs3fMc3T93w7OXaXgZnY4+XTwQFy/DqbO5c7vOmxyMk2djsWPfSwDAX+fj0bWjG6Jfp+Ph01T4eVviizauiDxSuLkI/60uLRpi0pK1qODtjoq+nti8/xjSZDK0rJvzRf+ExWvgaCvG151z/tZcs/sQlm2LxJTBPeBc1g6x0gQAgLmpCOam2rsOJiqt2IFIpZalpSVq1qyJX375Bffv30dmZibc3NzQt29ffP/99zrP07hNT2Skp2Hj0slIS02CT2AVfP3DEhjnGdUYG/0MKUm5t/k9eXADv07srXwfviZn7qaadVuj2+DceYa0oU2HLkhPT8PSBT8jNSUZgUHB+GHybJVRmNGvXiApMUH5/uM6DZGYIMWW9SshlcTD09sXP0yerfG2xpJUv1VvZMjSsH3FRKSlJsEroCr6jVmqsn3jop8iJUmqfP/XkS0AgMVTeqis64sBU1GjbjutZbUJq4TaR3PnWgyanbM/Pl27A1d7j4XIuSzM3HL/SEp79AznW/dH0Jyx8BzSDenPXuFa/x8Re/i01jKq06BVL2TI0rA1zzbuP+a3d/bhpyr78J9vtvGiKT1V1tV5wFTUqNtWq3mbtu2BjPQ0rP9tClJTkuAbWAVDxy1WzfvqKZLz5H18/wbmTuirfL9tdc48dLXrtUKPIVO0lvWTuvWRkCjFpnWrIJFI4OXtgwmTZymPndevYyAQ5g76DwyqhOGjfsCGtb9j/eqVcClfHmPGTYaHp5fWMqrkrdMAiQkJ2Lx+NSSSeHh5+2D8u3kFqnmHjfwRG9f9jvVrVsC5fHmM+XGKzvK+9Vm77shIT8fqxdORmpIE/wqhGD5+vso+EfPqGZITpcr3j+7dxKxxA5TvN/+eM0fax/Vbos83E7Wat2X7rpClp2PloplITUmGf1AIRk+c9047/AxJefLW/rQxkhKk2L5xORIkcfDw9sPoib/ApoRvr9XE0M4drTt8CVl6OpYt+AmpKckICArG2Mlz3sn7XGUbf/Qm79b1K5R5x06eo5O81Rr1RWZGGo5sHg9ZWiJcvMPQfuAKlDHOzZsQ+xRpybntWmpyHA6uH42UhBiYmFnBwSUA7QeuhEfgx1rPa0jt8FuftesGWXoaVi2ennPcVaiM78bPV9knYt7ZJx7eu6XSTmxSthMt0FfL7YShtWuGltcQMxta3o07nsHM1AgjB/nB0qIMrt1KwIhJN5CRqVCWcXEyhY117ryBvyy/jz5dPDB8gC9sbYwRG5+BXQdfYvUW9Q9zKymNa4dBkpiEZdv3Ik6aBH+P8vh1zNfKW5ijYyUQCnJHl+04fAqZWVkYM2+Fynr6dPgM/f6n/S/2iEobgUKhULy/GNGH4chV7T/ttqQ5miW8v1Ap8iRJ+3+AlSRBTe3fMlqSBOeu6ztCkZmbZOk7QpGUM1P/9NbSSqEwvNsopJlW7y9UipgIDWsfNhFmvr9QKSKH4e3DZx+UfX+hUiSwfJq+IxSJyMiw9mEAUBjgfkyU1+gxl/UdoUj2TjCsv+tsqjZ6f6EPQPTorvqOoBPlZv03H9zJEYhERERERERERFQs/+X5Af8L+BAVIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUZ8iAoRERERERERERWPkGPUPmT87RIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBpxDkQiIiIiIiIiIioWgUCg7wikRRyBSERERERERERERBqxA5GIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKID1EhIiIiIiIiIqJiEQg5Ru1Dxt8uERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKiYhEIBfqOQFrEEYhERERERERERESkETsQiYiIiIiIiIiISCN2IBIREREREREREZFGnAOR/lM+ujRT3xGK7FfzH/UdoUiahCboO0KRRJ+7ru8IRaKoWUnfEYrM4dYJfUcokp/XG+s7QpF0bG2r7whF5mYVp+8IRRKdJtZ3hCIJ2TJc3xGKJKbHdH1HKLI6Pi/0HaFIHNMf6ztCkcSZuOo7QpFlKfhnlTYpwHnVtO3w4Pv6jlA0z1L0naBoqjbSdwKiYuOZjoiIiIiIiIiIikfIm1w/ZPztEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGnEORCIiIiIiIiIiKhaBkA88+pBxBCIRERERERERERFpxA5EIiIiIiIiIiIi0ogdiERERERERERERKQROxCJiIiIiIiIiIhIIz5EhYiIiIiIiIiIikUg4Bi1Dxl/u0RERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiIpHKNB3AtIijkAkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg0YgciERERERERERERacSHqBARERERERERUbEIhByj9iHjb5eIiIiIiIiIiIg0YgciGbQePXqgbdu2+o5BRERERERERPTB4i3MVGoJBIIC/33ChAn49ddfoVAotJ5ly8U7WHPuFuKS0+DvaIvRTcJQycVBbdndVx9gQuRZlWUmRkKcG9VJ6znf9WlFAUK9BRAZA8/igIMX5ZAkF65urUAB6ocIcf6OHEcua38bKxQKbN+wHH8c2o2UlCT4VwhBr0Gj4OziVmC9Q5Hbsff/7N13WFNXAwbwN1EIe6vsvVyI4mytW6t1a22rVqviXq22tVr3qLbWWqtV66gTt4iIe8/WXbeiiCI4mEmYYSXfH0gwSFAqSUi/9/c8eR7v5Zyb18vJuXA499xdmyAVp8DVwxtfDBsPb9+aGs9bmPngzqX4+/hOyDLS4O5XF70GTUUVBze1dY7uXoUbl44i4dkjGBgawd03EJ17j0NVRw+N5bRpWh+eXwfDsl4tGDlWxeWeIxG/51jpdZo1RI0FE2FWwwey2OeImrcccRvCNJaxJAf2hiE8dCsk4hS4e3ghePiX8PGrrrb8X2dOYEvIGiTGv4CDoxM+HzgcQQ0aazEx0K2FKZrVM4KJkRBRsbnYsC8NCSn5pdaxMheiVxsz1PY2hKGBAAkp+VgTnorHz/M0nlehUODAjqU4f3wnsjLS4OFXF72CS2/DR3avwo2Lxdpwn3GopsE2XEjf2oRCocDebctw7uguZGWmwdMvEL2HTkbVUs7vgztXcCR8HWKj70IqTsTQCb8isGErreQ1atQKJk07QGhmibwXT5C+dxPynj4qsaxl8Hcw9PB/bX925HWkblyk4aRFDuwNw25lm/DG4OFj39AmTmJLyJ9IiH8BB0dn9Bs4TKttYv/eMOwO3aZsw4OHj4VvKXnPnTmJLSFrlHn7Dxyq1byhB45ic/gBpEik8HZ3xbjgz1HDx7PEsnuOnMSBU3/h0ZM4AICfpzuG9f1YbXlN2BcRjrDQ7RCLU+Dh4YWhI0bD1+/1dlro7JlT2LRxHRLiX8DR0QlfDBqC+g0aaS0voH9tWB/z6tN1A9C/zFtPXcH6YxeQlJoOX6eqmNirHWq7O76x3oHLdzBxXThaBvhg0dCPtZC0wNZz17H+1FUkpWXC18EOE7s1R21X+zfWO3DtPiZuOoiWNT2xaEAnLSQlqng4A5EqrOfPnytfixYtgoWFhcq+b775BpaWlrCystJojkN3YvDLsasY1rQWNg/qAN9qVhi57QRSMmRq65iJDHBkTHfla/+orhrNWJLG/gLU9xHg4BU51h+TIzcP+LSZEJXe4lPvYA3U9RQgXqL5gcNCEaEhOLR3BwaNnIDZC/6EkZExfpz2FXJystXW+fvMUYSsXowevYPxw6J1cPXwwY/TxkEqSdFK5uMRa3D64Cb0Cp6Gr2ZvhkhkjD9+HIbcUjI/vHsZTdv1xpezNmP49yuRn5eLP+YNRbYsU2M5K5maIPVGJG6NnflW5Y3dndFgzwokn7yAs/W74tGS9ai9Yg7s2jbVWMbizp0+jnWrluKTPl/g58Wr4ObhhdlTv4FUIi6x/L07t/Dr/Nlo3e4jLFi8Cg2bfID5cybjyeNorWXu8L4J2jQyxoZ9aZizOgXZOQp8/bkVKldSX8fESIDvB1kjP1+BXzdJMGVZMrYdTkeGTDufvWN7XrbhwdMwbs5mGIqM8ce8t2vDX83ejBGTV0Ken4s/5mq2DQP62SaO7F6Lk/u3oPfQKfh2bghEImMsmT2i1PObI8uCs7sfPh08SWs5AUBUqyHMOnyGjBPhEC+bgbwXsbAc8DUEpuYllk/d/DuSfvxS+UpZPBmK/Hxk37qktcxnTx/H2lXL8EmfAViweBXcPbwwa+q3kJTSJhbOn4XW7Tril8Wr0bBJU/w0ZwpitNQmCvIux6d9vsAvi1e+zDvhDXkL2vAvi1ehUZOm+HHOVMQ8LnlQt7wdPXcBS9ZtxaBPumHNzzPh7eaC8bMXQCxNLbH81dv30LZpIyye+R1WzJ2CqnY2GDfrZyQml/z/K29nTp3An6v+wGd9+uHXJX/A3dMT06dOVHt+7965jQU//YC27dpj0ZI/0KjJ+5g7e7rWzi+gr21Yf/Lq43VD3zIfvHIHC8KOYViHptj63SD4OVXDiKXbkJyWUWq9p8kSLNx9HPW8Sp8oUN4OXruPBRFnMKxtI2z96jP4OdphxOpwJKeX/jPM05RULNx7BvU83jww+v9OIBT8X7z+X3EAkSose3t75cvS0hICgUBln5mZmVZuYQ65eA896niha4AXvOwsMbl9QxhVrozdNx6WWs/OzFj5sjU11mjGkjTwEeDcXQUePAMSpcDei3KYGwO+TqV3eAaVgS6NhThwWQ5ZjnayKhQKHNyzDd0+GYD6jZvB1cMbI8ZNgyQlCZfPn1Zbb//uLWj5YRe0aNMJzq4eCB45ASKRCKeO7NVK5lMHNqJd96GoXb8VHN380GfkXKSKE3DzsvrZfcMmrUDD5t3g4OINJzd/9BnxA8RJzxH36I7GsiYeOo370xchPvzoW5V3G/oZsh7F4e6En5B+LxoxyzbhRegheHw5QGMZi4sI24427TuhVduP4OLqjmGjv4bIyAjHDu8vsfy+PTtRN6ghuvXsDWdXd/TuFwwPL18c2Ku9WZNtGxkj4nQGrkXmIC4hH6t3p8LKXIh6/iK1dT563wQp0nys2ZOGR8/ykCSR43Z0DhLFpc9aLA8KhQKni7XhvqPmQvqGNjx80go0aqHdNgzoX5tQKBQ4vm8T2vccgjoNW8LZ3RdfjJkDqTgR1y8eV1uvZr2m6NJ7NAIbtdZKzkLG77eD7PJpZF89i/zEZ0jfswGK3BwYBX1QYnlFVgYU6anKl6FXTShyc7Q6gBgRtgNt23dE67YdXraJ8RAZGeG4mjaxd0/oyzbxGZxd3dCnXzA8vHy01ib2FMs7/GXeY4cPlJq3e8/P4OLqhj79BsHTywf7tZR3W8QhdG7THB1bfQAPFyd8O+wLiESG2Hus5OvyjK+Go0f71vD1cIObsyMmjhgEuUKByzc12zcUCg8LRbv2H6FNu/ZwdXXDyNFfQSQS4ejhgyWWjwjfhXpBDdDj40/h4uqGz/sPhKeXN/ZFhGslL6B/bVj/8urXdUMfM288fhE93quDbk0C4OVghymftYeRYWXs/vuG2jr5cjm+X78HIz76AM52VlrJWWjj6X/Qo1EtdGtQA17VbDGlRysYGVTG7ovq+6l8uRzfbz6EEe0aw9nGUotpiSoeDiASlSI3Px93X6SgkUfRtHahQIBG7va48TRJbb2snDx0WLob7X/fja92nsLDRIkW0haxMgXMjAV4HF80iyk7F3iWDDjZll73w3oCRD1X4HGChkO+IiH+GSTiZNQKbKDcZ2JqBi/fGnhw71aJdfJyc/EoKhK16hTVEQqFqBXYAA8iS65TnpIT4pAmSYJvrSbKfcYm5nDzCsDjB9ff+jhZmQX3lJuYVZwfSKwaByLp+N8q+xKPnIV140CtvH9ubi4eRt1HQGCQcp9QKERAYBDu37tdYp37926rlAeAwHoNEKmmfHmrYiWElXkl3InOVe7LylYgOi4XXi4GausF+onw+HkeRnxsgUXf2GH6UGs0q2ekjchITohDqiQJvrWLtWHvADy+X7HasD62ieSEp0iVJME/oOh2SGNTc7j71Eb0ffW/WOlEpUqo7OiOnIevnBuFArkP78DAxfutDmEU1AzZNy8Audr5y1NBm4gssU1E3iv5F8GS2kTdeg3Vli9PhW24zmt566ltk5H37qiUBwrasLo2X55yc/MQ+fAxGgTUUO4TCoWoH1ATt+6X/gfUQrKcbOTl58PCzFRTMZVyc3MRFXUfgYH1lPuEQiHqBNbDPTXf33v37qBO3Xoq++oFNVBbvrzpZxvWt7z6dd3Qt8y5efm4G/sCjf2KljARCgVo7OeOG4+eqq234sBZWJuZosd7dTSe8VW5efm4+zQBjX2KZj0KhQI09nHBjZjnauutOHIR1mbG6NFQO0skEVVkHECk/6zs7GykpqaqvLJzy7ammDgzG/kKBWxMVH+htzU1QnJ6ybcwu9mYY3rHRlj0cXPM6dIECoUCAzYeQXyqZm/ve5Xpy7jF77LOyFYov1aS6i4CVLMS4OQN7d26DABScTIAwNLKRmW/pZWN8mvFpaVKIJfnw9L69ToSNXXKU5q0YADZzFJ1RNbM0hZpEvWDy6+Sy+XYveFHePjVhYOLT7ln/LdE1eyQHa/6f8iOT4KBpTmERupn05WXtFQp5PJ8WFlZq+y3tLKGRFzy7ekScQosi5W3KqV8ebMwK7icpmbIVfanZshhaar+UlvFuhJa1jdGfEo+FoZIcPJyFvq0N8d7dTQ/iFjYTs2LtWFzS1uklqENh63XfBvWxzYhFRecQwsr1fNrUYbzqy1CE3MIKlWCPF311lR5uhRCM4s31q/s5IHK9s6QXVY/Y7y8FbQJOayKXTdK+x5LxCmvlS+tDZWnwrxlaZMFeV8vLxZr/pZgSVoa8uVy2Fip/mHAxtICKRLpWx1j+cYdsLO2Qv1XBiE1JbWwPViXcH5TSj5fErG4hPNrBbGW+gh9bcP6lVe/rhv6llmcnol8uQK25iYq+20tTJGUWvKi61cfxiLs7xuY3qeDxvMVJ87IKshrViyvmQmS0kr+Pe3qo2cIu3Qb03tp964AooqKD1Gh/6x58+Zh5kzVNd++79ock7u11Oj71nGugjrOVYq2naqg58q92PnPA4xqrpm/tNV0FaB9UNGtydvPykspXTJzY6BtXQG2nJIjv+zVy+TsyUP4c+lPyu0J0xZo9g3LwZWze7F9dVF7GjJh2TsfM3TtHDyPjcLYGRve+VikXY1ri9C/U9HacIs2v90v1MUJBMDjZ3nYdbxgraAnL/LgVLUyWgQZ46/r6tdZ/Tcun92L7auK2vDQ7969De9cU9CGv5zJNnzx9D5sWTlbuT1i0u86TKNdRvWbIe9FrNoHrtD/n4279uLouQv4feZEiAwNdR2HiCqADFk2Jm+IwPTeHWBdbBCvIsqQ5WDylsOY/nFrWOtgOSqiiogDiPSfNWnSJIwfP15lX/62n8t0DGsTESoJBEjJVP1FPjlDBluzt5shZFBJCD97a8S+7eOP/4UHzxR4llI0a7DwQSmmRqqzEE1F6h+MYm8NmBoJMKht0WwpoVAA1ypAkLcA80PlKK8HXgc1bApv36IZCXm5Bbd9SiUpsLYperq1VJICN0/fEo9hbmEFobASpMX+wiqVpMDK+g33af8LNYNa4hvvgFcyF9ymly5NhqV10YBxujQZju5+bzxe6NofcOfqKYyevh5Wtm9+8ps2ZccnQVRN9Snjomp2yJWmQS5T//CH8mJuYQmhsNJri7JLJWJYFZtxWsjK2ua1BcYlpZR/V9cicxAdV/R+lV9eTS1MhZCmF43AW5gK8SRe/cxnSZoczxJVv/4sKR9B1ct/pmetoJZwK6ENpxVrw2nSZDi5vbkN71xT0IbHzNB8G9aHNhHQoAXcfWort/PyCs5vqkT1/KZKk+H8Fn2ENskz06DIz39ttqHQzPK1WYmvMTCEqHZDZB7brbmAJShoE0JIij00q7TvsZW1zWvlS2tD5akwb1naZEHe18tbF5tlpwlW5uaoJBS+NtswRZr62qzE4jaHH0BI2D4smj4B3u7aeUCCRWF7EJdwfm1KPl9W1tYlnF8JrLXQHgD9bcP6lbdiXzeK07fM1mYmqCQUILnY7L3k1AzYWZi9Vj42SYJnyVKMXbFDuU/+8peLemN/RPjUYXCporn+zdrUuCBvsQemJKdnws789QHN2GQpnolTMXZtxOt5v1uC8G/7wUXLazjqBQFvcv0v43eX/rNEIhEsLCxUXiKDso2ZG1SqhOr2NrjwOF65T65Q4GLMCwQ42ZVSs0i+XI6oBCns3nLA8d/IyQPE6UWvpFQgPUsB96pFsxINKwOOtsBTNXf3xiQAqw7m48/DcuXreYoCt2MU+PNw+Q0eAoCxiSnsHV2ULydXD1hZ2+L29cvKMpmZGXh4/w58/GuVeIzKBgbw8PbD7RtFdeRyOW5fvwwfv5LrvAsjY1NUsXdVvuydvWBuZYf7t84ry8gy0xHz8AbcfdTPNFUoFAhd+wNuXjqGkVPWwLaqc7lnfVeS89dg26qxyj671u9BfP6aVt7fwMAAXt6+uHntinKfXC7HjWtX4etf8vozvv41ceP6FZV9N/65DD815d+VLEeBBHG+8vUsMR+StHzU8Cxa79DIUABPZwM8jM1Ve5yo2FzY26o+ptnethKSpeU/DbikNmxhZYcHxdtw1A24+5behneuKWjDo6Zqpw3rQ5swMjZFVQdX5cvh5fmNvHlBWSYrMx2PH9yEp29AKUfSgfx85D17DEPPV241FQhg4FkdubFRpVYV1WoAQSUDyK79peGQqgrahB9uXLuq3FfQJq7Az7/kW2Z9/Wvi5vWrKvuu/3NZbfnyVNiGi+e9ee2q2jbp518DN17Le0Vtmy9PBgaV4eflrvIAFLlcjis37qCWr5faept278e6nXvwy9SvUd3bQ2258mZgYABvb19cv168PfwDfzXfX3//Grhx7R+Vfdf+uaK2fHnTzzasb3kr9nWjOH3LbFC5Eqq72ONC5GPlPrlcgQv3YxDg4fRaeY9qttj5/WBsmxisfLWo7YMGPm7YNjEY9tZvXjLjnfM6VcWFqFjVvFGxCHBzeD1vVWvs/Lovto3ro3y1qOGJBl7O2DauD+ytzF+rQ/RfxwFEojf4vKE/wq5FYc+NaEQnSTH34CVk5eaha4AnAGBKxF9YfPKasvyKszfxd/RzxInTcfdFCibv+RvPUzPQPfDtFqIvL5ceKPBeDQG8HYEqlkDnRkKkZQH3nxaNBPZuLkSQd8EgY05ewcDjq6+cPCArp+DfmiQQCNC+y6cI27YOVy6cwZPHUVi+cBasbOxQv3EzZbkfJo/Gob1Ff7X8qFtvnDi0B6eP7cPT2MdYs2w+ZDIZmrfppNnALzM379APR3avxK3LJ/DsyX1sWv49LKyronb9onVSls0JxplDm5XboWvm4PLZvfh89E8QGZsiVZKEVEkScnLK93bVV1UyNYFFHX9Y1PEHAJh4OMOijj+MXAp+WPKbMx511hbdUh6zcitMPFzgP+9bmPp5wm14Hzj06oBHv63TWMbiOnf/BEcP7cOJowcR9+QxVi5diGxZFlq1LVgzZ/EvPyBk3Upl+Y5dPsa1KxexZ9c2xMXGYNumtXgYFYkOnbprLfORC1no9IEpAn0N4VS1EgZ3t4AkTY6r94pmbX7TzwqtGhTdBnP4fCY8nQ3QsakJqlpXQqNaIjSvZ4zjlzS/ZqpAIECzDv1wOKyoDYcs+x6Wxdrw0tnBOHOwqA3vfNmG+43RXhsG9K9NCAQCtOrYFwdCV+HGpZN4GvMA65dMgaV1FdRp2EpZ7rcZQ3DywBbltiwrE7GP7iH20T0AQHL8U8Q+uoeURPULvJeHrHOHYVS/OUR130elKg4w69IfAkMRZFfOAgDMew6GaduPX6tnHNQM2XevQpGVodF8JencvReOHtr7sk3EYMXSX5EtkynbxG+/zFVpE5269MQ/Vy4i/GWb2KrlNtGley8cObQXx48eROzLvDKZDK3btlfm3bhuVQl5tyMu9gm2blqHh1GR+EhLeT/t/CEijp7C/hNn8TjuGRas3ABZdjY6tip4MvfsxSuxPKTomhwStg+rtuzCpJGD4FDFDsliCZLFEmRmabZvKNS1e08cPrgfx44eRuyTGCxf+htk2UXn99cFP2L92tXK8p279sDVK5cQtmsH4mKfYHPIekQ9uI+OnbtqJS+gf21Y//Lq13VDHzP3a9UQu/66hj3nbyD6RRLmbDuIrOxcdGtc8IeyyRsi8Fv4SQCAyKAyfByrqLzMjY1gamQIH8cqMKhcqZR3Kqe8zepi14Xb2HP5LqLjUzBn1wlk5eShW4OCQe3JWw7jt/3nivLa26q8zI1EMBUZwsfeVit5iSoa3sJM9AYf1nCDOFOG5WduIDlDBr+q1lj6SUvYvlwL40VqJoSCopl+abIczDpwAckZMlgYGaK6vQ3W9WsLLzvtPmX3/D0FDCoBHYKEMDIEYpOA7adV1ze0MgOMNf9MjLfSuefnyJZlYfXvPyIzIx2+NQIwceavMDQsChj/4inSUotup2ryQRukSsXYuWk1JOJkuHn6YOLMX197sIqmtOo8CDnZWdi+egayMtPg4VcPwyb+AYNXMifFxyIjrejWknNHtwEAls4eqHKs3sPnoGHzbhrJaRlUC02ObVRu11jwPQAgdsMu3AieBJFDFRi7FP3lNetxHC51GYYav0yC+5j+kMW9wM1hU5B05KxG8pXk/WatIJVKsDVkDSTiFHh4emPKrJ+Vt+QkJSZA8MotEv41auGrb6diy8Y/sWn9Kjg4OWPClB/g6u6ptcwHzmVCZCDAF53NYWIkxIMnuVgYIkFeflGZqjaVYG5SlPvxszws3SZFz9Zm6NLcFInifGw5lIbzNzV/qzgAtO5S0Ia3rSpow55q2nD6q234SEEb/n3W6224UYtuGsuqj22ibbeByM7OwuYVs5CZkQYv/7oYPWWZyvlNjI9DeqpEuf3k4W0smjFYuR26vmCN2MYtuqD/6KI1Fstb9q2LEJiaw7R1NwjNLJH3/Amk6xdCkVHwFyShlS2KT0WvZGcPA3dfZKwt2/Ig5aVps1ZIlUqwJWStsk1MnTX/lTYRr3J99q9RC+O+nYrNG//EpvWr4eDkhO+mzIGbltpEQV4ptoasg1icAg9PL0yb9ZMyb2IJbXjct1OweeMahLzMO3HKbLi5a2dmX5v3G0EiTcPqrWFIkUjh4+GKX6Z8rbyFOT4pGYJXzm/YoePIzcvDlAVLVY4z6JOuCP5U84MZHzRvCWmqFJs3roNYLIanpxdmzJqnvOU7MTEBAmHR+a1eoya+nvA9Nm1Yi43r1sDRyQnfT52ptfML6Gsb1p+8+njd0LfM7YNqQJyeiWX7ziApLQN+TlWxbNQnsLUoePr6i5RUlTaha+0DfSHOyMKyQ+cL8jpWwbLBXZUPgnkhSatQeYkqGoFCUZ43JhJVbJnrZr65UAXzm8kUXUcok3aB/+5hEroSn65ftx8oGpX/7dma5nb3lK4jlMnCTfo1Ob9XF82vh1beXMw1/6T08hSfZaXrCGUSsG2EriOUScKAubqOUGYC6NePz1VlMbqOUCbJxhVveY83yVNwXoYmKcBBHU3zfnRQ1xHKRgcz39+FUZdRuo6gFakLv9J1BK2wGL9I1xF0Qr9+SyIiIiIiIiIiIiKt4gAiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFlf7JSIiIiIiIiKidyPkHLX/Mn53iYiIiIiIiIiISC0OIBIREREREREREZFaHEAkIiIiIiIiIiIitbgGIhERERERERERvROBQKDrCKRBnIFIREREREREREREanEAkYiIiIiIiIiIiNTiACIRERERERERERGpxQFEIiIiIiIiIiIiUosPUSEiIiIiIiIioncj5By1/zJ+d4mIiIiIiIiIiEgtDiASERERERERERGRWhxAJCIiIiIiIiIiIrW4BiIREREREREREb0TgVCg6wikQZyBSERERERERERERGpxAJGIiIiIiIiIiIjU4gAiERERERERERERqcUBRCIiIiIiIiIiIlJLoFAoFLoOQaQtKTfP6jpCmRmJn+k6QpkcN+uh6whlYmaYq+sIZWJnJNV1hDKLqd5c1xHKxOjqdV1HKBNzg2xdRygzW8NkXUcokxyFSNcRykScY6HrCGVSM+uCriOUWbpZNV1HKBOJ0E7XEcrESJil6whE/3cUCj78QpO8vTx0HUEr0pdN1HUErTAb+aOuI+gEZyASERERERERERGRWhxAJCIiIiIiIiIiIrU4gEhERERERERERERqVdZ1ACIiIiIiIiIi0nNCrqX5X8YZiERERERERERERKQWBxCJiIiIiIiIiIhILQ4gEhERERERERERkVocQCQiIiIiIiIiIiK1+BAVIiIiIiIiIiJ6JwIB56j9l/G7S0RERERERERERGpxAJGIiIiIiIiIiIjU4gAiERERERERERERqcU1EImIiIiIiIiI6N0IBbpOQBrEGYhERERERERERESkFgcQiYiIiIiIiIiISC0OIBIREREREREREZFaHEAkIiIiIiIiIiIitfgQFSIiIiIiIiIieicCIeeo/Zfxu0tERERERERERERqcQCRiIiIiIiIiIiI1OIAIhEREREREREREanFNRCpwuvcuTNyc3Nx8ODB17525swZNGvWDNevX0dAQIDGMuw8cByb9hxEikQKbzcXjA/ug5o+niWWDT9yCgdO/Y3o2KcAAD9PNwzv00NteU3ZduIC1h86i2RpOnxd7PFd746o5eFcYtljV2/jz/2nEZuQgrz8fLhWtUW/du+jU5NAreVVKBQ4tPN3nD++E1kZafDwq4ueg6ahioOb2jrHdq/CzUtHkPDsEQwMjeDmG4hOvcejqqOH1jJHbF2OM0d3ISszDV5+gegz9HtUc1Sf+f7tKzgcvh5Pou9CKk7EiAkLEdiolVbyHtgbhvDQrZCIU+Du4YXg4V/Cx6+62vJ/nTmBLSFrkBj/Ag6OTvh84HAENWis8Zw2TevD8+tgWNarBSPHqrjccyTi9xwrvU6zhqixYCLMavhAFvscUfOWI25DmMazvkqhUGDvtmU497I9ePoFovfQyahaSht+cOcKjoSvQ+zL9jB0wq8IbKid9lCYedfmlThxZDcyM9Lh6x+AASO+g72jq9o6925fxb6wEDyOugeJOAlfTpqP+o1baCVvREQEQnfuhFgshoenJ0aMGAE/P78Sy8bExGDjxo2IevAACQkJGDp0KLp1766VnIX2R+xGWOg25WduyIgx8C3lM3fuzEls3rgWCfEv4ODojP6DhqC+Fj5zr1IoFNi9ZQVOHQlDZkY6fPzroN/wiaW2icjbV3EgbCNiHt6FRJyEMRMXoJ6W2sSOw6cQEnEUydJU+Lg64ZsBn6Cmt3uJZXcfO4d9Zy4gOu4ZAMDfwxUjP+2itrwm7N53ANt27UGKWAIvDzeMGRaM6r4+JZZ9FBOLdZu24v7DaMQnJGLk4AH4uGsnrWUFCq4bu5XXDW8MHj72DdeNk9gS8qeyDfcbOEwr141C+tZHAPqXmXk1T98y743Yg9DQl3k9PDF8xMhS8j5GyMaNiIoqyDtk6DB068a8/ykCga4TkAZxBiJVeMHBwThy5Aji4uJe+9ratWtRv359jQ4eHj13EYvXb0Nwry5YN386fNxdMG7Or0iRppZY/urtSLRt2hC/z/gWK+d+j2p2Nvhq9kIkJIs1lrG4Q5du4pftBzCsc0tsnjoCvs72GLloPVJS00ssb2lqgsEfNcf6SUOwffpodH2/HmasC8Nftx5oLfOJiD9x5uAmfBw8HV/O3gJDkTFW/jgUuTnZaus8vHsJ77XrjbGztmDY96sgz8vDynlDkC3L1ErmQ7vX4fj+zeg7bDImztsIkZExFs8eWWrmnOwsOLv7oveQSVrJWOjc6eNYt2opPunzBX5evApuHl6YPfUbSCUlt8t7d27h1/mz0brdR1iweBUaNvkA8+dMxpPH0RrPWsnUBKk3InFr7My3Km/s7owGe1Yg+eQFnK3fFY+WrEftFXNg17aphpOqOrJ7LU7u34LeQ6fg27khEImMsWT2iNLbgywLzu5++HSwdttDoX27NuDwvm0YOGIiZvy8BiIjY8yfMRY5pWTOlsng6u6DL4Z9q8WkwKlTp7Bq5Ur06dsXS5YsgaeHB6ZOmQKJRKI2p4O9PQYOHAhra2utZgWAs6dOYM2q5fisT38sXLIC7p5emDn1O0hK+cz98tMctGnXAQuXrESjJu/jx9nTEPP4kVZz7w9bjyN7t6L/8EmYOn8dDI2MsHDmmFLbcbYsCy4ePvh82HdaTAoc+fsKFm3chcE9P8KGuRPh4+aMsT/+jhRpWonlr9y9jw/fq4/lU77EnzO/QTVba4yZ9zsSUiRayXvizDksX70e/Xv3wopF8+Hl4Y7vps2BWCItsXx2djYc7KthyBd9YWNtpZWMrzp7+jjWrlqGT/oMwILFq+Du4YVZU78ttQ0vnD8Lrdt1xC+LV6Nhk6b4ac4UxGjhugHoXx8B6F9m5tU8fct8+tQprFq1Cn36fI7FS36Hh6cnpk6drD5vdjbsHewxYOAg5iXSQxxApAqvU6dOqFKlCtatW6eyPz09HTt27EBwcLBG339LxGF0adMMnVo1hYeLIyYM7QeRyBB7j58tsfzMr4aiZ/tW8PVwhbuTAyYNHwC5QoHLN+9qNOerQo78hR4f1EfX9+vBy7EqJn/eGUaGBth97mqJ5ev7eaBVvRrwdKgKl6o26NOmCXycq+GfqBit5FUoFDh9YCPadB+GWvVbwdHND71HzkOqOAG3LqufeTZ00ko0bN4d9i7ecHTzx2cjfoA46TniHt3RSuZjezfho4+HILBhSzi7+2LgmNmQiBNx7eIJtfVq1WuKbn1Go66WZh0WigjbjjbtO6FV24/g4uqOYaO/hsjICMcO7y+x/L49O1E3qCG69ewNZ1d39O4XDA8vXxzYq/lZfYmHTuP+9EWIDz/6VuXdhn6GrEdxuDvhJ6Tfi0bMsk14EXoIHl8O0GzQVygUChzftwntew5BnZft4YsxcyAVJ+L6xeNq69Ws1xRdeo9GYKPWWstaSKFQ4GDEVnTpNQhBjZrD1d0Hw76aAUlKEq6cP6W2Xp2g99Dr8xGo36SlFtMCYWFhaN+hA9q1awdXNzeMHjMGIpEIhw8fLrG8r58fggcPRvMWLWBgYKDVrAAQHrYD7dp/hNbtOsDF1R0jRo+DSCTCscMHSiwfEb4L9YIaovvHn8HF1Q19+w+Cp5cP9kfs1lpmhUKBIxFb0PmTYNRr1AIu7j4Y8uUsiFMScfXCSbX1AoLeR8++IxHUWLttYvO+Y+jW6j10btEEns4OmBj8GYwMDRFx8u8Sy88ePRAft2sGX3cXuDvZY/LQvlAoFLh0K1IreXfsjsBHH7ZBhzat4O7qgnEjh0IkEuHAkZL7CH9fbwwf1B+tmjXVSRuOCNuBtu07onXbDi+vG+MhMjLCcTXXjb17Ql9eNz6Ds6sb+vQLhoeXj1auG4D+9RGA/mVmXs3Tt8xhYbvQvn17tG3XDq6ubhg9egyMRCIcPnyoxPK+vn4IDh6C5s2Zl0gfcQCRKrzKlSujf//+WLduHRQKhXL/jh07kJ+fj969e2vsvXNz8xAZHYMGAUW36wiFQjSoXQO3Ih++1TFkOdnIy8+HhZmppmKqyM3Lw92YZ2hUveiWaaFQiEbVvXDjYewb6ysUCly4+xCPXyQhyNddg0mLpCTEIU2SBN9aRbc5GZuYw9UrADEPrr/1cWSZBbNOTMwsyz1jcUnxT5EqSUL1gEbKfcam5vDwqY3oyLfPrA25ubl4GHUfAYFByn1CoRABgUG4f+92iXXu37utUh4AAus1QKSa8rpk1TgQScdVBwwSj5yFdeNArWVITihoD/7F2oO7T21E37+htRxlkRj/DFJxMmrVaajcZ2JqBk/fmoiKvKnDZK/Lzc1F1IMHCAwMVO4TCoUIDAzEvbva++PM21L3masTGITIeyX/gSPy3h0E1K2nsq9ukHY/c4nxTyEVJ6NmgGqb8PKtVfHaRF4e7j2KRYNa/sp9QqEQDWr54+aDt5vxJsvOQV5ePizMTDQVUyk3Nxf3o6IRVKfojgmhUIigwNq4E6mdAcyyKGjDkSVeN9S14ZKuG3XrNVRbvjzpWx8B6F9m5tU8fcucm5uLqKgHCAysq9xXkLcu7t1jXqL/Ig4gkl4YNGgQHj58iFOnimbFrF27Fj179oSlZcmDRdnZ2UhNTVV5ZefklOl9JWlpyJfLYWNpobLfxsoCyWpuOSpuWchOVLG2QoOAGmV6739LnJ5ZkNnCTGW/rYUZktXcwgwAaZkyvDd6NhqOmIGxi0PwXe+OaFzDW9NxAQCp0iQAgLmlncp+c0tbpEqS3uoYcrkcuzf8BHe/unBwKXk9qfJUmMvCylZlv4WlDaSSZI2/f1mkpUohl+fDykr11gtLK2tIxCkl1pGIU2BZrLxVKeV1SVTNDtnxqu0kOz4JBpbmEBqJtJJBKlbXHt6+DWubRFzQTi2tbFT2W1rZQCquWG04NTUVcrn8tduHrKytkSLW3vIQb6vgMyeHlfXrnzlxivrPXEmfUbEW/3+FfVeJ/VoFaxOS1PSX12dzlf02luZIlpS8xEhxv2/eDTtrSzR8ZRBSU6SpaS/bsOrPLNZWVkgRSzT+/mWlbMPF+ofSrgMFbbh4f6Kd64a+9RGA/mVmXs3Tt8yFea2KLbFgZWUFcQrzEv0X8SEqpBf8/f3x3nvvYc2aNWjRogWioqJw5swZzJo1S22defPmYeZM1TXUJgwfiO9GDtJ0XKUNYftx5NxFLJsxASLDij3t3dTIEFunjUSWLAcX7kXjl+0H4VzFBvX9yv+BJFfO7sXO1TOU24MnLH/nY+5aOwcvYh9g9IyN73ysklw4vQ+bVsxRbo/+folG3of0w8XT+7Bl5Wzl9ohJv+swzds5d/Ig1i6fp9z+euqvOkxDFcHfpw5g/fK5yu2vpizSXRgtWx9+GEf+voLlU7+q8NdnIiIivSHkHLX/Mg4gkt4IDg7GmDFjsHTpUqxduxZeXl5o3ry52vKTJk3C+PHjVfZlPLhcpve0MjdHJaHwtQempEhSYWtV+m2ym8IPYmPYfiye9g283V3K9L7vwtrMpCBzsdmGyanpsC02K/FVQqEQrlULZp34uTrg0fNErNl/WiMDiDWDWsLNu7ZyOy83FwCQJk2ChXUV5f40aTKc3N88M2TX2jm4c/UURk1fDytb+3LPCwB1GrSAh8+rmQtms6ZKkmH5SuZUaQpc3H01kuHfMrewhFBY6bWF76USMaysbUqsY2Vt89oDViSllNel7PgkiKqpzl4VVbNDrjQNcpn6Bz+8i4AGLeD+anvIU9cekuHsXvKT/bStXsMP4O1XU7md+7INSyUpsLIpOn9SSQrcPCpWG7awsIBQKHxtNp5ELIZNBVzUvOAzJ4RE/PpnztpG/WeupM+oJhdtD2zYDJ6+tZTbr/Zrr7aJVGkKXCpYm7CyMHt5fVZ9YEqKNA22VhZqahUI2XsU6/ccxu/fj4GPm5MmYypZWpi/bMOqdy+IJRKdPCDlTZRtWKI6e7C060BBG1YtX9p1pjzpWx8B6F9m5tU8fctcmFdSbBa1RCKBtQ3zEv0XcXiY9MYnn3wCoVCIzZs3Y8OGDRg0aBAEpTwmXiQSwcLCQuUlMjQs03saGFSGn6ebygNQ5HI5Lt+8i1p+Xmrrhew+gLWhe/HrlHGo7u1epvd8VwaVK6O6myMu3C1aA0oul+Pi3WgEeL39QKZCoUBOXp4mIsLI2BR29m7KVzVnL5hb2eHBrQvKMrLMdDx5eANuPnVKzbhr7RzcvHQMI6asgW1VZ43kLcxc1cFV+XJw8YKFlR3u3byoLJOVmY5HD27C0099Zl0wMDCAl7cvbl67otwnl8tx49pV+PrXLLGOr39N3Lh+RWXfjX8uw09NeV2SnL8G21aNVfbZtX4P4vPXNPaer7UH54L2EHmzqA1nZabj8YOb8PTV3FPiy8LYxBTVHFyULycXT1ha2+L2jUvKMlmZ6Yi+fxvefrVLOZL2GRgYwNvHB9evXVPuk8vluHbtGvyrV1dfUUcKP3M3rhc9uKrwM+fnX/JyFn7+NXDjmuqDrq5p+DNnbKzaJhxftok7xdrEw/u3Kl6bqFwZ/h4uKg9AkcvluHw7ErV9PNXW27DnCP7cdQC/TRyFGl5u2ogKoKBN+Hp74uqNorUk5XI5rl6/iRp+FeOPDK8qaMN+Km2yoA1fUduGff1r4uZ11TZ8/Z/LasuXJ33rIwD9y8y8mqdvmQ0MDODt7YNr168p9ynz+jMv0X8RBxBJb5iZmeHTTz/FpEmT8Pz5cwwYMEAr79u7czvsOXoa+06ew+O4Z5i/KgSy7Gx0avk+AGDm4tVYtilUWX5j2H6s3Lobk0cOgEMVOySLpUgWS5GZJdNKXgD4vO17CDtzBXv++gfRzxMwd1MEsnJy0PX9ggX6p/y5E4t3FT3N7c/9p3D+ThTiElMQ/TwBGw6fw77z1/BRY+0MhAkEAjTr0A9Hd6/ArcvH8fzJfWxePgkW1lVRq37R02mXzxmEs4c2Kbd3rZmNK2f34vPR8yEyNkGqJBGpkkTk5mj+XAsEArTu1Bf7d67C9Usn8TTmAdYungIr6yoIbFj0JNKFM4bixP6tym1ZViZiH91D7KN7AICkhKeIfXQPKYnPNZq3c/dPcPTQPpw4ehBxTx5j5dKFyJZloVXbDgCAxb/8gJB1K5XlO3b5GNeuXMSeXdsQFxuDbZvW4mFUJDp06q7RnABQydQEFnX8YVGnYPapiYczLOr4w8jFAQDgN2c86qz9SVk+ZuVWmHi4wH/etzD184Tb8D5w6NUBj35bp/GshQQCAVp17IsDoatw42V7WL9kCiytq6BOw6Inbv82YwhOHtii3C7eHpLjtdMeCjO37/wZwrevwdULpxH7OAp/LJoBKxs7BDUumt09b+pIHNm3XSVzTPR9xETfB1DwMJaY6PtISnyh0bzdu3fHwYMHcfTIETx58gRLf/8d2dnZaNu2LQBgwYIFWLt2rbJ8bm4uHj58iIcPHyIvLw/Jycl4+PAhnj17ptGchbp274UjB/fh+NFDiH0Sgz+WLoIsW4bWbdsDABYtmIeNa1cpy3fu2gP/XLmE3bu2Iy72CbaErMPDB/fxUeduWskLFLSJtp17I2LHn/jn4inEPo7CqkXTYW1TBfUatVCWmz91BI7u26bclmVl4kl0JJ5EFwzmJSY8xZPoSCRruE306dga4SfOYe+p83j09AV+WrMVWdnZ6NS84A8K05etx9It4cry6/ccxoodezF12OdwqGKDJIkUSRIpMmXauT736tYZ+w4dxaFjJxETG4dFy1ZBJstG+zYF14x5Cxdj1fqia1xubi6ioh8hKvoR8vLykJScgqjoR3j6TPP9AwB07t4LRw/tfXndiMGKpb8iWyZTXjd++2WuynWjU5ee+OfKRYS/vG5s1eJ1A9C/PkIfMzMvM7+etwcOHTyAo0df5l26BLJsGdq2bQcA+GXBz1i3dk0peZOYl0iP8BZm0ivBwcH4888/8dFHH8HR0VEr79nm/YYQp6Zh9dbdSJakwsfdBb9OHgebl7cwxyelQCgsmgm56/BJ5Obl4fsFquv6BffqgsGfdtVK5g8b1IY4LQPLw48hOTUdfi4OWPplf+UtzC9SpBAKiv5+IMvOxdxNEUgQp0JkYAB3BzvMCf4YHzbQ3oyTlp2DkZOdhZ2rZyArMw0efvUwdOIKGBgWPQQjOT4WGWkS5fZfRwt+gV02e4DKsT4dPgcNm2v+F5YPuw1AjiwLIX/MRmZGGrz962Ls1GUqmZNexCI9rehWlJiHt7Fw+hDl9o51vwAAmrTojAFjitbUK2/vN2sFqVSCrSFrIBGnwMPTG1Nm/ay8tSwpMQGCV9qEf41a+Orbqdiy8U9sWr8KDk7OmDDlB7i6q5/ZU14sg2qhybGitSxrLPgeABC7YRduBE+CyKEKjF8OJgJA1uM4XOoyDDV+mQT3Mf0hi3uBm8OmIOnIWY1nfVXbbgORnZ2FzStmITMjDV7+dTF6imp7SIyPQ3qqRLn95OFtLJoxWLkdun4BAKBxiy7oP1pz7aFQxx79kS2TYc2yucjMSIdv9Tr4dvpvMHwlc8KLp0h7JfOjqLuYO2WEcnvzmkUAgKatOmLYl9M1lrV58+ZIlUqxMSQE4pQUeHp5Ydbs2cpbfBMTEiB8ZVZ6SkoKxowerdwODQ1FaGgoateujZ/mz9dYzkJNm7eENFWCLRvXQiwWw8PTC9Nn/aT8zCUmJkAgVP3MjZ8wGZs2rEHIuj/h6OSEiVNnwc29/JeRKM1H3b9AjkyGdcvmIjMjDb7VAzF+2mKVdpzwQrUdP466g5+mDldub11TsL7m+y07YfCXMzSWtW2TIIhT07By514kS9Lg6+aE3yaOUt7CHJ8kVmkTu46cQW5eHiYuWq1ynME9P8LQjztqLGehlh+8D4k0FWs3bYVYLIGXpzt+mjlZeQtzQmKSyrU5OUWMoV9+q9zeHrYH28P2oE6tGvh1nvo1oMtL02atkCqVYEvIWuV1Y+qs+a9cN+JVzq9/jVoY9+1UbN74JzatXw0HJyd8N2UO3LRw3QD0r4/Qx8zMq3n6lrlZ8+aQpkoRsnEjxGIxPD09MWvWnKK8iQkQCF/Nm4yxY0Ypt3eFhmLXy7w//vQz8/4XlHKHIOk/gUKhUOg6BJG2pNzU7oBCeTAS69dfuI6b9dB1hDIxM8zVdYQysTN6u6d/VyQx1dWvVVoRGV29rusIZWJuoJl1HjXJ1rBiPdH3TXIU2nmad3kR55S+BmBFUzPrwpsLVTDpZtV0HaFMJEK7NxeqQIyEWbqOQPR/R6HgwI8meXtp9w+CupK5XvN/4KoITL6YpusIOsFbmImIiIiIiIiIiEgtDiASERERERERERFpyNKlS+Hu7g4jIyM0atQIFy9eVFt23bp1EAgEKi8jIyOVMgqFAtOmTYODgwOMjY3Rpk0bPHjwQKP/Bw4gEhERERERERERacC2bdswfvx4TJ8+HVevXkWdOnXw4YcfIiEhQW0dCwsLPH/+XPmKiYlR+fr8+fOxePFi/PHHH7hw4QJMTU3x4YcfQqbBh8NxAJGIiIiIiIiIiN6JQCj8v3iV1cKFCzFkyBAMHDgQNWrUwB9//AETExOsWbNGbR2BQAB7e3vlq1q1ovWXFQoFFi1ahClTpqBr164ICAjAhg0b8OzZM+zevfvffOveCgcQiYiIiIiIiIiI3kJ2djZSU1NVXtnZJT/YMCcnB1euXEGbNm2U+4RCIdq0aYO///5b7Xukp6fDzc0NLi4u6Nq1K27fvq382qNHj/DixQuVY1paWqJRo0alHvNdcQCRiIiIiIiIiIjoLcybNw+WlpYqr3nz5pVYNikpCfn5+SozCAGgWrVqePHiRYl1/Pz8sGbNGoSHhyMkJARyuRzvvfce4uLiAEBZryzHLA+VNXZkIiIiIiIiIiKi/5BJkyZh/PjxKvtEIlG5Hb9JkyZo0qSJcvu9995D9erVsWLFCsyePbvc3qesOIBIRERERERERETvRvD/cZOrSCR66wFDOzs7VKpUCfHx8Sr74+PjYW9v/1bHMDAwQN26dREVFQUAynrx8fFwcHBQOWZgYOBbHfPf+P/47hIREREREREREWmRoaEhgoKCcOzYMeU+uVyOY8eOqcwyLE1+fj5u3rypHCz08PCAvb29yjFTU1Nx4cKFtz7mv8EZiERERERERERERBowfvx4fPHFF6hfvz4aNmyIRYsWISMjAwMHDgQA9O/fH05OTsp1FGfNmoXGjRvD29sbEokEP//8M2JiYjB48GAABU9o/uqrrzBnzhz4+PjAw8MDU6dOhaOjI7p166ax/wcHEImIiIiIiIiIiDTg008/RWJiIqZNm4YXL14gMDAQBw8eVD4E5cmTJxAKi24QFovFGDJkCF68eAFra2sEBQXhr7/+Qo0aNZRlJkyYgIyMDAwdOhQSiQRNmzbFwYMHYWRkpLH/h0ChUCg0dnSiCibl5lldRygzI/EzXUcok+NmPXQdoUzMDHN1HaFM7Iykuo5QZjHVm+s6QpkYXb2u6whlYm6QresIZWZrmKzrCGWSoyi/RbG1QZxjoesIZVIz64KuI5RZulm1NxeqQCRCO11HKBMjYZauIxD931EoBLqO8J/m7eWh6whakRUyV9cRtML48+91HUEnOAORiIiIiIiIiIjejZAD0f9lfIgKERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFtdAJCIiIiIiIiKidyIQcI7afxm/u0RERERERERERKQWBxCJiIiIiIiIiIhILQ4gEhERERERERERkVocQCQiIiIiIiIiIiK1+BAVIiIiIiIiIiJ6N0KBrhOQBnEAkf6vrIp8T9cRymyY92ldRyiT6hZPdB2hTHIUIl1HKJOfQwx0HaHM+l69rusIZSKrV0fXEcqk7tU/dR2hzA4mva/rCGXyQbW7uo5QJsMnx+g6Qpn8+ENDXUcoMxFydR2hTGJSrHQdoUzSsirpOkKZCYUKXUcoE/6OT8WZGcl1HaFM5s88q+sIZXI2wkPXEYjeGW9hJiIiIiIiIiIiIrU4gEhERERERERERERqcQCRiIiIiIiIiIiI1OIaiERERERERERE9G4EnKP2X8bvLhEREREREREREanFAUQiIiIiIiIiIiJSiwOIREREREREREREpBbXQCQiIiIiIiIioncjEOg6AWkQZyASERERERERERGRWhxAJCIiIiIiIiIiIrU4gEhERERERERERERqcQCRiIiIiIiIiIiI1OJDVIiIiIiIiIiI6N0IOUftv4zfXSIiIiIiIiIiIlKLA4hERERERERERESkFgcQiYiIiIiIiIiISC2ugUhERERERERERO9GwDlq/2X87hIREREREREREZFaHEAkIiIiIiIiIiIitTiASERERERERERERGpxAJGIiIiIiIiIiIjU4kNUqEJ68eIFfvjhB+zbtw9Pnz5F1apVERgYiK+++gqtW7fWSSaFQoF/ji1B5KUdyJGloapbXbzXZTos7dzfqv71U6tw5fBC1HivHxp3/F6zYQHsOHQCmyKOIFkihY+bM74e+BlqenuUWHb3sTPYf/o8omOfAQD8PVwxonc3teU1ISIiAqE7d0IsFsPD0xMjRoyAn59fiWVjYmKwceNGRD14gISEBAwdOhTdunfXWlYA2B+xG2Gh2yARp8DdwwtDRoyBr191teXPnTmJzRvXIiH+BRwcndF/0BDUb9BYe4Ff6tbCFM3qGcHESIio2Fxs2JeGhJT8UutYmQvRq40ZansbwtBAgISUfKwJT8Xj53kazapQKLB32zKcO7oLWZlp8PQLRO+hk1HVwU1tnQd3ruBI+DrERt+FVJyIoRN+RWDDVhrNCQA2TevD8+tgWNarBSPHqrjccyTi9xwrvU6zhqixYCLMavhAFvscUfOWI25DmMazFtp54Dg27TmIFIkU3m4uGB/cBzV9PEssG37kFA6c+hvRsU8BAH6ebhjep4fa8pqiUChwMnwJrp7eAVlmKly866Fjv+mwreauts6lE1tw+eQWSJIKsld19EazLqPgU7uZxvOG792P7bt2I0UsgZeHO0YPGwx/P98Syz6OeYJ1m7bgQdRDxCckYsSQQejZtbPGM5Zk0Gcu6NS2GsxMKuHmvTQsXBmNp89lassLhcCAT13QrlkV2FgZIEmci4MnErBhR5zGsyoUCoRtWYFTR3YjMyMdPv4B6D98IuwdXdXWibx9FfvDNiLm4T1IxEkYM/FnBDVuofGshXl3blqN44f3ICMjDX7VAzBo5LdwcHQptd7hfaGI2LUJUnEKXD28MWDYeHj71tBK3iO7fselEzuQlZkGd9+66DZgGuzs3dXWObFnJW5fPoqE59EwMDCCm08gOnz2Nao4aOdnCoVCgdN7FuOfMzuQnZUKZ6966NB3BmxK6SeunNyMq6e2QJJc0E9UcfRB044j4V27uVbyngpfgn/OFPVrHT4vvV+7fGILrpx8Na83mnUeBW8t9Gv61g/rY2Z9zHs49HdcOLEDWRkF/USPQdNQpZR+4nj4Sty8fBSJz6JR2dAI7j6B+Oizr1HVUTv9RHBfd3RuZw9z08q4eTcVC5Y9QNzzLLXlhUJgUG93tGtZFbZWhkhKycH+Yy+wftsTreTVK0KBrhOQBnEGIlU4jx8/RlBQEI4fP46ff/4ZN2/exMGDB9GyZUuMGjWqxDq5ubkaz3XzzGrc+TsE73Wdgc4jtsHAwASH1g1BXm72G+smxt1E5KVtsLYveUCsvB356xJ+27ATwT07Yv2Pk+Ht5owv5y5GijS1xPJXb99Hu/caYNm08Vg9+ztUtbXG2B9+Q0KKWCt5T506hVUrV6JP375YsmQJPD08MHXKFEgkkhLLZ8tkcLC3x8CBA2Ftba2VjK86e+oE1qxajs/69MfCJSvg7umFmVO/g0RS8vm6d+cWfvlpDtq064CFS1aiUZP38ePsaYh5/EiruTu8b4I2jYyxYV8a5qxOQXaOAl9/boXKldTXMTES4PtB1sjPV+DXTRJMWZaMbYfTkSFTaDzvkd1rcXL/FvQeOgXfzg2BSGSMJbNHIDdH/WcuR5YFZ3c/fDp4ksbzvaqSqQlSb0Ti1tiZb1Xe2N0ZDfasQPLJCzhbvyseLVmP2ivmwK5tUw0nLXD03EUsXr8Nwb26YN386fBxd8G4Ob+W0kdEom3Thvh9xrdYOfd7VLOzwVezFyIhWTt9RKFzB1bjwtGN6NhvBgZP3g5DkTFCFg4utR+2sK6GNj2/xtBpoRg6dSfcqzfG1iWjkPD0gUaznjh9Fn+sXot+vT/FH7/9Ak8Pd0ycNgtiNf2aLDsbDvbVMPiLfrDRQb9WqHd3J/To6IBf/niI4RNvQpYtx4KpNWBooP4Xgj7dndD1Q3ssWv0I/cdew4qNMejdzQk9P7LXeN79YRtwZO82fDF8EqbNXwuRkTF+mTkGOaX0E9myLLh6+KLfsAkaz1dcRGgIDu7dgeCR32L2gtUQGRnhx2njSs3795mj2Lh6MXr2HoS5i9bCzcMbP04bB6kkReN5T+37E38dDkG3gdMxasZWGIiMsWb+0FL74Uf3LqNxm94YNX0Lgr9bjfz8PPz502DkyDI1nhcA/j60CpeOb0SHz2dgwKTtMBAZY8tvwaX2E+bW9mjZ4xsET96FQZND4ebXGDuWjULiM832EwDw18HVuHhsIz76fAYGfV+Qd/Ovb+7XWvX8GoOnhmLwlJ1w92+Mbb9rvl8D9Ksf1tfM+pb35N4/cfZQCHoMnI4xs7bCUGSM1T+W3k88vHcZ77XpjdEzt2DoxIJ+YtWP2ukn+vZ0wcednLBg2QMM/eYfZMnysXBW7VKvc317uqLbR4749Y8o9B15CcvXRaNvDxd83NlJ43mJKhIOIFKFM3LkSAgEAly8eBE9e/aEr68vatasifHjx+P8+fMAAIFAgOXLl6NLly4wNTXFDz/8oNFMCoUCt89tQJ0Ww+FWozVs7P3QrNePyEpLwJO7R0utm5udgVPbv8X73WZBZGyh0ZyFtuw7iq6tm6Jzy/fh6eyIiYP7wsjQEBEn/iqx/Kyxwfj4wxbwdXeBu5M9Jg/vD7lCgcs372klb1hYGNp36IB27drB1c0No8eMgUgkwuHDh0ss7+vnh+DBg9G8RQsYGBhoJeOrwsN2oF37j9C6XQe4uLpjxOhxEIlEOHb4QInlI8J3oV5QQ3T/+DO4uLqhb/9B8PTywf6I3VrN3baRMSJOZ+BaZA7iEvKxencqrMyFqOcvUlvno/dNkCLNx5o9aXj0LA9JEjluR+cgUVz6rMV3pVAocHzfJrTvOQR1GraEs7svvhgzB1JxIq5fPK62Xs16TdGl92gENtLuTOXEQ6dxf/oixIeX3h8Uchv6GbIexeHuhJ+Qfi8aMcs24UXoIXh8OUCzQV/aEnEYXdo0Q6dWTeHh4ogJQ/tBJDLE3uNnSyw/86uh6Nm+FXw9XOHu5IBJwwe87CPuaiUvUNAmLhzdgGadhsO/bmtUc/FDt+CfkCZJwL2r6s+7X2Ar+AQ0h201d9jae6B1j3EwFJkgLvq6RvOG7t6Djz5si/ZtW8PN1QVfjRoOkUiEg0dKnpnq7+uDYYMGoGXzD2BgoLsbRHp1csDGnXE4d0mM6JhMzF38ALY2hmja0EZtnZp+5jh3MQXnr4jxIjEbp/5OxqVrEvj7mGs0q0KhwOGILejyySDUa9QcLu4+GPLlTIhTknD1wim19QKC3kfPviMQ1LilRvMVp1AocGDPdnT/ZADqN24GNw9vjBw3DeKUJFw+f1ptvX27t6LVh13Qok0nOLt6IHjkBBiKRDh5ZK/G8547uAGtugxDzaDWcHD1w6fDfkSqJAF3rqifYT1owkrUb9Yd1Zx94Ojmj15D50KS/Bxxj+9oNG9h5otHN6BpxxHwC2yDas7+6DJwPtIkCYj8R30/4VunFbxrN4dNNXfYVvNAy+4F/cTT6GtayftBp+Hwe9mvdR30sl8rLW+xfq1Vj8K8mu3X9K0f1sfM+pj3zMENaN1tGGrVbw1HVz98NqKgn7hdSj8x5LuVaNC8O+xf9hOfDnvZTzzSfD/Rq4sTNmyPwdkLyXj4OANzfr0HWxsRPmhsp7ZOreoWOHs+CX9fTsGLhGyc/CsJF6+JUV3D1zmiioYDiFShpKSk4ODBgxg1ahRMTU1f+7qVlZXy3zNmzED37t1x8+ZNDBo0SKO50sRxyEpPgqNXE+U+QyNzVHEOQMKT0i/Mf0fMhotfczh5v6fRjIVy8/JwL/oJGtYuup1WKBSiQW1/3HwQ/VbHkGXnID8vHxZmr38Pyltubi6iHjxAYGCgcp9QKERgYCDu3dXe4MTbys3NxcOo+wgIDFLuEwqFqBMYhMh7Jf/QE3nvDgLq1lPZVzeoASLv3dZo1ldVsRLCyrwS7kQXzdbNylYgOi4XXi7qB2ED/UR4/DwPIz62wKJv7DB9qDWa1TPSeN7khKdIlSTBP6CRcp+xqTncfWoj+v4Njb+/plk1DkTS8b9V9iUeOQvrxoEaf+/c3DxERsegQUDxPqIGbkU+fKtjyHKykZevnT6ikCQpDunSRHjWKOpLjUzM4ewZgNiH197qGHJ5Pm5d2IfcnEy4eAVqJigK+on7UQ9RL7COcp9QKES9wADcuRepsfd9Vw7VRLC1NsSV6xLlvozMfNx9kIaafup/SbodmYZ6AZZwdijoG7zcTVC7ujku/KPZGaqJ8U8hFSejRkBD5T4TUzN4+dbEw8iK108kxD+DRJyMWoH1lfsK8tbAg3u3SqyTl5uLR1GRqFWnqI5QKEStwAZ4EFlynfKSkhiHNGkSvGsV/exjZGIOF88AxERde+vjyLLSAAAmppblHfE1kqQ4ZKQmwr26aj/h5FEHT6P/eatjyOX5uH2xoJ9w8qyrqagAivo1j+J5PQPwtCz92su8zhrs1wD96ocL6VtmfcubkhiHNEkSfGoW9RPGJuZw9QpAzINrb30cWebLfsJMs/2EYzUj2NmIcOla0fUpIzMfd+6nopa/+oket+6mIqiONVwcjQEA3u6mCKhuifNXND8TnKgi4RqIVKFERUVBoVDA39//jWX79OmDgQMHqv16dnY2srNVp87n5RqgsoH62VbqZKUlAQCMzWxV9huZ2SErPVFtvegb+5D87A46j9hR5vf8tySp6ciXy2FjqfrLno2lBWKevXirYyzdtAt2NpZoUFv9mn7lJTU1FXK5/LVbka2srREbp/n1s8oqLVUKuVwOq2J5La2sERdb8jooEnEKrKxeLy8Wa+/2Twuzgr8XpWbIVfanZshhaar+b0lVrCuhZX1jHPo7E/vOSuDhWBl92psjLx/467r6NdHelVRc8JmzsFL9zFlY2iJVkqSx99UWUTU7ZMer/j+y45NgYGkOoZEIctmbl0b4tyRpaS/7CNUflG2sLBDz9PlbHWNZyE5UsbZCgwDNr8FWKF1a0NeaWqi2CVMLO2Sklt4m4uMi8efc3sjLzYahyASfjvodVRy9NZZVmppW0K9Zqf4iZG1lhdi4pxp733dlY2UIAEiRqi4LIpbkwsbaUG29TbuewsS4EjYuqQu5XAGhUIDVm5/g6GnNflalkmQAgGUJ/YRUnKzR9/43pOKCXzQtrVRnc1pa2UAiLvmX0NRUCeTyfFhav17nWVyMZoK+lP6yrzWzVJ2VY2Zpi3Tp231v5XI59ob8CDfferB38Sn3jMVlpL7sJ8yL9xO2SH9DP5EQF4l1P32m7Cc+HrFUo/0EUHq/9qZzHB8XibXzivq1XiM1268B+tUPF9K3zPqWN+1lP2FeQj+R9pY/r8nlcuzZ+CPctdBPFF7LxJLi17mcUq9zITufwNSkEjYtb6C8zq3c+AhHTiVoNK9eEnCO2n8ZBxCpQlEo3n5dtfr165f69Xnz5mHmTNX1yFr3moa2n0x/47EfXovAufAZyu22/Ze/da5C6ZLnOL93HtoP+vNfDVrqyvrdB3Hkr0tYNv1riAy1f3swlY/GtUXo36loEHnRZum/Oo5AADx+loddxzMAAE9e5MGpamW0CDIu1wHEi6f3YcvK2crtEZN+L7djU/naELYfR85dxLIZEzTaR9w4H4G9G4r66z5f/vGvj2Vn74Hh08Mgy0rDnSuHsPvPiRjw3Uat/PJakbVpZoevh3kptyf+8O9mfbd8zxZtm1XB7F/v43FsFrw9TDF6kDuSUnJw6KT6P7KV1V+nDmD98nnK7XFTfi23Y2vC2ZOHsHrpfOX2hGkLdJjmzf45F4GwtTOU2wO+/vefuULh62fjRdwDjJga8s7HKsmtC3uwP6Son/h09Ip/fSxbew8Mnrob2VlpuHflECLWfofPvwkp137i5vkI7NtYlLf32Hfr14ZOC0P2y35tz5qJ6D+hfPs1feyH9S2zvuW9ei4CoX/OUG4P+vbd+4mwdQX9xMhp5d9PtG1eFd+OKnp42YRZN//VcVo1rYK2zati5oK7ePQkEz6ephg72BtJKTk4eDy+vOISVXgcQKQKxcfHBwKBAPfuvXntvZJucX7VpEmTMH78eJV9S/a93S+7rtVboYpLgHI7Py8HAJCVngwTi6rK/bL0JNg4lDxLL/nZbcgykhG+tKdyn0KejxePL+Pu+c34YuZ1CIWlPL3iX7KyMEMloRAp0jSV/SnSVNhYlX5bQEjEYWwIP4jfp3wFHzfncs9WEgsLCwiFwtdm40nEYp0+SEAdcwtLCIVCSIrllUrEsLYpeY0wK2ub1x6wIpWINfoAmGuROYiOK3rPyi97ewtTIaTpRbMQLUyFeBKv/mnKkjQ5niWqfv1ZUj6CqpfvoHhAgxZw96mt3M57+ZlLlSTD0rqKcn+qNBnO7tp5GJEmZccnQVRN9a/1omp2yJWmaXT2IQBYmZu/7CNUH5iSIkmF7Rv6iE3hB7ExbD8WT/sG3u6lPzX2XfnVaQnn6UX9cGGbyEhNhrlVUT+ckZqEai6lz5auVNkQNtUKnt7t6F4Lzx7dwvmjG9C5/ywNJAcsLcwL+jWJ6sC9WCKBtbWVRt7z3zh3MQV376crtw1eLiBvY2mAFHHR7AxrKwNEPcpQe5wRX7hj066nOH6uYNZf9JNMVKsiQt8eTuU6gFi3YTN4+dZSbuflFrQJqSQZVjZFn6dUaTJcPUp+2rU2BTVsCm/fmsrtXGXeFFi/klcqSYG7Z8mzbiwsrCAUVlLOXny1jpW1+nUp/40a9VrBxfuVn31e5k2XJsHCqqgfTpcmw8HtzXeKhK+fg3vXTmHY5A2wtNHMA3V86rTCYI+ipQIKf17LSCveTySjmkvpmStVNoRN1YJ+wsGtFp49volLxzbgo37l10/4BraEk8fb9Wv2ZejXHNxr4fnjW7h4dAM6lmO/po/9sL5l1re8Neq1gqvX63nTpEmwsFbtJxzfop8IWzcHd/85hZFTN8DKtvz7ibMXk3Hn/mXltqFBwew4aysDJItzlPutrQwRFZ3+Wv1CIwd6YtPOWBw7U3BNi47JgH0VI/Tr5coBRPq/wvmlVKHY2Njgww8/xNKlS5GR8fovK+qeylsSkUgECwsLldfbzgQ0EJnCwtZN+bKq6g1jMzs8iz6vLJMjS0di3A1Uda1T4jEcvZqg+9hwdBu9S/myc6oFrzqd0G30Lo0MHgKAQeXK8Pd0xaVXHm4gl8tx6dY91PbxVFtvY/ghrAndh0WTxqK6l7tGspXEwMAA3j4+uH7tmnKfXC7HtWvX4F9d87dQl5WBgQG8vH1x4/pV5T65XI4b167Cz7/k2zn9/GvgxrWrKvuu/XMZfv41SyxfHmQ5CiSI85WvZ4n5kKTlo4Zn0SC6kaEAns4GeBir/inmUbG5sLdVbav2tpWQLJWrqfHvGBmboqqDq/Ll4OwFCys7RN68oCyTlZmOxw9uwtM3oJQj6QfJ+WuwbdVYZZ9d6/cgPn9N4+9tYFAZfp5uKg9AkcvluHzzLmr5eamtF7L7ANaG7sWvU8ahure7xnOKjM1gU81N+ari6A0zyyqIvlu0dmR2Vjriom+UeY0nhUKuHBzRBAMDA/h6e+Hq9aJ1+ORyOf65fhM1/CvOAHiWTI6nL2TK1+PYLCSLc1AvwEpZxsS4Eqr7mON2ZJra44hEwtfuICi8xas8GRubopqDi/Ll6OIJS2tb3Llxqej/lJmOh/dvw8tP9/2EsYkp7B2dlS9nVw9YWdvi1vWiX2YzMzPw8P4d+PjXKvEYlQ0M4OHth1s3rij3yeVy3L5+GT5+Jdf5t0TGprCr5qZ8VXXyhrmlHaJuF/3sI8tKR2z0Dbh5B6o9jkKhQPj6Obh95SiGTFoDm6qa+4OkyMgMNlXdlC87B2+YWlTB42L9xNNH18u8nqFCIVcOSJZr3hL6tUfF80bfgNO/6NfyyjuvHvbD+pZZ3/IaGZvCzt5N+arm5A1zq2L9RGY6njy8ATcf9XkVCgXC1s3BrctHMWyy5vqJrKx8PH0uU74ePclEUko26tcp+iO+iXEl1PC1wK17qWqPYySqBHmx61y+XIFyvswRVXgcQKQKZ+nSpcjPz0fDhg0RGhqKBw8e4O7du1i8eDGaNGny5gNogEAgQM33++P6iT/w5O5xpLy4j9M7J8LYvCpcq7dRljvw50Dc+XsTgIJBSOtqviqvyobGEJlYwbqaZmdG9O7YBuHHz2Lfqb/xKO45flq9GbLsHHRqUbAg84zf12Lp5jBl+Q3hB7Fi+x5MGfEFHKvaIlkiRbJEikyZ5ta4e1X37t1x8OBBHD1yBE+ePMHS339HdnY22rZtCwBYsGAB1q5dqyyfm5uLhw8f4uHDh8jLy0NycjIePnyIZ8+eaSVv1+69cOTgPhw/egixT2Lwx9JFkGXL0LptewDAogXzsHHtKmX5zl174J8rl7B713bExT7BlpB1ePjgPj7q3E0reQsduZCFTh+YItDXEE5VK2FwdwtI0uS4eq9oxts3/azQqoGxcvvw+Ux4OhugY1MTVLWuhEa1RGhezxjHL2VqNKtAIECrjn1xIHQVblw6iacxD7B+yRRYWldBnYatlOV+mzEEJw9sUW7LsjIR++geYh8VzGJOjn+K2Ef3kJL4dmv7/VuVTE1gUccfFnUK/tpu4uEMizr+MHJxAAD4zRmPOmt/UpaPWbkVJh4u8J/3LUz9POE2vA8cenXAo9/WaTRnod6d22HP0dPYd/IcHsc9w/xVIZBlZ6NTy/cBADMXr8ayTaHK8hvD9mPl1t2YPHIAHKrYIVksRbJYisws7fQRQEGbaNSmP87s/QOR144jPi4SYau/g7lVVfjXK+qHN/w8ABePFd0GdTT0F8REXoIkKQ7xcZE4GvoLHkdeRO3GnTWat2e3Lth/6AgOHzuOmNhY/LZsBWQyGdq3KXhC+I+//IbV6zYqy+fm5iIq+hGioh8hLy8PScnJiIp+hKfPNNt2i9ux9zn6f+yM9xpYw9PVBN+P9UZySg7OXiyaAbdwRg1071A0U+SvS2J8/rEzGgdZw76KCB80ssEnnR1x5oJmF5cXCARo17k3InaswT8XTyH2cRRWLpoBaxs71GvUXFnup6kjcHTfduW2LCsTMdGRiIkueKBNUsIzxERHIjnx7dYJfpe8Hbp8gt3b1uPyhTN48vghli+cBWsbO9Rv3ExZbs7kMTi0d6dyu2O3z3Di0B6cOrYfT2MfY82yn5Etk6F5m04az/t++/44Hr4Cd64ex4vY+9j+x0RYWFVFjaCiJ92vmjcQfx3ZpNwOXz8b//wVgc9G/AyRkSnSJIlIkyQiN0fz/YVAIEDDNv1xbv9y3L92DAlxkdizZgLMrarCr25RP7Fp4Re4dLyonzix6xc8uV/QTyTEReLErl8Qc/8iajbSbD9RmPfsvqJ+bfefL/u1V/JuXDBAJe+x0F8Qc7+oXztW2K9pIa8+9cP6mFkf837Qvj+O7V6B21eO4/mT+9j6sp+o+Uo/sWLuQJw7XNRPhK2bjavnItBnVEE/kSpJRKqW+okde57ii09d8X5DW3i6mWLKeH8kp2TjzPmiNRsXzQlAj46Oyu1zl5LR/xM3NKlvA/uqIjRrbItPuznj9N/6vy43UVnwFmaqcDw9PXH16lX88MMP+Prrr/H8+XNUqVIFQUFBWL687GsRlpfaHwxGXk4Wzu2ejhxZKqq61cOHA1aqzGpMS3kCWab2HoyhTtv3GkCSmo6V2/cgWZIKX3dnLJo0FrZWBQ9NiE9OUZkZsuvIaeTm5WHSQtW1gwZ/3AlDemn+h7vmzZsjVSrFxpAQiFNS4OnlhVmzZytv8U1MSIBQUJQ3JSUFY0aPVm6HhoYiNDQUtWvXxk/z5792/PLWtHlLSFMl2LJxLcRiMTw8vTB91k/K28kSExMgEBb9fca/Ri2MnzAZmzasQci6P+Ho5ISJU2fBzd1D41lfdeBcJkQGAnzR2RwmRkI8eJKLhSES5OUXlalqUwnmJkXZHz/Lw9JtUvRsbYYuzU2RKM7HlkNpOH9Ts7fZAkDbbgORnZ2FzStmITMjDV7+dTF6yjIYGBZ95hLj45CeKlFuP3l4G4tmDFZuh64vWHOscYsu6D+6aI3F8mYZVAtNjhUNBtVY8D0AIHbDLtwIngSRQxUYvxxMBICsx3G41GUYavwyCe5j+kMW9wI3h01B0pGzGsv4qjbvN4Q4NQ2rt+5GsiQVPu4u+HXyOOUyB/FJxfqIwyeRm5eH7xeo9sHBvbpg8KddtZIZAN7vMBi5OVmIWD8NssxUuPoE4fNxq1T64ZTEJ8hMf+XpiqkpCPvzO6RLEyEyNkc1Zz98Pm41vGq+r9GsLZs1hVSainUhWyEWi+Hl6YF5s6Ypb2FOSExUOcfJKWIMH1u07MaOXeHYsSscAbVqYuGPczSa9VVbwp7CWCTEN8O9YGZaGTfvpuLb2XeQk1s088LR3giWFkWzmX9bHY3gPq4YN9QT1haVkSTOxZ7DL7B+h+YfhPVR9/7IlmVh7bK5yMxIh2/1Ovh62mIYvtJPJLx4irRX+olHUXfx09Thyu0tawrWUny/ZUcM+XKGRvN27vk5smUyrP79J2RmpMOvRgAmzlyokje+WN4mH7RBqlSCnZtWQSJOgZunDybOXFjutzCXpHnHYORkZ2HXmumQZabB3bceBn67UqUfTk6IRUZa0Wfu/LGtAICVc79QOdbHQ35A/WbdNZ65yYdDkJudhf0hBf2Ei3cQPvtytUo/IU6MRdar/URaMvas/Q7p0gSIjM1R1ckPvb/8E541NNtPAMB77QcjNzsL+zYU9Wt9vlpVLO8TZL5yjjPTUhBerF/r+9VqeGq4XwP0qx/W18z6lrdFp4J+YuefRf3E4O+K9RPxqv3E30cL+ok/5qj2E58M/QENmmu2n9gUGgsjo0qYMNq34Dp3R4qvp99Uuc452RvD6pXr3K8rojCkrzu+HuEDa0sDJKXkYM/B51i7VbMPs9JLAk7L/C8TKMry1AoiPffTzvK97VIbhnmf1nWEMkm2cNV1hDLJUejPA24A4OcQ/XuwTd8eFm8uVIHI6pW8LEFF1eTqn7qOUGYHpdr5pbG8fFDt3z1cRFc+/06i6whl8uMP5XsrrjaIKqlf+qEiipFY6TpCmaRlaWaZF00SCvXrVyreeknFmRnp1+9J82dq54+u5eVsRPM3F/oPkO1ZqusIWmHUZZSuI+gEb2EmIiIiIiIiIiIitTiASERERERERERERGpxDUQiIiIiIiIiIno3Qs5R+y/jd5eIiIiIiIiIiIjU4gAiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFh+iQkRERERERERE70Yg0HUC0iDOQCQiIiIiIiIiIiK1OIBIREREREREREREanEAkYiIiIiIiIiIiNTiGohERERERERERPRuBJyj9l/G7y4RERERERERERGpxQFEIiIiIiIiIiIiUosDiERERERERERERKQWBxCJiIiIiIiIiIhILT5EhYiIiIiIiIiI3o2Qc9T+y/jdJSIiIiIiIiIiIrU4gEhERERERERERERqcQCRiIiIiIiIiIiI1OIaiERERERERERE9G4EAl0nIA3iDEQiIiIiIiIiIiJSS6BQKBS6DkGkLfuv5uo6Qpm5WyTqOkKZyOQiXUcoEyNhtq4jlElMWhVdRygzW+NMXUcoE+/cm7qOUCZ/1wvWdYQyq3Fvn64jlMltqbuuI5SJUeV8XUcoExujdF1HKDNxtqmuI5RJvly/5gz4mT7SdYQyU0C/Zt0oBPrVJkjzJHIrXUcok8hEW11HKJPP3tOvPuLfkh36U9cRtMLoQ/37+bs88MpBREREREREREREanEAkYiIiIiIiIiIiNTiQ1SIiIiIiIiIiOjdcHmE/zR+d4mIiIiIiIiIiEgtDiASERERERERERGRWhxAJCIiIiIiIiIiIrW4BiIREREREREREb0bgUDXCUiDOAORiIiIiIiIiIiI1OIAIhEREREREREREanFAUQiIiIiIiIiIiJSiwOIREREREREREREpBYfokJERERERERERO9GyDlq/2X87hIREREREREREZFaHEAkIiIiIiIiIiIitTiASERERERERERERGpxDUQiIiIiIiIiInonCoFA1xFIgzgDkYiIiIiIiIiIiNTiACIRERERERERERGpxQFEIiIiIiIiIiIiUosDiERERERERERERKQWH6JCRERERERERETvRsA5av9lHEAknRkwYADWr1+PYcOG4Y8//lD52qhRo7Bs2TJ88cUXWLdunW4CFqNQKHBw51L8fXwnZBlpcPeri16DpqKKg5vaOkd3r8KNS0eR8OwRDAyN4O4biM69x6Gqo4fG8+7fG4bdodsgEafA3cMLg4ePha9fdbXlz505iS0ha5AQ/wIOjs7oP3Aogho01njOQgqFAjs3rcbxw3uQkZEGv+oBGDTyWzg4upRa7/C+UETs2gSpOAWuHt4YMGw8vH1raDyvvp1foOAcH9ixFOeP70RWRho8/OqiV3DpbfjI7lW4cbFYG+4zDtW00IYVCgV2bV6JE0d2IzMjHb7+ARgw4jvYO7qqrXPv9lXsCwvB46h7kIiT8OWk+ajfuIXGswLAzgPHsWnPQaRIpPB2c8H44D6o6eNZYtnwI6dw4NTfiI59CgDw83TD8D491JYvbzZN68Pz62BY1qsFI8equNxzJOL3HCu9TrOGqLFgIsxq+EAW+xxR85YjbkOYVvIW2hOxFztDQyEWi+Hp4YGRI4bDz8+vxLKPY2KwcWMIHkRFISEhAcOGDkH3bt20mlehUODQzt9VPnM9B00r9TN3bPcq3Lx0RPmZc/MNRKfe47Vy3SjMvG/bMpw7FoqsjDR4+gfisyFTULWUzA/uXMbRPesQG30XUnEihn67CHUattJaXn26digUCuzdtgznju5CVmYaPP0C0Xvo5Dec3ys4Ev7K+Z3wKwK1eH73b1+Kv162Bw//QHw6eGqpeaPuXMaxPevw5NEdpIoTMfibRajTsLVW8u7Zuw87QsOQ8rKPGDV8KPz9fEss+zjmCTaEbMKDqIeIT0jA8CHB6NGtq1ZyvmrP3n3YGbpLmXnk8GGlZI7BhpBNiHqZediQwVrPrG/9sL7lBfQvs0KhwI5Nq3H8UISyHw4e+Q0cnErvhw/tDUXErs3KfnjgsHHw9tNOP3xi9xJcObUDssxUuPrUQ6d+02Fr7662zum9K3D3yhEkvYiGgYERXLzrom2vr2HnoJ2f24gqCg4Pk065uLhg69atyMrKUu6TyWTYvHkzXF3VDxLowvGINTh9cBN6BU/DV7M3QyQyxh8/DkNuTrbaOg/vXkbTdr3x5azNGP79SuTn5eKPeUORLcvUaNazp49j7arl+LTPF/hl8Uq4e3hh1tQJkEjEJZa/d+cWFs6fjdbtPsIvi1ehUZOm+HHOVMQ8fqTRnK+KCA3Bwb07EDzyW8xesBoiIyP8OG0ccko5v3+fOYqNqxejZ+9BmLtoLdw8vPHjtHGQSlI0mlUfzy8AHNvzsg0PnoZxczbDUGSMP+a9XRv+avZmjJi8EvL8XPwxV/NtGAD27dqAw/u2YeCIiZjx8xqIjIwxf8bYUttEtkwGV3cffDHsW43ne9XRcxexeP02BPfqgnXzp8PH3QXj5vyKFGlqieWv3o5E26YN8fuMb7Fy7veoZmeDr2YvREJyyW2ovFUyNUHqjUjcGjvzrcobuzujwZ4VSD55AWfrd8WjJetRe8Uc2LVtquGkRU6dOo1Vq1bh8z598PuSxfD09MDkqVMhkUhKLJ+dnQ17B3sMGjgA1tbWWsv5qhMRf+LMwU34OHg6vpy9BYYiY6z8cegbPnOX8F673hg7awuGfb8K8rw8rJw3RCufOQA4Er4WJw9sxmdDp+LbeZtgKDLG73OGl5o5JzsLzm5++CT4e61kfJU+XTsA4MjutTi5fwt6D52Cb+eGQCQyxpLZI0o/v7IsOLv74dPBkzSer7ij4Wtw6sBmfDpkKr6euwkikTGW/VD6dSM7OwtO7r74JHiyFpMCJ0+fwYpVf+LzPp9h2eJf4enhju+nToe4tD7C3h6DBvSHjY76iJOnz2DlqtXo26c3li5eBE8PD0yeOq3Ufs3B3h6DBnyhk8z61g/rW15APzPvCd2EgxE7MXjUt5jzyyqIjIwwb9r4Uvvhv04fxcbVS/Bx70GY99sauHl4Y9608ZCq+Vm6PJ3dvxoXjmxE5/4zMGTqdhgYGmPjwsHIzVWfNybyEhq27oMhU7ah/zdrkJ+fhw2/DEZOtnauzUQVBQcQSafq1asHFxcX7Nq1S7lv165dcHV1Rd26dZX7WrRogbFjx2LChAmwsbGBvb09ZsyYobWcCoUCpw5sRLvuQ1G7fis4uvmhz8i5SBUn4OZl9bN2hk1agYbNu8HBxRtObv7oM+IHiJOeI+7RHY3m3RO2A23bd0Trth3g4uqO4aPHQ2RkhGOHD5RYfu+eUNQNaojuPT+Di6sb+vQbBE8vH+zfq53ZRQqFAgf2bEf3TwagfuNmcPPwxshx0yBOScLl86fV1tu3eytafdgFLdp0grOrB4JHToChSISTR/ZqNK++nV+g4ByfLtaG+46aC+kb2vDwSSvQqIX227BCocDBiK3o0msQgho1h6u7D4Z9NQOSlCRcOX9Kbb06Qe+h1+cjUL9JS43mK25LxGF0adMMnVo1hYeLIyYM7QeRyBB7j58tsfzMr4aiZ/tW8PVwhbuTAyYNHwC5QoHLN+9qJW/iodO4P30R4sOPvlV5t6GfIetRHO5O+Anp96IRs2wTXoQegseXAzQb9BW7wsLQvn17tGvXFm6urhgzejREIiMcOny4xPJ+vr4YEhyMFs2bw8DAQGs5CxV+5tp0H4ZaLz9zvUfOQ6o4AbdK+cwNnbQSDZt3h72LNxzd/PGZlj5zhZlP7AtB+55DUKdBSzi5+eKL0T9AKk7E9UvH1darWfcDdO49BoGNtDPLrJC+XTsUCgWO79tUcH4btoSzuy++GDOn4PxeLOX81muKLr1H6+T8ntwfgg97DEVAg1ZwcvNDv9FzIRUn4sYb2kOnz8ZqbdZhodCwcHRo3w4ftm0DN1dXfDl6JERGIhw6XHI/5+frg6HBA9GyeTOd9BEAsCtsN9q3/1CZeawy85ESyxf0a4PQQkeZ9a0f1re8gP5lVigUOBC+Hd0//QL1G38ANw9vjBo/taAf/vuM2nr7dm9Dqw87o0XbjnB29cDgUd9qrR8+f2QDmnUeDv96rWHv4oceQ35CmjgB966q/5mo39erUbdpD1R18oG9qz+6B8+DNPkZnj2+rdG8RBUNBxBJ5wYNGoS1a9cqt9esWYOBAwe+Vm79+vUwNTXFhQsXMH/+fMyaNQtHjpT8A1Z5S06IQ5okCb61mij3GZuYw80rAI8fXH/r42RlpgMATMwsyz1jodzcXDyMuo86gUHKfUKhEAGB9RB5r+SLXOS9OyrlASCwXgPcV1O+vCXEP4NEnIxagfWV+0xMzeDlWwMP7t0qsU5ebi4eRUWiVp2iOkKhELUCG+BBZMl1yoM+nl+goA2nSpLgW7tYG/YOwOP7FasNA0Bi/DNIxcmoVaehcp+JqRk8fWsiKvKmRt+7rHJz8xAZHYMGAUW3sAuFQjSoXQO3Ih++1TFkOdnIy8+HhZmppmK+E6vGgUg6/rfKvsQjZ2HdOFAr75+bm4sHUVGoG1j0fkKhEHUDA3H33j2tZCirFOV1o2ipAmMTc7h6BSCmDNcNWWYaAM1/5gAgOeEpUiVJ8Kv9SmZTc7h718ajyLfPrC36dO0Ais6vf0Aj5T5jU3O4+9RG9P0bGn3vf6PwuuEXoNqG3b1r41EZrhvaoL6PqFNh+4jCzPUC6yj3FfZrd+5F6jBZyfStH9a3vIB+Zi7sh2sX64e9/Wrg/hv64dqBDZT7hEIhagfWV1unvIgT45AuTYRnzfeU+4xMzOHkFYDYqGtvfRxZVsG12dhU89dmvSMQ/n+8/k/9//7PqcL4/PPPcfbsWcTExCAmJgbnzp3D559//lq5gIAATJ8+HT4+Pujfvz/q16+PY8fUz+LIzs5Gamqqyqu0W25KkyZNAgCYWdqq7DeztEWaJOmtjiGXy7F7w4/w8KsLBxeff5XjbaSlSiGXy2FppXobg5WVNSTikm/PkohTYFVCebFYO7dTSl/msrSyUdlvaWWjNnNqqgRyeT4srd++TnnQx/MLQNlOzYu1YXNLW6SWoQ2Hrdd8GwYAiTgZQMltQvryaxWFJC0N+XI5bCwtVPbbWFkgWSJ9q2MsC9mJKtZWaBCg+bV//g1RNTtkx6u2k+z4JBhYmkNoJNL4+6empkIul8PK2kplv5WVFcQp2vsclUWqtPAzZ6eyv6yfud0bfoK7Fj5zAJS5LKyK9RNWtkiVVKzPHaBf1w4AkIpLPr8WZWgT2lT4PX+X64a2FPYR1lZWKvutrayQIpboJNObKPu1Yj8fWFtZafXng7elb/2wvuUF9DOzpLR+WM11Q9kPl6HvLi/p0kQAgJlFsd/pLOyQLn37a/PBLXPh6lMP1ZxLXq+U6L+KD1EhnatSpQo6duyIdevWQaFQoGPHjrCzs3utXEBAgMq2g4MDEhIS1B533rx5mDlTdX2vPkOnoO+waW/MdOXsXmxfXVR3yIRlb6zzJqFr5+B5bBTGztjwzsfSd2dPHsLqpfOV2xOmLdBhmv+my2f3YvuqojY89Lt3b8M71xS04S9nln8bPnfyINYun6fc/nrqr+X+HhXVhrD9OHLuIpbNmACRoW5umaJ3d+XsXuxcPUO5PXjC8nc+5q61c/Ai9gFGz9j4zscqycUz+7BlxSzl9shJSzXyPuVF364dF0/vw5aVs5XbIyb9rsM0b3bpzF5sXVnUHoZX8PZARNp39sQhrFr6s3L7u+k/l1Ja9278HYGI9dOV232/+qOU0m9nX8gsJMQ9wKDvN7/zsYj0DQcQqUIYNGgQRo8eDQBYurTkH1iLr+shEAggl8vVHnPSpEkYP368yr4Td95u0m3NoJb4xrtowDIvNwcAkC5NhqV1FeX+dGkyHN1Lfiraq0LX/oA7V09h9PT1sLK1f6sM/5a5hSWEQuFrixBLJGJYFZtxUcjK2ua1B4BIJGKNLcYc1LApvH1rKrdzX55fqSQF1jZFg8dSSQrcPUuedWNhYQWhsJJyBsqrddT9P8uDPpxfAKgV1BJuJbThtGJtOE2aDCe3N7fhnWsK2vCYGZppw/UafgBvv5LbhFWxNuHmUbH+2mtlbo5KQuFrD0xJkaTC1qr0W1s2hR/ExrD9WDztG3i7l/60Ql3Kjk+CqJrqH3ZE1eyQK02DXPbvZnaXhYWFBYRCISTFZhJJJBJY2+hm0fjiaga1hJt3beV2Xm4ugIIZ7BbFP3Pu/m883q61c3Dn6imM0uB1I6B+C7i/mjmv4HOXKinWT0iS4fwW1zpN07drR0CDFnD3efP5TZVWjPNbu35LuPu85XXjLdqwNhX2EcUfmCKWSGBTbDZXRaHs14r9fCCWSHT2MIzS6EM//Cp9ywvoR+agRk3V/rxWvB9283hDPyzRfD/sF9gSTp5F/Vr+y344PTUZ5lZVlfvTU5Ng71L9tfrF7ds4C/evncSgSSGwtNHs73REFRFvYaYKoX379sjJyUFubi4+/PDDcjmmSCSChYWFysvA8O1utTMyNkUVe1fly97ZC+ZWdrh/67yyjCwzHTEPb8Ddp47a4ygUCoSu/QE3Lx3DyClrYFvV+Z3/X29iYGAAL29f3Lh2VblPLpfj5rWr8POvWWIdP/8auHH9qsq+6/9cga+a8u/K2MQU9o7OypezqwesrG1x6/plZZnMzAw8vH8HPv61SjxGZQMDeHj74daNK8p9crkct69fho9fyXXKgz6cX6DkNmxhZYcHxdtw1A24+5behneuKWjDo6Zqrg0bm5iimoOL8uXk4glLa1vcvnFJWSYrMx3R92/D2692KUfSPgODyvDzdFN5AIpcLsflm3dRy89Lbb2Q3QewNnQvfp0yDtW93bWQ9N+TnL8G21aNVfbZtX4P4vPXtPL+BgYG8PH2xrXrRe8nl8tx7do1VPevGAMZRsamsLN3U76qvbxuPLh1QVlGlpmOJw9vwO0N141da+fg5qVjGKHh64aRsSmqOrgqXw4v+4nIVzJnZabjcdRNePipz6wt+nbtUHt+bxY7vw9uwtM3oJQjaYe668ZreaNuwqOU64YuKPuIa0VrMxb0ETcqTB9RXGHmf64VrX9ZkPk6avjrfkC5OH3oh1+lb3kB/cisth++VtSnZmZmICryDnzf1A+/0nfL5XLcun5FbZ1/S2RsBttqbspXFUdvmFlWQfSdonWdZVnpePrwBly8A9UeR6FQYN/GWbh79SgGTFgH6yqa/52OqCLiDESqECpVqoS7d+8q/13RCAQCNO/QD0d2r0QVezfYVHXCgR2/w8K6KmrXL3rK4LI5wajdoDU++LAPACB0zRxc+Ws/gr9eDJGxqXLNICMTMxgaGmksb5fuvbB44Y/w8vGFj2917A3fCZlMhtZt2wMAfvtlLmxsq6DfgCEAgE5demLKxK8Qvms7gho0xtnTx/EwKhIjxnytsYyvEggE6NDlE+zeth72ji6oWs0RO0JWwtrGDvUbN1OWmzN5DBo0aY4PO30MAOjY7TMs/3UOPL394e1bAwfCtyFbJkPzNp00mlffzi9QcI6bdeiHw2FFbXj/9t9hWawNL50djIAGrfFB+4I2vHPNHFw5tx+Dv9FuGxYIBGjf+TOEb18DewcXVKnmiJ2b/4CVjR2CGjdXlps3dSTqN26Bth0/AQDIsjIR/zxO+fXE+GeIib4PU3ML2FXR3F+Ke3duh9m//wl/L3fU9PbA1n1HIcvORqeW7wMAZi5ejSq21hjZtycAYGPYfqzaFo6ZXw2BQxU7JIsL1ko0NhLBxFhz57VQJVMTmHq7KrdNPJxhUccfOSlSyGKfw2/OeBg5VcP1gd8BAGJWboXbyL7wn/ctYteFwq5lYzj06oBLXYZpPGuhHt27Y8HChfDx8YGfry/CwsMhy5ahXdu2AICfF/wCW1tbDBo4AEDBYvRPnjwBAOTl5SEpORkPHz6EsbExHB0dNZ638DN3dPcK2Nm7wraqMw7sWAIL66qo9cpnbvmcQajdoDWaftgXALBrzWxc/Ws/Bn29BCJjE6RKCtZrMjYxh4EGP3OFmVt2/BwHQ1eiqr0rbKs6Ye+2pbC0roI6DVopy/02czDqNGyNFh16Ayj43CW+eKL8enLCU8Q+ugdTM0vYVHHQaF59unYIBAK06tgXB0JXoaqDG2yrOiFi68vz2/CV8ztjCOo0aqX+/MZr7/y2+OhzHNq1AlUdXraHrb/D0roKAl5pD0tmDUZAw1Zo/vK6kS17vT3EPb4HEzNL2NhpLm/P7l3x88JF8PHxhr+vL3aF74FMJsOHbQs+b/N/+RW2tjYIHvAFgMI+Irbg33l5SEpOwcOH0TAyNoKTFvoIAOjRvRsWLPwVvj7eRf2aTIZ2bdu8zLwQdra2GKQmc3JyslYz61s/rG959TGzQCBAh66fIGzbetg7OaNqNUdsD1lV0A83+UBZbvb3Y9GgSTO071zYD3+K5b/+AE+fgn54f/j2l/1wR43nbdy2P05H/AHbau6wtnPC8bDFMLeuCv96bZTl1s0fgOr12qBRm4J1+fdtnIWb5/ei99ilMDQ2RdrLtRSNjDV/bdY3CoFA1xFIgziASBWGhYXFmwvpUKvOg5CTnYXtq2cgKzMNHn71MGziHyqzGpPiY5GRVnQryrmj2wAAS2erPlW69/A5aNi8m8ayNm3WCqlSKbaGrINYnAIPTy9Mm/WT8raAxMQECF55epR/jVoY9+0UbN64BiHrV8PByQkTp8yGm7uHxjIW17nn58iWybD695+QmZEOvxoBmDhzIQxfOb/xL54iLVWi3G7yQRukSiXYuWkVJOIUuHn6YOLMhRq9hRnQz/MLAK27FLThbasK2rCnmjac/mobPlLQhn+f9XobbtSim0bzduzRH9kyGdYsm4vMjHT4Vq+Db6f/ptImEoq1iUdRdzF3ygjl9uY1iwAATVt1xLAvi9bAKW9t3m8IcWoaVm/djWRJKnzcXfDr5HGweXkLc3xSCoTCoh+odh0+idy8PHy/QHWdvOBeXTD4064ay1nIMqgWmhwrWlevxoLvAQCxG3bhRvAkiByqwNil6Bf9rMdxuNRlGGr8MgnuY/pDFvcCN4dNQdKRsxrPWqh582aQpkqxcWMIxGIxPD09MWfWLOWtfgmJiRC8co6TU1IwasxY5XZo6C6Ehu5C7dq18fNPP2olc8vOwcjJzsLOV64bQyeuUPnMJcfHIiNNotz+6+V1Y9nsASrH+nT4HDRs3l3jmdt2HYgcWRY2r5iFrMw0ePnXxajJy4v1E3Eq17on0bfx24xg5Xbo+oI1sRo174L+o+doNK8+XTsAoG23gcjOLji/mRkF53f0lGUq5zcxPg7pr+R98vA2Fs0YrNwOXV+w9mPjFl3Qf3TRGoua0KZrwXVjy4qZBdcN/7oY+X0JP/sUy7t45iDldtiGgvbQsHkX9Bv1g8aytmj2AaRSKTaEbFb2ET/MmqHaRwhU+4gRY79Sbu/cFYadu8IQULsWFvw4V2M5S8686ZXMM5WZExMTISyWeeTYL0vM/POP8147fnnTt35Y3/Lqa+YuPfsiW5aFVUvmF/XDs34poR8uerDce80K+uEdIauL+uFZv2ilH2760WDk5mQhYt00yDJT4eobhM/Hr4KBQVFeccITZKYXXecundgCAFj7U3+VY3ULnou6TXtoPDNRRSFQKBQKXYcg0pb9V3N1HaHM3C0SdR2hTGRyzT+RtTwZCTW/flt5ikmr8uZCFYytcaauI5SJd+5NXUcok7/rBb+5UAVT494+XUcok9tSd11HKBOjyvm6jlAmNkbpuo5QZuJsU11HKJN8uX6tWuRn+kjXEcpMAf2adaMQ6FebIM2TyK10HaFMIhNt31yoAvnsPf3qI/6tzFNbdR1BK0yaf6brCDrBKwcRERERERERERGpxVuYiYiIiIiIiIjo3XB2838av7tERERERERERESkFgcQiYiIiIiIiIiISC0OIBIREREREREREZFaHEAkIiIiIiIiIiIitfgQFSIiIiIiIiIiejcCga4TkAZxBiIRERERERERERGpxQFEIiIiIiIiIiIiUosDiERERERERERERKQW10AkIiIiIiIiIqJ3I+Qctf8yfneJiIiIiIiIiIhILQ4gEhERERERERERkVocQCQiIiIiIiIiIiK1OIBIREREREREREREavEhKkRERERERERE9E4UAoGuI5AGcQYiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFtdAJCIiIiIiIiKidyPgHLX/Mn53iYiIiIiIiIiISC0OIBIREREREREREZFavIWZ/q9UrqTQdYQyk8lFuo5QJjbCZF1HKJNnuQ66jlAmLub6dX4BwFiYqesIZXIw6X1dRyiTJvf26TpCmd3x76jrCGWyoOs6XUcok13T83UdoUwklfSrHwaANKGxriOUiZNJkq4jlMkt/y66jkD0f8fr3jFdtHhntgABAABJREFURygTewuZriOUkX5dN4hKwhmIREREREREREREpBZnIBIRERERERER0TtR8CEq/2n87hIREREREREREZFaHEAkIiIiIiIiIiIitTiASERERERERERERGpxDUQiIiIiIiIiIno3AoGuE5AGcQYiERERERERERERqcUBRCIiIiIiIiIiIlKLA4hERERERERERESkFgcQiYiIiIiIiIiISC0+RIWIiIiIiIiIiN6JQsA5av9l/O4SERERERERERGRWhxAJCIiIiIiIiIiIrU4gEhERERERERERERqcQ1EIiIiIiIiIiJ6NwKBrhOQBnEGIhEREREREREREanFAUQiIiIiIiIiIiJSiwOIREREREREREREpBYHEImIiIiIiIiIiEgtPkSFiIiIiIiIiIjejYBz1P7L+N0lIiIiIiIiIiIitTgDkSqUAQMGYP369a/tf/DgAby9vXWQqIhCocD+7Uvx17FQZGWkwcM/EJ8OnoqqDm5q60TduYxje9bhyaM7SBUnYvA3i1CnYWut5d25aTWOH96DjIw0+FUPwKCR38LB0aXUeof3hSJi1yZIxSlw9fDGgGHj4e1bQ+N59+zdh52hu5AiFsPTwwMjhw+Dv59viWUfx8RgQ8gmREU9RHxCAoYNGYwe3bpqPGNxCoUCu7eswKkjYcjMSIePfx30Gz4R9o6uautE3r6KA2EbEfPwLiTiJIyZuAD1GrfQSt4De8MQHroVEnEK3D28EDz8S/j4VVdb/q8zJ7AlZA0S41/AwdEJnw8cjqAGjbWSFQAiIiIQunMnxGIxPDw9MWLECPj5+ZVYNiYmBhs3bkTUgwdISEjA0KFD0a17d61lBQraw8nwJbh6egdkmalw8a6Hjv2mw7aau9o6l05sweWTWyBJegoAqOrojWZdRsGndjON590TsRc7Q0MhLvzMjRiu9vw+jonBxo0heBAVhYSEBAwbOgTdu3XTeMZCNk3rw/PrYFjWqwUjx6q43HMk4vccK71Os4aosWAizGr4QBb7HFHzliNuQ5iWEhcZ+KkLOrWpCjOTyrgVmYqFKx/h6QuZ2vJCITDgExe0/cAONlaGSBLn4ODJBGzc+VTjWXceOI5New4iRSKFt5sLxgf3QU0fzxLLhh85hQOn/kZ0bEEuP083DO/TQ215TYmIiFBpx2/TTxS246FDh2q1HQMF/cSerctx5kgYsjLT4OVfB32Hfo9qjup/lrh/+woOh29AzMM7kIqTMOK7hajbqKVW8u6L2I3dodshfnndGDpiDHz9/NWWP3fmFDZtXIuE+BdwdHRG/0FDUL9BI61k1bd+Qt/yAvqXmXm1Q5/6CaCgH47Yuhxnju4q6If9AtHnrfrh9XgSfRdScSJGTFiIwEattJaZqKLgDESqcNq3b4/nz5+rvDw8PHQdC0fD1+DUgc34dMhUfD13E0QiYyz7YRhyc7LV1snOzoKTuy8+CZ6sxaQFIkJDcHDvDgSP/BazF6yGyMgIP04bh5xS8v595ig2rl6Mnr0HYe6itXDz8MaP08ZBKknRaNaTp89g5arV6NunN5YuXgRPDw9MnjoNEomkxPLZ2dlwsLfHoAFfwMbaWqPZSrM/bD2O7N2K/sMnYer8dTA0MsLCmWNKbxOyLLh4+ODzYd9pMSlw7vRxrFu1FJ/0+QI/L14FNw8vzJ76DaQScYnl7925hV/nz0brdh9hweJVaNjkA8yfMxlPHkdrJe+pU6ewauVK9OnbF0uWLIGnhwemTpmivk3IZHCwt8fAgQNhraM2ce7Aalw4uhEd+83A4MnbYSgyRsjCwcjLVd8eLKyroU3PrzF0WiiGTt0J9+qNsXXJKCQ8faDRrKdOncaqVavweZ8++H3JYnh6emDy1KmlfubsHewxaOAAnZzfSqYmSL0RiVtjZ75VeWN3ZzTYswLJJy/gbP2ueLRkPWqvmAO7tk01nFRV726O6PmRPRaujMaI728iK1uOn6dWh6GBoJQ6Tujarhp++/MRvvjqGlaGxKB3Vyf0+Mheo1mPnruIxeu3IbhXF6ybPx0+7i4YN+dXpEhTSyx/9XYk2jZtiN9nfIuVc79HNTsbfDV7IRKSS+5TNOHUqVNYuWoV+vbpgyVLlsDD0xNTSmnHsuxs2Ds46LSfOBS2Dsf3bcHnw7/HpB83QCQyxm+zR73xZwlnd1/0GTJJi0mBM6dOYM2qP/Bpn/5YuOQPeHh6YcbU7yBRc924e+c2Fvw0B23adcCvS1agUZP3MW/2NMQ8fqSVvPrWT+hbXkD/MjOv5ulbPwEAh3avw/H9m9F32GRMnLcRIiNjLJ49stR+OOdlP9xby/0wUUXDAUSqcEQiEezt7VVelSpVQnh4OOrVqwcjIyN4enpi5syZyMvL00omhUKBk/tD8GGPoQho0ApObn7oN3oupOJE3Lh0XG29mnU/QKfPxmpt1mEhhUKBA3u2o/snA1C/cTO4eXhj5LhpEKck4fL502rr7du9Fa0+7IIWbTrB2dUDwSMnwFAkwskjezWad1fYbrRv/yE+bNsGbq6uGDt6JERGIhw6fKTE8n6+vhgSPAgtmjeDgYGBRrOpo1AocCRiCzp/Eox6jVrAxd0HQ76cBXFKIq5eOKm2XkDQ++jZdySCGmtn9kihiLDtaNO+E1q1/Qguru4YNvpriIyMcOzw/hLL79uzE3WDGqJbz95wdnVH737B8PDyxYG92vmrdlhYGNp36IB27drB1c0No8eMgUgkwuHDh0ss7+vnh+DBg9G8RQudtAmFQoELRzegWafh8K/bGtVc/NAt+CekSRJw7+pRtfX8AlvBJ6A5bKu5w9beA617jIOhyARx0dc1mndXWBjat2+Pdu3aws3VFWNGj4ZIZIRDas5vwWcuGC2aN9fJ+U08dBr3py9CfLj6c/kqt6GfIetRHO5O+Anp96IRs2wTXoQegseXAzQbtJiPOzpgY2gczl0SIzomE/OWRMHO2hBNG9qorVPLzxxnL4lx/qoELxKzcep8Ci5dl6C6t5lGs26JOIwubZqhU6um8HBxxISh/SASGWLv8bMllp/51VD0bN8Kvh6ucHdywKThAyBXKHD55l2N5nxVWFgYOrRvj3bt2r3SjtX3E36+vhisw3asUChwdO9mdPx4CAIbtoSzuy8Gjp0NSUoi/rl4Qm292vWaolufUajbWLuzXcLDdqJd+4/Qpl17uLq6Y8ToryASiXD08MESy0eE70K9oAbo8fGncHF1Q9/+A+Hp5YN9Ebu1klff+gl9ywvoX2bm1Tx96ycUCgWO7d2Ej17th8fMhkSciGul9MO16jVFtz6jUZezDt9IIRD8X7z+X3EAkfTCmTNn0L9/f3z55Ze4c+cOVqxYgXXr1uGHH37QyvsnJ8QhVZIEv4Ci2zeNTczh7l0bj+5r9hf9fyMh/hkk4mTUCqyv3GdiagYv3xp4cO9WiXXycnPxKCoSteoU1REKhagV2AAPIkuuUx5yc3PxICoK9QLrqLxv3cBA3LkXqbH3fVeJ8U8hFSejZkBD5b6Cc1wLUZE3dZjsdbm5uXgYdR8BgUHKfUKhEAGBQbh/73aJde7fu61SHgAC6zVApJry5Sk3NxdRDx4gMDBQuU8oFCIwMBD37mpvcKIsJElxSJcmwrPGe8p9RibmcPYMQOzDa291DLk8H7f+x959xzV17mEAfwhCGAJhiSB7i6K4Z92z7tqhtrXuVW2rrVZt3baOqrVate69qigI7lFnrbMqLlRcuEAgCTuM5P4BBIIJSiUJ8T7fzyefe8/pe04eD4dfTl7e855ze5GdlQ43nxDtBEXh71ytYse3VkgIbt2+rbX31SVRwxAkHDursu7l4dOwbRiiswzOlYSwtzXFpWtS5bq09FzcvJuKIH8rjdtdj05BnWBruDqbAQB8PCwQHGiFc/9KtJY1OzsH0fcfoV6NwikNBAIB6gUH4Xp0zBvtIzNLhpzcXFhXtNRWTBUF57G6OlFez+OEuKdIliSgas3CW/UsLK3g5Vcd96Ov6THZqwo+N2qG1FauEwgEqBlSG9G3b6rdJvr2TdSspfq5UatOXY3t9a081InSMLS8gOFlZt7SMcQ6oazDNQrrsLmlFbz8gnE/uvx9pyMqb9iBSOVOZGQkKlasqHx99NFHmDZtGsaPH48vvvgC3t7eaNu2LWbMmIHly5dr3I9MJkNycrLKq6Tbd0uSLEkEAFjZ2Kust7KxR7Ik4T/tU5uk4rxbjm1EqqNcbER2kIjV346cnCyBXJ4LG9s336YsJCcnQy6XQyRSvZ3MViSCWKy7W+FKS5p/TliLVM8Jaxs7SMWJ+oikUUqyFHJ57ivH2EZkq/FnKxEnwaZYe1EJ7ctSwTlR/BZDka0tksrpOZEqfQkAsLRWPR8srR2QllxyjYh7Eo2fR9TGzKE1ELlxKj758nc4umhvzlfl75ytSGW9SCSCOKl8Ht/SEjo5QBanetxlcQkwsbGCwEyokwx2tnkj3JIk2SrrxdIs2Ik0j37bsvspjp1JxIbfQnBkWwOs/KUGdu59jiOntPdZI0lJQa5cDjsba5X1diJrJEqkGrZStXTTTjjailCvhvbnzAU01wlbkQjiJO3Xqf+i4HrBykb1c9ZaZI/kcva5kZwsza8Tr34OaDq+EnHSK58zIpEtxDr43PgvykOdKA1DywsYXmbmLR1DrBMFdVjt9bukfNVhevcsWbIEnp6eMDMzQ4MGDXD+/HmNbVeuXIn33nsPtra2sLW1RZs2bV5p369fPxgZGam8OnTooNV/Ax+iQuVOy5YtsWzZMuWypaUlatSogTNnzqiMOMzNzUVmZibS09NhYWHxyn5mzZqFadNU5xD5bOiP+Hz4pNdmuHAqEttWTFcuD5uw5L/8U3Tm9PGDWLVkrnJ53OR5ekzzbjp7Yj/WL/tZufzNjwv1F4b07to/EYjcMEW53OfrP/7zvhwqe2HYlN3IzEjBzUsHEbZ6PPp9v1GrnYhU9tq854BvhxQ+QGT8rP82Cq5lY3u0ec8BM3+7iwexGfD1tMDI/p5ITMrGwRMvyypumdqwex8OnzmPpVPHQWiqn2klyqNzJ/Zh0/KZyuWRPyzSYxoiov8/507uxeaidXjiYj2mof9n27dvx5gxY/DHH3+gQYMGWLhwIdq3b4/o6GhUqlTplfbHjx9H79690bhxY5iZmWHOnDlo164dbty4gSpVqijbdejQAWvXrlUuC4Xa/eMBOxCp3LG0tHzlicupqamYNm0aPvjgg1fam5mZqd3PhAkTMGbMGJV1J6PfbL6C4Lot4elXQ7mck50FAEiRJsLG1lG5PkWaiCqemp8ypit16jeFr3815XJ2fl6pJAm2dg7K9VJJEjy9/dTuw9paBIHAWDl6seg2IlvN83W9LWtrawgEglcmWxZLJHqb5F6dkPrN4O1fXblccE4kSxIhKnKMk6VJcPNS//RofbGytoFAYPzKMZZKxBp/tiJbu1cesCIpoX1ZKjgnio9AlYjFen1oTlEBNVvCdUqRGpGTdz6kJSfCSlR4EZCWnAAnN81PugYA4wqmsHPKe/Kfi2d1PHtwHf8c2YAufaeXuN1/pfydE0tU1kskEtjalY/j+7ZkcQkQOjmorBM6OSBbmgJ55n8bif46Zy4k4dbdVOWySYW8zxs7kYnKKERbG1Pce5imcT/DPvfAlrC8UYgA8OBxOio7CvHpB1W01oEosrKCsUDwygNTkiTJsBfZlLjt5vAD2Lh7HxZN/g6+nm5ayaeOpjohlkhga6f9OvUmatZvDi+Vz4288yBFmgSRXeG1RLIkEW5e6p8crS/W1jb5deLVzwFNx1dka/fK54xEIoatDj43/gt91Im3YWh5AcPLzLylYwh1oma9FvDyC1YuF71+L/qdLlmaBDfP8nX9Tu+WBQsWYPDgwejfvz8A4I8//sDevXuxZs0ajB8//pX2mzdvVlletWoVQkNDcfToUfTt21e5vuD5EbrCW5jJINSuXRvR0dHw9fV95SUQqD+NhUIhrK2tVV6mpm/WI29mbgnHyu7KV2VXH1iLHBAddU7ZJiM9FQ/vRcHLv2YJe9INcwtLVHZxVb5c3b0gsrXH9asXlW3S09MQc+cm/AKrq91HBRMTePkG4Pq1S8p1crkcN65ehF+A+m3KgomJCfx8ffHvlcL5n+RyOa5cuYqgwPLzhcrc3BJOzm7Kl4ubN2xs7XHz2gVlm4z0VMTcuQ7fgOAS9qR7JiYm8PH1R9QV1Z/ttSuX4R9YTe02/oHVcO3qJZV11/69iAAN7cuSiYkJfP38cPXKFeW6vHPiCgKrltwZpytC84qwc/JQvhxdfFHRxhH3bxXORSTLSMWT+9dKPZ+hQiFHbv4FrjYU/M5duXpFua7g+FYN1P8fRMqC5J8rsG/VUGWdQ+vGEP9zRWvvmZEpx9MXmcrXwycZSBRnoXZwYQechbkxgvwq4uadFI37EQoFkMtV1+XKFdDmfN0mJhUQ4O2h8gAUuVyOi1G3UD3AR+N2m8L2Y21oJH79cTSq+npqL6Aahedx4ZxV5e08NjO3RCVnd+XL2c0b1iIH3Lqmei3x4O51eAfUKGFPulfwuXHt6r/KdXmfG/8iIFD9beoBgUG4duWyyror/17S2F7f9FEn3oah5QUMLzPzlo4h1IlX63Ded7rbUYW3gubV4Sh4B+j/O907wUjwf/FSN12aTKa+4z4rKwuXLl1CmzZtlOsEAgHatGmDs2fPqt2muPT0dGRnZ8OuWOf88ePHUalSJQQEBGD48OFITNTurfjsQCSDMHnyZGzYsAHTpk3DjRs3cOvWLWzbtg0//vijTt7fyMgILd7/DAd3LUfUxb/w7PEdbPx9ImxsHVGjXuHTuBZPH4QTB7Yol2WZ6Xjy8DaePMy7lS0x/imePLyNpITnWs/bsevHCNu+HhfPncLjhzFYtmA6bO0cULdhM2W7mT+MwsHIncrlTt174a+De3Di6D48jX2INUt/gSwzE83bdNZq3g96dMf+gwdx+MhRPH4ci8VLliIzMxPt2uYV2bnzF2DNuvXK9tnZ2YiJuY+YmPvIzslBYmIiYmLu4+mzZ1rNWZSRkRHadumNiB2r8e/5E4h9eA8rF06BrZ0jajdooWw3d9JwHNm7XbmcmZGOx/ej8fh+3gNiXsY/xeP70Uh8+UKrebv0+BhHDu7FX0cO4Mnjh1ixZAFkmRlo1bYjAGDR/J+wad0KZftOXT/ElUvnsWfXdjyJfYTtm9ci5l40OnbuodWcBXr06IEDBw7gyOHDePz4MZb8/jtkMhnatm0LAJg3b57KcP28cyIGMTExyFGeEzF4pqNzwsjICA3a9MWpyD8QfeUY4p5EY/eq72ElqoTA2oUXCxt+6YfzRzcpl4+Ezsej6AuQJDxB3JNoHAmdj4fR5xHcsItW837Qowf2HziIw0eO4PHjx1i8ZAkyZZlol398f5k3H2vWrlO2L358E3R8fI0tLWBdMxDWNfM6hiy8XGFdMxBmbs4AgICZY1Bz7Rxl+0crtsHCyw2Bs8bCMsAbHsP6wPmjjnjw2zp1u9eanXuf4/Oermhc1xZe7haYOMoXCeIsnD5fONJ7/pQg9OhQ+JfjsxfF+LxnFTSsLUJlRyGa1rfDx51dcOq8dueH6t2lHfYcOYm9x8/g4ZNnmLtyEzJlMnRu2QQAMG3RKizdHKpsv3H3PqzYFoYfRvSDs6MDEsVSJIqlSM/I1GrOogrqRMF5/PuSJeW+TrTp3Af7dq7ClfPH8eTRXaxZNAkiO0fUqt9S2W7BlKE4tm+bcjkzIx2xD6IR+yDvcyMh/iliH0Qj8aV2ryW69fgQhw7sxbEjBxH7+BH+WLIQmbJMtGnbHgDw67zZ2LB2lbJ9l24f4PKlCwjb9SeexD7G1k3rEXP3Djp16a7VnAUMrU4YWl5DzMy82mdodcLIyAitO3+KfTtX4uqF43j66C7WLvoRIltHhBStw1OH4K9X6vBtxD7I+06XV4dvI0nLdZjKr1mzZsHGxkblNWvWLLVtExISkJubCycnJ5X1Tk5OePHizb4Dfv/993BxcVHphOzQoQM2bNiAo0ePYs6cOThx4gQ6duyI3Nzc//4Pew3ewkwGoX379oiMjMT06dMxZ84cmJiYIDAwEIMGDdJZhjbdBiBLloGty6chIz0F3oG1MGLiHzApMqoxIS4WackS5fLjmBtYNG2Acnn3hl8AAPWbd8XnX2r3CdJden4GWWYmVv0+B+lpqQgIqoHx0xaojMKMe/EUKUXyNnqvDZKlEuzcvBIScRI8vP0wftoCrd+22qLZe5BKpdiwaTPEYjG8vb3x0/RpyluYX758CUGR4TeJSUkY8dXXyuWdu3Zj567dqBFcHb/MVl+4teH9Hl8gKzMT65b+jPS0FPhXDcGYyYtUzon4F0+QWuQYP7x3E3MmDVMub1vzKwCgScvOGPT1VK1lbdKsFaRSCbZtWgOJOAle3r74cfovyp9twst4GBkV/k0pMKg6vhk7CVs3rsbm9SvhXMUV4378Ce6e3preokw1b94cyVIpNm7aBHFSErx9fDB9xozCcyI+XuWcSEpKwqiRI5XLoaGhCA0NRXBwMObMnfvK/rWhScdByM7KQMT6ychMT4a7Xx18NnolKpgUng9JLx8jPbXw1p205CTsXv09UqUvITS3gpNrAD4bvQo+1ZpoNWvz5s0gTZZi48ZNyt+5mdOnK49v/MuXMBKo/s59Oeor5XJo6C6Ehu5CcHAwfpkzW6tZAcCmTnU0OrpRuRw0byIAIHbDLlwbOAFCZ0eY53/BAoCMh09woetQBM2fAM9RfZH55AWihv6IhMOntZ61qK1hz2AmNMZ3Q71R0bICom4nY9zMW8jKVijbVHESwsa68HLst9UPMLCXO74Z7A1baxMkiLMQcTgO63c+0WrWNk3qQ5ycglXbwpAoSYafpxt+/WE07PJvYY5LSIKgyDmx69BxZOfkYOK8ZSr7GfhRVwz6pJtWsxZo3rw5pMnJ2LRxI5LEYvh4e2PGK+dxYV1LSkrCyFGjlMtF68TcOXNe2b82tO/RDzJZBjb9MRPpaSnwrRqCryctUfncePkiVuVz41HMTcyfPFi5vGPtfABAo5Zd0H+UdqY6AID3mrdEcrIUWzaug1gshpe3D6ZMn63yuVH0nKgaVA3fjvsBmzaswcZ1a+BSpQomTJoOD08vrWUsytDqhKHlNcTMzKt9hlYnAKB9937IyszApj9m5NXhwFr4atJS1e90L2KRmlJ4vfYo5gYWTClSh9fl1+EWXdBv1AydZafyQ910adqaf3D27NnYtm0bjh8/rjJ9W69evZT/Pzg4GDVq1ICPjw+OHz+O1q1bayWLkUKhULy+GdG74dBV7d0WqC0O5ppvdSuP7ASG9QSzZ9nOr29UjlibaJ47rbwyF6TrO0KpnHumu4vYstDIOUbfEUrtZmAnfUcolV+6rdN3hFLZNUV7f3nWBomFYdVhAIjNNKzMTmbl80nImsQEaueLDxFp5nP7qL4jlMqLDPvXNypHWlQ313cEnUi+fFjfEXTCunbbN26blZUFCwsL7Ny5E927d1eu/+KLLyCRSBAeHq5x23nz5mHmzJk4cuQI6tat+9r3cnR0xMyZMzF06NA3zlcavIWZiIiIiIiIiIjeigJG/xev0jA1NUWdOnVw9GhhJ71cLsfRo0fRqFEjjdvNnTsXM2bMwIEDB96o8/DJkydITEyEs7P2/sjJDkQiIiIiIiIiIiItGDNmDFauXIn169fj1q1bGD58ONLS0pRPZe7bty8mTJigbD9nzhxMmjQJa9asgaenJ168eIEXL14gNTUVAJCamoqxY8fin3/+wcOHD3H06FF069YNvr6+aN++vdb+HZwDkYiIiIiIiIiISAs++eQTvHz5EpMnT8aLFy8QEhKCAwcOKB+s8vjxYwiKzNu8bNkyZGVl4cMPP1TZz5QpUzB16lQYGxvj2rVrWL9+PSQSCVxcXNCuXTvMmDFDa3MxAuxAJCIiIiIiIiIi0pqRI0diZJGHPhZ1/PhxleWHDx+WuC9zc3McPHiwjJK9Od7CTERERERERERERBpxBCIREREREREREb0VhRHHqL3L+NMlIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg04hyIRERERERERET0djgH4juNP10iIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRnyIChERERERERERvRWFkZG+I5AWcQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKit6Iw4hi1dxl/ukRERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5H+r9QVnNd3hFKzuH1V3xFK5bes4fqOUCqtg6X6jlAqcRkifUcoNReLXH1HKJX3nG7pO0KpXJX66ztCqc3rtk7fEUplbHg/fUcolTV9DOscblVdrO8IpRZgHK3vCKVyKz1Q3xFKZW6XtfqO8M4zEhjpOwKVM2uRqe8IpVI39bC+I5RSV30HIHpr7EAkIiIiIiIiIqK3Y8Q/TrzLeAszERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKit6Iw4hi1dxl/ukRERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN+BAVIiIiIiIiIiJ6KwoY6TsCaRFHIBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBpxDkQiIiIiIiIiInorCiOOUXuX8adLREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ogPUSEiIiIiIiIiordjZKTvBKRFHIFIREREREREREREGrEDkYiIiIiIiIiIiDTiLcxUbrx48QI//fQT9u7di6dPn6JSpUoICQnBN998g9atW+s12879x7B5zwEkSaTw9XDDmIF9UM3PW23b8MMnsP/EWdyPfQoACPD2wLA+H2hsry3bzlzF+hOXkZCSDn9nB4zv3hzB7pVfu93+K3cwfvMBtKzmjYX9OusgaR6FQoF/jy5G9IUdyMpMQSWPWmjcdQpsHDzfaPurJ1bi0qEFCGr8ORp2mqjdsPkUCgVCt6zEX4fCkZaWCv+qwRgwfBwqu7iXuN2hvTuxd/cmSMVJcPfyxRdDvoWPfzWd5I3cvhRnjuxCRnoKvANC0HvID6jk7KFxm7s3L+Fw+DrE3r8Fqfglhoz7FSH1W2k9KwDsiwjD7tDtkIiT4Onlg8HDR8E/oKrG9mdOHceWjWsRH/cCzi6u6DtgMOrWa6iTrAAQHrkPf+4KQ5JYAh8vT4wcOgiBAf5q2z589BjrNm/F3XsxiIt/ieGDB6Bnty46y1pAoVDg4M7f8c+xnchIS4FXQC30HDAZjiWcE0fDViLqwmHEP3sAE1MzePiHoHPvMajk4qWTzP0/cUPnNpVQ0aICrkcnY8GKB3j6IlNje4EA6PexG9q+5wA7kSkSxFk4cDweG3c+1WpOu6Z14f3tQNjUrg4zl0q42HME4vYcLXmbZvURNG88Kgb5ITP2Oe7NWoYnG3ZrNWdxCoUCl44sxu0LO5CVkQInj1po2v3Na/GV4ytx4eACVG/8ORp10X4tVigU2Ll5FY4d2oO0tBQEVK2BASPGwtnFrcTtDu0NRcSuzco63G/oGPj6B2k97+69B7EtLAJJYil8PN3x9ZD+qOrvq7ZtxKGjOPjXSTx49AQAEODjhcGf99LYXhsUCgUiti/D6fzPDZ+AEPQeMhFOr/ncOBS+Ho/zPzeGjVugs8+NAgN6uaFzWydUtDBG1O0ULFhxH0+fv6ZOfOKGds0cYScyQYI4Gwf+iseGHU+YVw1DqcOGnNmQ8u6JiMTO0FCIxWJ4e3lhxPBhCAgIUNv24aNH2LhxE+7eu4f4+HgMHTIYPbp313rGov48cgYb9p9AojQFfm7OGPdZd1T3UX/tfuxiFNZEHENsfAJycnLhXtkBn3Vojk5N6ug0M1F5wRGIVC48fPgQderUwbFjx/DLL78gKioKBw4cQMuWLfHll1/qNduRM+exaP12DPyoK9bNnQI/TzeMnvkrkqTJattfvhGNtk3r4/epY7Hi54lwcrDDNzMWID5RrLPMB67cwbyIUxjatgG2fdMLAS4OGL4qHImp6SVu9zQpGQsiT6G2l4uOkhaKOrUKN89uQuNuU9Fl+HaYmFjg4LrByMmWvXbbl0+iEH1hO2wrq79Y0ZbIXRtxMPJP9B/+Pab/sgpCoTlmT/kGWVmaM589dRibV/+GD3oNwsxf18Pd0w+zp3wDqSRJ63kPh63F8X1b0XvIjxj78yYIheZYPGM4skvIm5WZAVfPAHwyaILW8xV1+sRfWLNyGXr16YsFi5fD09sH0yZ9D4lE/e/R7ZvXMX/OTLRp1xELFq9Ag0ZNMHvGZDx6+EAnef86eRp/rFqLz3t/gj9+mw9vL0+MnzwdYolEbftMmQzOlZ0w6IvPYWdrq5OM6vwVsRqnDmzGhwOn4OsZW2EqNMeK2UNKPCdibl1A43a98dX0rRg6cSXkOTlYMWswZJkl15ey0Lu7C3q+XxkLVtzH8IlRyJDJ8cukqjA10TzfTu/uVdCtnRN+W/0AX3xzBSs2PULvblXwwfuv/4PK2zC2tEDytWhc/2raG7U393RFvT3LkXj8HE7X7YYHi9cjePlMOLRtqtWcxV09uQo3/t6Ept2notuI7TAxtcD+NW9Yi2OjcOv8dtjpsBZHhG7CgcgdGDhiLGbMWwWhmRlmTx79mjp8BBtXLULP3gPw88K18PDyxezJo7Veh4+d+htL1mzEF598iJULZsHHywPfTZ0FsUSqtv2VqJto/V4TLJw5CUvnToejgz2+m/ozXiZq//OiwKGwdfhr3xb0GfIDvv95I0yF5lg8Y0SJNUKWmQFXT3/00vHnRoHePargg07OmP9HDIaNj0KmTI55k4JKrBN9elRBt/aVsXDVA/T96gqWb3yE3t2roKeW64RB5jWgOmyomQ0p74kTJ7Fy5Up81qcPfl+8CN7eXvhh0iRINFz/yGQyVHaujAH9+8FWD9c/h85dwYKtERjSrS02T/sG/m4uGDlvFZKSU9W2t7a0wIAurbBu0khsmzkGXd6rh2mr/sTfUdE6Tk5UPrADkcqFESNGwMjICOfPn0fPnj3h7++PatWqYcyYMfjnn38AAI8fP0a3bt1QsWJFWFtb4+OPP0ZcXJzWs22NOISubZqhc6um8HJzwbghn0MoNEXksdNq20/7Zgh6dmgFfy93eFZxxoRh/SBXKHAx6pbWsxbYePJffNCgOrrXC4KPkz1+/KAVzEwqIOz8TY3b5MrlmLjlIIa3awhXOxudZQXyRjjcOLMBNVsMg0dQa9hVDkCzj2YjIyUej28dKXHbbFkaTvw5Fk26T4fQ3FpHifMyH9izHd0/7o+6DZvB3csPw0dPgSQpAZf+Oalxu/3hW9GyXTc0b9MZru5eGDDiewiFZjhxJFLreY/t3YwOPQejZv2WcPX0xxejZkIqfomr549p3K5a7abo2nskQhrodhRw+O4daNfhfbRu1xFu7p4YPnI0hEIhjh7ar7Z9RPgu1K5THz0+7AU3dw982ncAvH38sC8iTCd5Q8P24P32bdGhbWt4uLvhmy+HQSgU4sBh9SPOAv39MHRAP7Rs/h5MTPRzM4BCocDJ/RvRpsdQVK/bCi4eAeg9YhaSxfG4flHzSLkhE1agfvMeqOzmCxePQPQa/hPECc/x5IHm+lJWPuzkjI2hT3Dmghj3H6Vj1uJ7cLA1RdP6dhq3qR5ghdMXxPjnsgQvXspw4p8kXLgqQVXfilrN+vLgSdyZshBx4SXXsAIeQ3oh48ET3Bo3B6m37+PR0s14EXoQXl/302rOohQKBa6f2YBaLYfBM6g17J0D0OLj2UhPicejm6+vxce2j0WzD3RXixUKBfbv+RM9Pu6Hug2bwcPLFyNGT4Y4KQEXS6jDe8O2oVX7rmiRX4cHjhgHU6EQxw9rtw7/Gb4Xndu1wvttWsDT3RXfDh8EM6Ep9h05rrb9pG9Hocf77eDn7QkP1yoYN3Io5HIFLl29rtWcBRQKBY7u3YyOPQcjJP9zo/+oGZCIX+LK+b80ble9dlN06z0StRrodtRhgY86O2PjzsI68fOiu7C3K7lOVAuwwpnzSfjnkjivTpxNxIUrEgT6WTFvMYZUhw01syHl3bV7Nzp06IB27drCw90do0aOhFBohoOHDqltH+Dvj8EDB6JF8+YwMTHRajZ1Nh04iR7NG6Brs3rwruKEif0+gJmpCcJPnlfbvm5VH7SqGwwvFye4OTmgT7v34OvmjCt3dPMHakOkgOD/4vX/6v/3X07lRlJSEg4cOIAvv/wSlpaWr/x3kUgEuVyObt26ISkpCSdOnMDhw4dx//59fPLJJ1rNlp2dg+j7j1CvRuFtkwKBAPWCg3A9OuaN9pGZJUNObi6sK776b9OG7Jxc3Hoaj4Z+hbdvCQRGaOjnhmuPnmvcbvnh87CtaI4P6mv/VtriUsRPkJGaABefRsp1pmZWcHStgfjHV0vc9mzEDLgFNEcV38bajqniZdwzSMSJqFaznnKdhWVF+PhXw93oKLXb5GRn48G9aFQPKdxGIBCges16uHtb/TZlJTH+KZIlCQis0UC5ztzSCp5+wbh/55pW37u0srOzEXPvDmqEFN4eIhAIUDOkDqJvq++kir59EzVq1VZZV6tOPUTfvqHVrEBe3jv3YlA7pKZynUAgQO2QGrh5u/z+hTop/glSJAnwr154m7e5hRXcfWrg0d2Sf++KykxPAQBYVNTuHx6cKwlhb2uKS9cKR2ulpefi5t1UBPlr/tJ8PToFdYKt4epsBgDw8bBAcKAVzv0r0Wre0hI1DEHCsbMq614ePg3bhiE6y5AifoKMlARU8S1Wi91qIO41tfhM+Ay4B+q2Fsfn1+HqIXWV6/LqcBDu3lbfyaaswzULtxEIBKgeUg93o7XXMZednYM7MQ9Qp2awyvvWqRmMG9F33mgfMpkMObk5sLbSzfVEQv7nRtVinxtefsG4f+fNa4QuOTvl14mrEuW6tPRc3LqbgmoBmuvEjegU1K5hU1gnPC0QXNUK5/7V7t0jBpfXAOuwoWU2pLzZ2dm4e+8eaoWEKNcJBALUCgnBrdu3tfa+/1V2Tg5uP3yK+tX8lOsEAgHqV/ND1L1Hr91eoVDg/I27ePQ8HrUDdDs1FVF5wTkQSe/u3bsHhUKBwMBAjW2OHj2KqKgoPHjwAG5ueR1jGzZsQLVq1XDhwgXUq1fvlW1kMhlkMtVbbGRZWRCamr5xNklKCnLlctjZqI6msBNZ49FTzZ1xRS3dtBOOtiLUq6H9uZUAQJyWgVy5AvYVLVTW21e0wIN49ReWlx88w+4LN/Dn6D66iPiKjJQEAIB5RXuV9WYVHZCR+lLjdvev7UXis5voMnyHVvOpIxEnAgBsRKp/DbYR2Sn/W3EpyRLI5bmvbGMtssWzpw+1krOAVJyQ/16qx9jaxh7JkgStvndppSRLIZfLISp2a4uNyBZPYh+r3UYiToJI9Gp7sVj7UwdIk1Mgl8thK1LtQLMViRD7RHfzO5VWsjTv525l46Cy3qoU54RcLkfYhjnwDKgFZze/12/wFuxs80YqJEmyVdaLpVmwE2kexbBl91NYmhtjw28hkMsVEAiMsGrrYxw5Vb7Oe6GTA2RxqplkcQkwsbGCwEwIeebrbyF+W5pqsXlFB2SkaK7FMVf3IuHZTXT/Ure1WCrOu5VXfR1Wf5tvckEdtn11m2dPXv8F8r+SJicjV22dsMHjN6wTf2zYAgc7W5VOSG1K1vC5YWVjh2SJ+s85fbMT5V3jJUmL1QlJNuxsNV//bd71FBbmxti4uFZhndjyGEdOardOGFxeA6zDhpbZkPImJyfnX6+JVNaLRCLExsZq7X3/K0lKGnLlctjbqI7KtLepiIfP4zVul5KegY7fzERWTg6MBQKM79sDDaurn+Oa6F3HDkTSO4VC8do2t27dgpubm7LzEACCgoIgEolw69YttR2Is2bNwrRpqnNPjRvWH9+PGPD2od/Qht37cPjMeSydOg5CU90P038TaZlZ+GHrIUz5sDVsLc118p4xVyJwJnyqcrlt32Wl3keq5Dn+iZyFDgNWo4KJsAzTqXfm+AGsXjpHuTx28nytv+fbOH9yL7aumKFcHj7hdz2mofLg0ulI7Fw1Vbk8aFzpf++K27V2Jl7E3sXIqRvfel/FtXnPAd8OKfwL//hZ/200Q8vG9mjzngNm/nYXD2Iz4OtpgZH9PZGYlI2DJzR3iv0/uPdvBE6FTVUud/jiv9Xis5Gz0FEHtfj08YNYtWSucnnc5Hlafb/yZPPOcBw79Td++2lyqf4QWhrnTu7FlhUzlctfTlislfcpS22aOeDboT7K5fE//bfpYlo2tkfbZo6Y8esdPIzNgK+XJUYO8ERCUhYOHi+7OmFweQ2wDhtaZkPL+//I0kyIrTNGIz1ThvM372HB1ghUcbRH3ao+r9+Y6B3DDkTSOz8/PxgZGeF2GQ91nzBhAsaMGaOyLu3uxVLtQ2RlBWOB4JUHpiRJkmEvKvl2vc3hB7Bx9z4smvwdfD1LfhpkWbK1NIexwOiVB6YkpqbDwcrilfaxiVI8Eyfjq7URynXy/E7d2t8vRvjYz+HmICrTjO5VW8HRrYZyOTcnCwCQkZoIC+tKyvWZqQmwc1b/1N3EZzeQmZaI8CU9lesU8ly8eHgRt/7Zgi+mXYVAYFxmmWvXf0/lSck5OXl/GZZKkmBrVziCSypJgoe3+pFYVtYiCATGr0zUnywRw6bYCI+3VaNeC3j6FY5Syck/xsmSRNjYOha+tzQRrp66ffjM61hZ20AgEEBSbPSgVCKGrZ36+X9EtnavPGBFKhHrZIJuG2srCASCVx6EIJZIYFvsr/L6VK1OS3j4FjknsvPO4RRpAqyLnBMp0kRU8dQ8IrzArrUzcfPyCXw5ZT1E9mU/SfuZC0m4dbdwUnOTCnmTx9uJTFRGZtjamOLewzSN+xn2uQe2hD3FsTN5I6YePE5HZUchPv2gSrn6UiWLS4DQSXU0qNDJAdnSFK2NPnQPaoUPitbiXPW1OCM1AfYaanHC0xvISE3E7t9Va/Hzhxdx458tGDCj7GpxnfpN4VukDmdn5+VVV4c9NdRh64I6XGyEolSSBJGt5vnF3paNtTWM1dYJKexeUye27Y7All3hmD/tB/h4an768duqWa8FvN7gcyNFmgRXz/Ix+ubM+STculOkTuQ/ZMLOxgRJ4iJ1QmSCew8014nhX3hi867COnH/cTqcCupEGXbIGVxeA6zDhpbZ0PIWZW1tnX+9JlFZL5FIYGunvwfEaSKysoSxQIBEqeoDUxKlqXCw0Xx7uEAggFv+53OARxU8eBaPtZHH2IGogcJI88N+yPCxA5H0zs7ODu3bt8eSJUvw1VdfvTIPokQiQdWqVREbG4vY2FjlKMSbN29CIpEgKEj9rcFCoRBCoepoiJxS/tXexKQCArw9cDHqFprXz5tfTS6X42LULXzYUfPk4JvC9mPdrr1Y+ONoVPX1LNV7vi2TCsaoWqUSzt2LRavqeR9scrkC5+7Folfjmq+096pki53ffqqybsmBs0iTZWFct+aoLCr7CblNhJYwERb+nBUKBcwrOuDZ/X9g75L3JTUrMxUvn1xDYINeavfh4tMIPb4KV1l3KvQH2Dh6oUazQWXaeQgA5haWMLdQzSyytceNqxfg6Z33RSo9PQ0xd26gTccP1O6jgokJvHwDcOPqBdRt2BxA3vl0/doFtOv0UZnmNTO3hJm5al5rkQOio87BzSuvcygjPRUP70ahWbuyfe+3ZWJiAh9ff1y7ehkNG+c9gVYul+Palct4v0t3tdsEBAbh2pXL6Nr9Q+W6K/9eRECg9uf0NDExgb+vDy5fvYYmjRoo8/57NQrdOnfU+vu/KXXnhJXIAXevn0MVz7zfu8z0VDyOuYbGbTXPL6tQKLB73U+IunAUIyatg30lV63kzciU4+mLTJV1ieIs1A62wb2HeX8gsTA3RpBfRew59ELjfoRCAeRy1XW5cgXK2/Wt5J8rcOzYTGWdQ+vGEP9zRWvvaSq0hGnxWmzlgKcxxWpx7DUEaarFvo3Q82vVWnxi5w8QOXqhZvOyrcWa6vD1qxeL1eGbaPt+D7X7KKjD169dQr1GhXX4xtWLaNepp9ptyoKJSQX4+3jh0rXreK9hPeX7Xr52HT3eb69xuy279mDTjt34ZepEBPpp98uqps+N21HnVT43HpSjzw2NdaKGSKVOVPWzQviBkutE8TtiCm4DZV7DqsOGltnQ8hZlYmICP19fXLl6BY0b582dK5fLceXKFXTp0ll7b/wfmVSogEDPKrhw8x5a1qkOIC/vhZv38HGbN5+/V6FQIDsnR1sxico1diBSubBkyRI0adIE9evXx/Tp01GjRg3k5OTg8OHDWLZsGW7evIng4GB8+umnWLhwIXJycjBixAg0b94cdevWff0bvIXeXdphxu+rEejjiWq+Xti29wgyZTJ0btkEADBt0So42ttixKd5Xzw27t6HldvDMe2bwXB2dECiOG+0gbmZEBbmZlrNWuDzZrUwafthVHN1QnU3J2w6dQUZWTnoXi+vs/WHrYdQycYSX7/fBEKTCvCrXGx+I7O8jtfi67XFyMgI1Zr0xdW//oCNvQcq2rri8pFFMLeqBPeqbZTt9q/uD4+gNghq9ClMhJawdVIdAVHB1BxCC9Er67WVuUPXTxD25zpUdnGDo5MLdm5eAZGdA+o0LOwE+PnHkajbsDnadc77stWxW28sXzgDXr5V4eMfhAN7tkOWmYnmrTtpPW+rTp9if+hKVHL2gH2lKojYtgQ2to6oWb+wM/y3qYNRs0ErtOjYGwCQmZGOly8K5x1MjHuK2Ae3YVnRBnaOzlrL263HR/htwWz4+gXAzz8QEeGhyJRlonXbDgCAhfNmwd7eAZ/3HwwA6NLtA/zw/WiE7foTdes1xKkTxxBz9w5GjPpWaxmL6tm9K+b+uggBfj4I8PfDrvBIZGZmokObvKdXz57/Gxzs7TCo3+cA8iYefxT7BACQk5ODhMRE3Lv/AOZmZqjior3jWpSRkRGadfwcR8KWw6GyO+wruWL/jsWwtq2E6nULn7q9bOYABNdrjabt8/7QsGvNDFz+ex8GfLsYQnMLJEvyRjaYW1jBxFS7NW7n3uf4vKcrnjzPxPN4GQb2ckOCOAunzxeOJps/JQinzyVhd/6X77MXxfi8ZxXEJ8iUt/p93NkF+/7SPN9RWTC2tIClr7ty2cLLFdY1A5GVJEVm7HMEzBwDsypOuNr/ewDAoxXb4DHiUwTOGovYdaFwaNkQzh91xIWuQ7WasygjIyNUb9IX/x7Lq8VWdq64eHgRLKwqwSOosBbvXdUfnkFtUK3xpzAVWsKusmrNNTE1h5mF6JX12sjbsevHCNu+HpVd3FDJyQU7Nq2ArZ0D6hapwzN/GIV6jZqjfee8PzB06t4Ly36dCW/fQPj6B2F/eH4dbqPdL7wfd+uEWb8tQ6CvNwL9fLEzYh8yMmXo2CavI/OnX5fA0d4OQ/rm1d8toeFYs2UHJn07CpUrOSIxf5SPuZmZTq4njIyM0Fr5ueEOh0pVsGfbEohsHRFSv6Wy3a9ThyCkQSu07JjXyVz8cyNBR58bBXZEPkffD13x5HkGXsTJMKC3GxKTVOvEgqlBOHUuCbv359WJvy+I8dmHrohLyMLDx+nw87bEx11csO+YduuEIeY1pDpsqJkNKe8HPXpg3oIF8PPzQ4C/P3aHhyNTlol2bdsCAH6ZNx/29vYY0L8fgLzrn8eP8+pDwfVPTEwMzM3N4eLiotWsAPBZh2aYsnI7qnq5orq3G7YcPIUMWRa6vpf3h53Jy7fC0dYGoz5+HwCwJuIYgrxc4VrJHtk5OTh99Tb2/n0JE/qqHyxA9K5jByKVC97e3rh8+TJ++uknfPvtt3j+/DkcHR1Rp04dLFu2DEZGRggPD8eoUaPQrFkzCAQCdOjQAYsXa39+njZN6kOcnIJV28KQKEmGn6cbfv1hNOzyb2GOS0hS+YvvrkPHkZ2Tg4nzVOeSGvhRVwz6pJvW8wJAhxB/iNMysPTgP0hISUOAiyOWDuoG+/xbmF9IUiAoZ8Nvgt8bhJysDJwJm4KszGRU8qiN9v1WqMyplZL0GJnp2n8oxpvq/MHnkGVmYvWS2UhPS4V/UA18P3UhTE0LM8e9eIKUZIlyudF7bZEilWDnlpWQihPh4e2H76f+Chtb7XfWtu3eHzJZBrYsn470tBT4BNbCyB+XwqRI3pdxT5BaJO/jmBtYOHWQcjl0fd6cYw1bdEXfkYVzLJa1ps1bQposwdaNayEWi+Hl7YMp0+cobzF8+TIeRgKBsn1gUHWMGfcDNm9Yg03rVsOlShWMnzQdHp5eWstYVMtmTSGVJmPdpm0Qi8Xw8fbCrOmTlbcwx798qVInEpPEGPZV4RQLO3aFY8eucNSoXg0LZs8svnvt5e4yEFmyDOxcNRUZ6SnwCqiNIeOXq5wTiXGxSEuRKJf/PrIdALB0Rj+VfX0ybCbqN1c/6qusbA17BjOhMb4b6o2KlhUQdTsZ42beQlZ24UicKk5C2FgXXt78tvoBBvZyxzeDvWFrbYIEcRYiDsdh/c4nWs1qU6c6Gh0tnBsyaN5EAEDshl24NnAChM6OMHcr7EzJePgEF7oORdD8CfAc1ReZT14gauiPSDh8Wqs5i6vZLK8Wn9qdV4udPGqjQ3/VWpycWH5qcZeen0GWmYlVv89BeloqAoJqYPy0BcXq8NNidbgNkqUS7Ny8EhJx3rQT46ct0OotzADQ6r3GkCQnY82WHUgSS+Dr5YFfpoyHnUgEAIhPSFCpE+EHDiM7JweT5/yqsp9+vXqif2/djABs170fZLIMbF4+A+lpKfANrIVRr3xuxCI1ufB8eBRzA79OHaxc3rk+b87ghi26oJ8WPzcKbN39FOZCAb4b5pNXJ24lY+yMmyp1wqWyGWysC+em/m3VfQzs447RQ7xha10BCeJs7Dn0Aut3aLdOGGReA6rDhprZkPI2b94M0mQpNm7cBLFYDG9vb8ycPl05hUz8y5cwUrn+ScKXo75SLoeG7kJo6C4EBwfjlzmztZoVANo1CIE4OQ1/7DqIRGkK/N1dsPi7QbDPv4X5RZJEJW+mLAuzN+xGfJIEQlMTeDpXwsyhvdGuQYjWsxKVR0aKN3mCBdE7IilKt1/EyoLFg6v6jlAqv2UN13eEUmkdLH19o3JEmqWbB92UJReL8vm0Tk0qyg3rnLiaUj7mIiuNeT9f0HeEUhkb3k/fEUrl1vb/9mAGfWlVvXx0RpaGi1z9E+HLq1vZr5/XtDyZOuVffUd45xmV8e3OZPjWznF8faNyxPHlTX1HKJWKDbvqO4JOxN26pO8IOuFUtY6+I+gFRyASEREREREREdFbURgJXt+IDBZ/ukRERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiN6KAnxA07uMIxCJiIiIiIiIiIhII3YgEhERERERERERkUbsQCQiIiIiIiIiIiKN2IFIREREREREREREGvEhKkRERERERERE9FYURhyj9i7jT5eIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIcyASEREREREREdFbURgZ6TsCaRFHIBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg04kNUiIiIiIiIiIjorSjAh6i8yzgCkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ohzINL/lQpZafqOUGoDz3bXd4RS+b3XKX1HKJVYQVV9RyiVGtvH6DtCqd39dJG+I5TKsB8e6TtCqUyamqvvCKW2a4phZV7T55a+I5RK1U8Mq64Jbp7Wd4RSu5xeXd8RSqVZ1n59RyiV8EkV9R2h1OTGJvqOUDpGnKeMVOXKkvQdoVTkfx/Td4TSadhV3wl0QmHEMWrvMv50iYiIiIiIiIiISCN2IBIREREREREREZFG7EAkIiIiIiIiIiIijdiBSERERERERERERBrxISpERERERERERPRWFOADmt5lHIFIREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxDkQiYiIiIiIiIjorSiMOEbtXcafLhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjPkSFiIiIiIiIiIjeigJG+o5AWsQRiERERERERERERKQROxCJiIiIiIiIiIhII3YgEhERERERERERkUacA5GIiIiIiIiIiN6Kwohj1N5l/OkSERERERERERGRRuxAJCIiIiIiIiIiIo3YgUgGa926dRCJRPqOQURERERERET0TuMciFQu9evXD+vXr8esWbMwfvx45fqwsDD06NEDCoUCn3zyCd5//32d5Pnz0ElsijyGRGky/NyrYOwXH6Kar4fatsfOX8W68EOIjUtATm4u3Co74rP3W+L99+rrJGtRPdtYoWU9S1iaC3DnkQxrwiSIS8zV2H7hOCc42r5aFg6fTcW6PVJtRsXOA39hU8QhJEmk8PVwxbcDeqOar5fatmFHTmH/ybO4H/sMABDg7Y7hvXtobK8tCoUC2zevxtGDEUhLS0Vg1WAMHvEtnKu4lbjdgchd2LNrKyTiJHh4+WDA0G/gFxCk9bxmDVrBomlHCCraIOfFY6RGbkbO0wdq29oM/B6mXoGvrJdFX0XyxoVaTppHoVAgbOtynDi8G+lpqfALrInPh41HZRd3jdtE37iM/bs34lHMLUjECRg1fh5qN2yhk7wAMKCXGzq3dUJFC2NE3U7BghX38fR5psb2AgHQ7xM3tGvmCDuRCRLE2TjwVzw27Hiik7wKhQJ7ty/FmaOhyEhLgXdgCHoN/hGVnNXXNwC4e/MijuxZh9j7tyAVv8SQsQtRs34rneTduf8YNu85kF8n3DBmYB9U8/NW2zb88AnsP3EW92OfAgACvD0wrM8HGttrg0KhwKUji3H7wg5kZaTAyaMWmnafAhsHzzfa/srxlbhwcAGqN/4cjbpM1GpWu6Z14f3tQNjUrg4zl0q42HME4vYcLXmbZvURNG88Kgb5ITP2Oe7NWoYnG3ZrNWdxCoUCO5R1OAUBVYMxaMR3r63DByNDEVGkDvcfOhq+OqjDCoUCB3YuwdljO5GZlgLPgFr4aMAkOJbwO3ckbCWuXTiC+GcPYGJqBk//EHTpPRqVXLT/mffnkTPYsP8EEqUp8HNzxrjPuqO6j/oafOxiFNZEHENsfAJycnLhXtkBn3Vojk5N6mg9Z4EdB49jc8Th/Os1V3zb/xNU8/VU2zbs6GnsO/kP7j/Ju5YI9HLH8F7dNbbXlp0HjmHznoOFdW1Ab8117cjJV+ta7x46rWuGVocNLS9geJlD9x3G1rB9SJJI4ePphtGD+iLI30dt2z2H/sKB46dx/3HedU6AjxeGfvqRxvbaYFKzKYR1W8HI0gryl8+Q8Vco5C8ea95AaA6zJu+jgm8NGJlZQp6SBNnx3ch5cEtnmYnKC45ApHLLzMwMc+bMgVgsVvvfzc3NUalSJa3nOHT2MhZu2o1BH3TAxp/Gws+9CkbNXookaYra9jYVLdC/ezusmTYaW2d/jy7NGmD68i04e1W3HzKdm1VE+8YVsTZMgslL4yHLUmD8AAeYlPBng0lLXmLET8+Vr59XJQAAzkVlaDXr4b8v4LcNOzDow85YP+dH+Hm44ZuffkOSNFlt+8s3o9G2SX0smfItVs78Hk72dvh65kLEJ6k/V7QlPHQL9keEYsiX32HW/OUQmplj5uRvkZUl07jNmZNHsX7V7/iodz/M+W0VPLx88dPkbyGVaDe7sHp9VOzYC2l/hUO8dCpyXsTCpt+3MLK0Uts+ecvvSJj9tfKVtOgHKHJzIbt+Qas5i9q3ez0OR25D32ETMGnuOpiamWHBtFHILuH4yjIz4Oblh8+Gfq+znAV696iCDzo5Y/4fMRg2PgqZMjnmTQqCqYmRxm369KiCbu0rY+GqB+j71RUs3/gIvbtXQc/3K+sk8+HwtTi+fwt6DZmEsbM2w1Rojt9nDivxGGfJMuDqEYCPB2q3Q6u4I2fOY9H67Rj4UVesmzsFfp5uGD3zV8114kY02jatj9+njsWKnyfCycEO38xYgPhE3dWJqydX4cbfm9C0+1R0G7EdJqYW2L9mMHKyNR/fAi9jo3Dr/HbYVQ7QQVLA2NICydeicf2raW/U3tzTFfX2LEfi8XM4XbcbHixej+DlM+HQtqmWk6raE7oZ+yN2YtCX3+Gn+StgZmaOnyePKbEO/33yKDas+h09e/fH7N9Ww8PLFz9PHqP1OgwAxyLW4OSBzfho4GR8M2MLhEJz/DF7aIm/czG3LqJpu974evoWDJu4Ark52fhj1hDIMtO1mvXQuStYsDUCQ7q1xeZp38DfzQUj561CUnKq2vbWlhYY0KUV1k0aiW0zx6DLe/UwbdWf+DsqWqs5Cxz++yJ+2xiKgR92wvpZE+Hr4YqvZy0q4VriDto1qYelk0Zj1fRxqGRvh69+XoT4JIlO8gIFde1PDPyoC9bNmQw/DzeM/mnh6+valO+w4qcJcLK3xTczf9VZXTO0OmxoeQ0x89HT/+D3tVvQ/5MeWD1/Bnw93TFm+lyIJeoHHvx74xbavNcIi2dMxPLZU+DkYIcx0+biZWKSTvJW8K8Fs+bdIfvnANI2zUPuy6ew/GAYjMwrqt9AYAzLnsNhZG2HjMh1SF33MzIPb4c8RbsDKwyZAkb/F6//V+xApHKrTZs2qFy5MmbNmqX2v+vqFuYt+/5C95aN0bVFQ3i7OmPCwI9hJjTFnhP/qG1fJ8gPLevVhFeVynB1ckTvji3g6+6CK9H3tZ61qA5NKiLsrxRcupWJ2Bc5WPanGCIrY9QJMte4TUqaHNLUwletqmZ4kZiDWw+ytJp1a+RhdGvdFJ1bNoGXqwu+H/wpzExNEfnXGbXtp381CB+2bwF/Tzd4VnHGxGF9IVcocDHqtlZzFqVQKLA3/E/0/KQv6jV8Dx5evhg55geIkxJx4ewpjdtFhm1H6/Zd0LJtJ7i5e2HIl9/BVGiGY4f3ajWveZN2yLx4ErLLp5H78hlS92yAIjsLZnXeU9tekZEGRWqy8mXqUw2K7CyddSAqFAocjtiKLh8PRO0GLeDm6YfBX0+HOOklLp87rnG7GnWaoOenI1CnYUud5Czqo87O2LjzCc5cEOP+o3T8vOgu7O1M0bS+ncZtqgVY4cz5JPxzSYwXL2U4cTYRF65IEOinvmO3LCkUCvy1dxM69ByMmvVaooqHP74Y+ROk4pe4euGY5sy13kOX3qMQ0qC11jMWtTXiELq2aYbOrZrCy80F44Z8DqHQFJHHTqttP+2bIejZoRX8vdzhWcUZE4b1y68TuvljjkKhwPUzG1Cr5TB4BrWGvXMAWnw8G+kp8Xh080iJ22bL0nBs+1g0+2A6hObWOsn78uBJ3JmyEHHhJWcr4DGkFzIePMGtcXOQevs+Hi3djBehB+H1dT/tBi1CoVBgX/gOfFCkDn855sfX1uG9YduUddjV3QuDvhwLU6EZ/jocqfW8J/ZvRLseQxBctxVcPALQZ8TPSBbHI+qi5tGeQycsR/3m3eHs5osqHoHoM/wniBOe48mDm1rNu+nASfRo3gBdm9WDdxUnTOz3AcxMTRB+8rza9nWr+qBV3WB4uTjBzckBfdq9B183Z1y5o36ke1nbuvcourVqgi4tGsPb1RnjB/WGmakpIo6fVdt++qgB+LBd8/xricr4YehneTXiuu6uJbZGHkbX1u+hc8uCuvYZhKYl1LWvB6Nn+5av1rXruqlrhlaHDS2vIWbetmc/urRtgU6tm8HLrQrGDusPM6EQkUdPqm0/ZfQIfNCxDfy8PODh6oLvRwyCXCHHxWvarWcFhHVaIPv6WWTfOA95Uhwyj+yAIicLJtUbqG1vUr0BjMwskLFnNXKfPYAiOQm5T2IgT3imk7xE5Q07EKncMjY2xs8//4zFixfjyRPd3M5XXHZODm4/iEX96oUjQAQCAepXD0DU3ddfECsUCpy/Ho1Hz+NRu6ruhuY72hrD1toYN+4VjmjIkCkQE5sFP3fTN9qHsTHQNMQcJy6maSsmgLxjHH3/MeoFV1WuEwgEqBdcFVF33qzTNVOWhdycXFhXtNRWzFfExz2HRJyE4JC6ynWWlhXhG1AV0bdvqN0mOzsb9+/dQY2Qwtu5BAIBaoTUxR0N25QJY2NUcPFEVkyR91AokB1zEyZuvm+0C7M6zSCLOgdka7czucDLuKeQihNRrUbhrf8WlhXh418d96KjdJKhNJydhLC3NcWlqxLlurT0XNy6m4JqAZo7A29Ep6B2DRu4OpsBAHw8LRBc1Qrn/tX+yIHE+KdIliQgILihcp25pRU8fYPxIPqq1t+/NLKzcxB9/xHq1SheJ4JwPTrmjfaRmSVDTq7u6kSK+AkyUhJQxbeRcp2pmRUc3Wog7nHJx/dM+Ay4BzZHFd/G2o75n4kahiDhmGrHzMvDp2HbMERnGeLjnkEiTkRwSD3lOgvLivANCMLd29fVbpOTX4eL1m6BQIDgkLq4q806DCAx/glSJAnwr154TphbWMHDpwYe3n3z37mM9LwRgBYVbco8Y4HsnBzcfvgU9av5KdcJBALUr+aHqHuPXru9QqHA+Rt3865/ArR/K2Xe9dpj1A8unHojr0YElv5awlI3NaKwrhXeOi8QCFCvRlVcf9PMWVnI0dH1j6HVYUPLCxhe5uzsHNyJeYi6Nasp1wkEAtStUQ03ou+90T5kujzGAmMInFyR8+hOkZUK5Dy6A2NnT7WbVPCpjpznD2HW6kNUHDoDln2/h2n9NoDR/+8INPr/xjkQqVzr0aMHQkJCMGXKFKxevbpU28pkMshkqrcEybKyIDR9sw40AJCkpCFXLoedjWoHgJ2NFR4+i9O4XWp6Bt7/chKycnJgLBDg+/4foUHwq/PJaYvIyhgAIE1Vne9QmpoLkdWb/d2gbpA5LMwEOHlJu7dISZJT846xSHWUja3ICg+fPX+jfSzZHAoHOxuVTkhtk4gTAQAika3KepHIDhKJ+tswUpKlkMtzYSNSHZFmI7LF0yev/0L2XwksrGBkbAx5qurtL/JUKUwcXn+rbIUqXqhQ2RUpu9doK+IrpJK842stsldZb21jB2n+sS9P7ER5dSVJmq2yXizJhp2t5pqzeddTWJgbY+PiWpDLFRAIjLBqy2McOZmg1bwAkCzJe4/ix9hKZI9kSfk6xpKUlPxarFon7ETWePT0zerE0k074WgrUvmyrk0ZKXnH17yi6vE1r+iAjJSXGreLuboXCc9uovuXO7Sa720JnRwgi1M9T2VxCTCxsYLATAh55utv035bEnFerbUpVodtRLYa63Cyxjpsh2darMMAkCLNO14VbVTPiYo29kiRvNnvvFwuR9iG2fAKqAVnN7/Xb/AfFVz/2Nuo3tZnb1MRD5/Ha9wuJT0DHb+Zqbz+Gd+3BxpW99dazgLKa4niNcLGGo+ear5eK2rJlt1wsLVBPR1dr0lSSsr84o32sXTTTjjaiVAvWPt1zdDqsKHlBQwvs1SZV/WPGXl532yE3tIN2+Fga6vSCaktRuaWMBIYQ5GuOg2VIj0FxnZOarcR2NhD4OaH7NuXkL57OQQiR5i1/hAQGCPrn4Naz0xU3rADkcq9OXPmoFWrVvjuu+9Ktd2sWbMwbZrqXE7jB3+KCUM/L8t4almYCbF51vdIz5Thwo07+HVTGKpUckCdIO1c7DcOMcfA7iLl8i/r3/7Lf4u6Frh6JxOSFPlb70ubNoTtx5EzF7Bk6ncQmppo7X1O/XUIy5fMUy5PmDJHa+9V3pjVbYacF7EaH7hSFs6e2I/1y35WLn/z40KtvVdZaNPMAd8OLRxVPP6n/3arUMvG9mjbzBEzfr2Dh7EZ8PWyxMgBnkhIysLB45o7mf6L86f2Yuvy6crlEROWlOn+y7MNu/fh8JnzWDp1nNbqxL1/I3AqbKpyucMXy0q9j1TJc5yNnIWOA1ajgomwDNO9G079dQgrl/yiXB4/Za4e07zepdOR+HNV4XXI4HFL33qfoWtn4nnsPXw1dcNb70sbLM2E2DpjNNIzZTh/8x4WbI1AFUd71NXhXRj/xfrwgzj890UsnTxaq9cSZUlZ16aNNYjMuqjDZcnQ8gKGl3ljaASOnv4Hi2dMLNUAD50yMoIiPRWZh7cDCgXk8U+QVdEGpnVbsgNRAwVHZ77T2IFI5V6zZs3Qvn17TJgwAf369Xvj7SZMmIAxY8aorJPdOFGq9xZZWcJYIHjlgSlJ0hTYizTfligQCOBW2REAEODpiodPX2Bd+GGtdSBevpmJmNjCEQEVjPMKt01FY5UOQJuKxnj0PPuV7YtzEBmjuq8QCzdpf0JjkXXFvGMsUR0dJ5akwF5U8u1Zm/ccwoawA1g8aTT8PFy1GRN1GzRVeUJnTnbecZRIxLC1c1Cul0iS4Oml/udsZW0DgcAY0mIjY6QSMUS29mq3KQvy9BQocnMhqKj6F21BRZtXRiW+wsQUwuD6SD8aprV8ABBSvxm8/asrl3Pyb5VOliRCVOT4JkuT4Oal/dEsr3PmfBJu3Sl8kIBJ/oNS7GxMkCQu/B2zFZng3gPN0wAM/8ITm3c9xbEzeZ3+9x+nw8lRiE8/qFLmHYg16raAp2+wcjknp/AY29g6KtenSBLh6qmbB3e8KZGVVX4tVj1fkyTJr68T4Qewcfc+LJr8HXw9S34y79twD2qFD9xqKJdzc/OOb0ZqIiysCx/4lZGaAHtn9aOlE57eQEZqInb/3lO5TiHPxfOHF3Hjny0YMOMqBAJjLf0LSkcWlwChk4PKOqGTA7KlKVobfVi3QVOVJ9Zn59cJabE6LJWI4emlfnoGa411OKnM63C1Oi3xnW/hOVFQ11Klqr9zqdJEuLzB71zo2p9w8/IJjJyyHiJ77T5oqeD6J1Gq+sCURGkqHGxec/2Tf14EeFTBg2fxWBt5TOsdiMprieI1Qpr8yh0OxW2KOIwN4Qfx+w9fa/1aoiiRlebMr7/+OYiNYfuxaPK38PXQXl0ryhDqcFGGlhcwvMw2yryqDxTJyysqcdstYXuxeVckFk77Hr6e6p/sXtYUGWlQyHNhZKFaw4wsrCBPU389rEhLhiI3F1AolOvkSXEQVLQBBMaAPFftdkTvKs6BSAZh9uzZiIiIwNmz6ifCVkcoFMLa2lrlVdq/bplUqIBALzdcuFE4V4ZcLseFG9EI9vN64/3IFQpk5eSU6r1LIzNLgbjEXOXraXwOxMm5qOZTOILFXGgEHzdT3H38+jnsmtWxgDRVjn+jM7WWuYBJhQoI8HbHhSKTlsvlcly4fgvB/prnTdoYfgBrQiOxcOLXqOrjqfWc5hYWcHZxVb5c3T0hsrXD9SuXlG3S09NwL/oWAgLV34ZhYmICb19/RF0t3EYulyPq6iX4a9imTOTmIufZQ5h6F7mdxcgIJt5VkR1b8hw1wur1YGRsgswrf2svHwBzc0s4ObspXy5u3rCxtcfNa4UPbclIT0XMnevwDQguYU+6kZEpx9MXmcrXw9gMJIqzULuGSNnGwtwYVf2scCNa/RPbAUAoFEBR5KIUgPJW5rJmZm6JSs7uypezqw+sRQ6Ivn6u8N+VnoqH96LgFVCzzN//bZiYVECAt4fKpPByuRwXo26heoDmjolNYfuxNjQSv/44GlV9PbWa0VRoCRsHD+XLtpIvzK0c8DSm8IFbWZmpeBl7DU7u6o+vi28j9Pw6HB+M2qV8OVSpDt+anfHBqF3lpvMQACT/XIF9q4Yq6xxaN4b4nytae09zCwtUdnFVvlzdvSCytUfUlYvKNnl1+Cb8Aqur3UcFDXX4+tVL8CvjOmxmbgnHyu7KV2VXH1iJHHDneuE5kZmeikcx1+Dpp/l3TqFQIHTtT4i6cBQjflwD+0ra7+QyqVABgZ5VcOFm4WeEXC7HhZv3EOzr8cb7USgUyNbi9U+BvOs1d1y4XvjE57xrieiSryX2HMKaXfuwcMJIVPV5839XWdBc126jegmZN4Xvx9qdkfj1h290cv1TwBDqcFGGlhcwvMwmJhXg7+OJS0UegCKXy3Ep6gaqBWieY3vz7kis3xGOeZPHItBX+3OkFobLhTzuCSq4F/1DvxEquPsj9/lDtZvkPn0AgcgRKPLUXYGtI+SpUnYe0v8ljkAkgxAcHIxPP/0UixYt0vl793m/Jab9sQlVvd1QzccDW/cfR0ZmFro0z3ta15SlG+FoZ4ORvboCANaGH0KQtzuqVHJAdk4Ozly5iX2nL2D8gI91mvvAmVR0b2WFF4k5eJmUgw/bWkOSkotLNzOUbSYMtMfFm5k4fLZwhJSREdC8jgVOXU6HXEd3L/fu3BYzlqxFVW8PBPl6Yfu+I8iUZaFTiyYAgGm/r4GjnQgj+nwAANgQdgAr/9yDaV8NhHMleyRK8v7yaW4mhIWZmU4yGxkZoVO3jxG6fT0qV3FFJSdnbN+0CrZ29qjXqPDJxtMmfo36jZqhY5e8EUWdu3+CJb/+DB+/QPj6V8Xe8B2QZWagZZv3tZo348whWPUchOxnD5Hz5D7MG7eDkakQmZfynupn1XMQ5MkSpB3eqbKdeZ1mkN26DEWGdh+mU5yRkRHadumNiB2r4eTiBodKVbB7yzLY2jmidoMWynZzJw1H7YYt0KbTJwCAzIx0xD+PVf73l/FP8fh+NCytbGDvqN0ROzsin6Pvh6548jwDL+JkGNDbDYlJWTh9vnCk04KpQTh1Lgm79+fNb/X3BTE++9AVcQlZePg4HX7elvi4iwv2HdM8x1hZMTIyQstOn+FA6ApUquwO+0pVELl9CWxsHVGzXitlu9+mDULN+q3RomNvAHnH+OWLx8r/nhj/FLEPbsOyog3sHJ21lrd3l3aY8ftqBPp4opqvF7btPYJMmQydW+bXiUWr4GhvixGf5v2ubdy9Dyu3h2PaN4Ph7OiARHGROmGu/TphZGSE6k364t9jf8DG3gNWdq64eHgRLKwqwSOojbLd3lX94RnUBtUafwpToSXsKquOsDUxNYeZheiV9WXN2NIClr6Fo0AsvFxhXTMQWUlSZMY+R8DMMTCr4oSr/b8HADxasQ0eIz5F4KyxiF0XCoeWDeH8UUdc6DpUqzmLMjIywvvdPsLu7evhXMVNYx2eMfFr1GvUDB3y63Cn7r2w9Nef4OMXCB//qtgX/idkmRlo0aaT1vM27/g5DoetgGNlD9hVqoL9O36HtW0lBNctfKr50pkDEVyvNd5r3wcAELpmJi79vQ8Dv10Eobmlcv5SM4uKMDXV3rn8WYdmmLJyO6p6uaK6txu2HDyFDFkWur6X99Caycu3wtHWBqM+zvv8WhNxDEFernCtZI/snBycvnobe/++hAl9P9BaxqJ6d2qN6cvWo6q3O4J8PbFt37G8GtE876E1U5esg6OdCF/27g4A2BB+ECt2RGL6qP5wcdTPtUTe9c8aBPp4qK9ri1fnXf8U1LWw/Xl17Wv91DVDq8OGltcQM/fq2hE/LVqBQB8vVPXzxp+RB5GRKUOn1s0AADN++wOOdrYY9nneddqmXZFYvTUUU8aMgHMlBySKJfl5zXSSV3bpOMw79EFuXCxyXzyGae3mMDIxRfaNvD+mmnX4FIpUKWSnIwEAWVfPwDTkPZi17IGsf09BYOsI0/ptkfWv+qdME73r2IFIBmP69OnYvn27zt+3XaPakCSnYvnOfUiUJMPfwxWLxg+Hff4Exy8SxTAqMlooU5aFOWt2ID5JAqGpCTxcKmH6iL5o16i2TnNHnkyF0NQIA3uIYGEmwJ1HMsxZm4jsIgMBnOwrwMpCdSBydV8hHGwr4ISWH55SVNvG9SBJTsHKP/cgUZIMP09X/DrxK9jn33b0IiEJRkXm09h1+ASyc3IwccFylf0M/LAzBn/cVWe5u/Xsg8zMDCxf/AvS01IRGBSMH6bPg6lp4cjPuBfPkJJceGtHk2atkSyVYPum1ZCIk+Dp7Ysfps+DyNZO3VuUGdn18zCytIJl6+4QVLRBzvPHkK5fAEX+LRsCkb3K7RkAYOxQGSae/khb+4u6XWrd+z2+QFZmJtYt/RnpaSnwrxqCMZMXwaTI8Y1/8QSpyRLl8sN7NzFn0jDl8rY1vwIAmrTsjEFfT9Vq3q27n8JcKMB3w3xQ0bICom4lY+yMm8jKLjyuLpXNYGNdOC/Rb6vuY2Afd4we4g1b6wpIEGdjz6EXWL9DN0+eb9utP7IyM7Bl+XRkpKfAJ7AWvvxhmcoxToh7grSUwqdCP75/A79NHahcDl2fd340aN4VfUfO1FrWNk3qQ5ycglXbwvLrhBt+/WE07PJv64pLSFIZubnr0PG8OjFPdS7CgR91xaBPumktZ1E1mw1CTlYGTu2egqzMZDh51EaH/itU5jdMTnyMzHTtP3X7dWzqVEejoxuVy0HzJgIAYjfswrWBEyB0doS5W2EHccbDJ7jQdSiC5k+A56i+yHzyAlFDf0TC4dM6zd2156eQZWZixeK5SE9LRUBQMCZMn1+sDj9FSpE60Ti/Dv+5aZWyDk+YPl/rdRgAWnUZgCxZBv5cNRUZ6SnwCqiNoeP/KPY7F6vyO3fmSN61z5IZ/VX21XvYTNRv3l1rWds1CIE4OQ1/7DqIRGkK/N1dsPi7QbDPv4X5RZLkleuf2Rt2K69/PJ0rYebQ3mjXIERrGYtq27guJMmpWLEjUnm9tnD8KOW1RFxCEgQq1xInkZ2Tgwm/rlTZz6CenTD4o846yZxX11Kxant4kbr2TZG6lqiauaCuzS9e17pg0Mfar2uGVocNLa8hZm7dtCEkySlYtS0USWIpfL3cMX/y2MK8L1XP4bADR5Gdk4Mf56oOCun/SQ8M7KX9Pzbk3PkXmRaWEDbuCCMLa8hfPkX6ruVQ5D/dXmBlC3mR62FFqgTpu/6AsEV3WPYdB0WqFFn/nkDWhaNaz0pUHhkpit87RfQOS75keJPdDt+p/jas8ur3XiXfElvexFro7snNZcF5/ff6jlBqdz/V/cjhtzHhhyh9RyiVSVPr6DtCqdU2uvD6RuXImruN9R2hVKp+Ylh1rcpN3XY6loVnKSJ9RyiVZln79R2hVHKEFV/fqJyRG5f/h1ao4IMOqJhc43L6IBMNhAe26DtCqViPWajvCDpxL0Z7D10sT3x93nw6s3cJ50AkIiIiIiIiIiIijdiBSERERERERERERBqxA5GIiIiIiIiIiIg04kNUiIiIiIiIiIjorSg4Ru2dxp8uERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCM+RIWIiIiIiIiIiN6KAkb6jkBaxBGIREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRpwDkYiIiIiIiIiI3grnQHy3cQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCM+RIWIiIiIiIiIiN4KH6LybuMIRCIiIiIiIiIiItKIHYhERERERERERESkETsQiYiIiIiIiIiISCPOgUhERERERERERG+FcyC+24wUCoVC3yGIdOVWzFN9Ryg1C0WqviOUyrNsZ31HKBXzCjJ9RygVE6McfUcoNdfkG/qOUCo3zevrO0KpCI2z9R2h1ETGEn1HKBVJrkjfEUpFYCTXd4RSeRrUVN8RSs391kl9RyiV1GxzfUcoFSfTl/qOQPR/J11hqe8IpWJslKvvCKVS1aeKviPohCF+3/4v/l9+nsXxFmYiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjPkSFiIiIiIiIiIjeikLBh6i8yzgCkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ohzIBIRERERERER0VtRgHMgvss4ApGIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkER+iQkREREREREREb4UPUXm3cQQiERERERERERERacQORCIiIiIiIiIiItKIHYhERERERERERESkEedAJCIiIiIiIiKit8I5EN9tHIFIRERERERERESkJUuWLIGnpyfMzMzQoEEDnD9/vsT2O3bsQGBgIMzMzBAcHIx9+/ap/HeFQoHJkyfD2dkZ5ubmaNOmDe7evavNfwI7EImIiIiIiIiIiLRh+/btGDNmDKZMmYLLly+jZs2aaN++PeLj49W2//vvv9G7d28MHDgQ//77L7p3747u3bvj+vXryjZz587FokWL8Mcff+DcuXOwtLRE+/btkZmZqbV/h5FCoVBobe9E5cytmKf6jlBqFopUfUcolWfZzvqOUCrmFWT6jlAqJkY5+o5Qaq7JN/QdoVRumtfXd4RSERpn6ztCqYmMJfqOUCqSXJG+I5SKwEiu7wil8jSoqb4jlJr7rZP6jlAqqdnm+o5QKk6mL/Udgej/TrrCUt8RSsXYKFffEUqlqk8VfUfQiah7cfqOoBP+biLIZKrfI4VCIYRCodr2DRo0QL169fD7778DAORyOdzc3DBq1CiMHz/+lfaffPIJ0tLSEBkZqVzXsGFDhISE4I8//oBCoYCLiwu+/fZbfPfddwAAqVQKJycnrFu3Dr169Sqrf6oKjkAkg7Bu3TqIRCJ9xyAiIiIiIiKi/2OzZs2CjY2NymvWrFlq22ZlZeHSpUto06aNcp1AIECbNm1w9uxZtducPXtWpT0AtG/fXtn+wYMHePHihUobGxsbNGjQQOM+ywIfokJ6169fP6xfvx6zZs1S6X0PCwtDjx49UB4Gye6LCMPu0O2QiJPg6eWDwcNHwT+gqsb2Z04dx5aNaxEf9wLOLq7oO2Aw6tZrqLvAAPZE7sWO0N1IEovh7eWFL4cNQWCAv9q2Dx89xoZNm3H3Xgzi4uMxbPBAfNC9m07zKhQK7N66HCcOhyE9LRV+gTXQd9h4VHZx17hN9I3L2Ld7Ix7F3IZEnIBR439BnYYtdJp5x+bVOHowAmlpKQioGoxBI76DcxW3Erc7GBmKiF1bIREnwcPLB/2HjoZvQJDW8+6P3I2w0G3557EvBg37Cn4lnMd/nzqOrZtWK8/jz/sPRR0dnsc7Dp3ApogjSJQmw8+9Cr7r9zGq+XqqbRt29Az2njqH+0+eAQACvdwx4pOuGttrg6Gewzs3r8KxQ3vyz+EaGDBiLJxdSj6HD+0NRcSuzZCKk+Du5Yt+Q8fA11/753BERAR2hoZCnF/Xhg8fjoCAALVtHz16hI0bN+LuvXuIj4/HkCFD0KN7d61nLMrQjm9BZkOoa3ZN68L724GwqV0dZi6VcLHnCMTtOVryNs3qI2jeeFQM8kNm7HPcm7UMTzbs1lpGdfZH7sKe/Drs4eWDgcO+hl8Jx+nvU39h26bVeBn3As4uVfBZ/2GoXa+RzvIaWl0ztBoBGF5m5tU+Q8u8P3I3wpXXlwV1raTry7+wddMalbqmy+tLQ/xeZ0gUiv+Ph6hMmDABY8aMUVmnafRhQkICcnNz4eTkpLLeyckJt2/fVrvNixcv1LZ/8eKF8r8XrNPURhs4ApHKBTMzM8yZMwdisVjfUV5x+sRfWLNyGXr16YsFi5fD09sH0yZ9D4lEfdbbN69j/pyZaNOuIxYsXoEGjZpg9ozJePTwgc4yHz95CstXrsZnfXph6aJf4e3liYmTpkAskahtL5PJULlyZQzo1xd2trY6y1nUvt0bcDhyO74YNgGT566F0Mwc86eNQlaW5luMZZkZcPfyx+dDx+kwaaE9oZuxP2InBn35HX6avwJmZub4efKYEjP/ffIoNqz6HT1798fs31bDw8sXP08eA6mG86msnD55DGtXLsXHffph3qKV8PTywfRJY0s8jxfMnY7W7Tph/qJVqN+oKebM/BGPHt7Xas4Ch89ewsKNuzCo5/vY8PN4+Hm44qvZvyNJmqK2/aVbd9C+cV0s+/FrrJ72HZzsbTFq1u+IT5LoJC9gmOdwROgmHIjcgYEjxmLGvFUQmplh9uTRJWY+e+oINq5ahJ69B+DnhWvh4eWL2ZNHQypJ0mrWEydOYMXKlfi0Tx8sXrwYXt7e+HHSJEg01LVMmQyVnZ3Rv39/2OqprhnS8S1gKHXN2NICydeicf2raW/U3tzTFfX2LEfi8XM4XbcbHixej+DlM+HQVne3T585eRTrVy7BR336Ye6iVfD08sXMSd9pPE63b0ZhYX4d/mXRKtRr9B7mzvwBj3VUhwHDqmuGWCMMLTPzap+hZT5z8hjWrVyCj/t8gV8WrYSHlw9mlFjXruPXuTPQut37mLdoJerruK4Z4vc6Kp+EQiGsra1VXpo6EN8l7ECkcqFNmzaoXLmyxmG/BcLCwuDn5wczMzO0b98esbGxWs8WvnsH2nV4H63bdYSbuyeGjxwNoVCIo4f2q20fEb4LtevUR48Pe8HN3QOf9h0Abx8/7IsI03rWAqG7w9GxQzu0b9sGHu7u+HrkCAjNhDh46Ija9gH+fhgysD9aNm8GExMTneUsoFAocChiK7p+PAC1GzSHm6cfBn89DeKkBFw+d0LjdjXqNEHPT4ejTsOWOkybR6FQYF/4DnzwSV/Ua/gePLx88eWYHyFOSsSFs6c0brc3bBtat++Clm07wdXdC4O+HAtToRn+OhypcZuyELF7B9p26ITWbfPO46Ejx0BoZoZjh/apbR+5JxS16tRH95694OrugT6fD4SXjx/2R+pmtM6WvUfRvVVjdGnRCN6uzhg/sBfMTE0RcVz9kPwZI/vjw3bN4O/pBs8qlfHDkE+hUChw4Xq0TvIa6jm8f8+f6PFxP9Rt2AweXr4YMXoyxEkJuPiP5vnd9oZtQ6v2XdGiTWe4unth4IhxMBUKcVzL5/Du3bvRsUMHtGvXDh7u7hg1ciSEQiEOHTqktn2Avz8GDRyIFs2b662uGdLxLchsKHXt5cGTuDNlIeLC1X+uFecxpBcyHjzBrXFzkHr7Ph4t3YwXoQfh9XU/rWUsLmL3n2jToTNatX0fbu6eGDLy2/w6vFdt+317diKkTn1069kbru6e6P35IHj5+GN/5C6d5DW0umZoNQIwvMzMq32Glrl4XRuaX9eOari+3LtnZ/71ZUFdG5hf13RzfWmI3+vI8Dk4OMDY2BhxcarzQ8bFxaFy5cpqt6lcuXKJ7Qv+tzT7LAvsQKRywdjYGD///DMWL16MJ0+eqG2Tnp6On376CRs2bMCZM2cgkUi0NjlogezsbMTcu4MaIXWU6wQCAWqG1EH07Ztqt4m+fRM1atVWWVerTj1E39bNgySys7Nx99491AoJUa4TCASoFVITtzQMkda3l3FPIRUnIqhG4cMrLCwrwse/GmKir+kxmWbxcc8gESciOKSecp2FZUX4BgTh7u3rarfJyc7G/Xt3EBxSV7lOIBAgOKQu7mrx/Mg7j6NfOY9rlHAe37l9Q6U9ANSqXV9j+7KUnZOD2w9iUa96oHKdQCBAveqBiLr7Zn+hzpRlIScnF9YVLbQVU4Uhn8PVi5yPeZlLPocf3ItG9Zqq53D1kHq4G61+m7JQUNdCitW1kJCQclvXDOn4Fs9sCHWttEQNQ5BwTPUPEC8Pn4ZtwxCdvH92/nGq8cpxqqPx+kBdHQ6pXR93dHRcDamuGWKNMLTMzKt9hpZZ0/ekGiF1NNYp9XVNN9+TDPF7Hb0bTE1NUadOHRw9WjjVilwux9GjR9GokfppSRo1aqTSHgAOHz6sbO/l5YXKlSurtElOTsa5c+c07rMssAORyo0ePXogJCQEU6ZMUfvfs7Oz8fvvv6NRo0aoU6cO1q9fj7///hvnz59X214mkyE5OVnllSUr3RN3U5KlkMvlEBW7JcBGZAtxkvrbySTiJIhEatrr6Pbs5ORkyOVy2BZ76IytSIQksUQnGUpLKkkEANiI7FXWW9vYQypO1Eek15KI837+Nmp+1hINtxomJ0shl+fCRmRXbBs7SLT471Sex8XeVySyVf47iss7j4vn1Ny+LEmSU5Erl8POxkplvZ2NFRIlyW+0j9+3hMHB1gb1i3RCapMhnsNS5Tms7nzUdA5L8s5h2zffpiwo61qxWmwrEmmsxfpmSMe3gCHVtdISOjlAFpegsk4WlwATGysIzLR/y1GK8jipHltRCT9bfdZhwLDqmiHWCEPLzLzaZ2iZC+qauu89JdW1V+ugbuqaIX6vM0RyGP1fvEprzJgxWLlyJdavX49bt25h+PDhSEtLQ//+/QEAffv2xYQJE5Ttv/76axw4cADz58/H7du3MXXqVFy8eBEjR44EABgZGeGbb77BzJkzsWfPHkRFRaFv375wcXFBdy3Og8qHqFC5MmfOHLRq1Ur5KPKiKlSogHr1CkdFBAYGQiQS4datW6hfv/4r7WfNmoVp01TnRhoxajRGfv1t2QenUvn7xH6sX1Z4u/roH3/VY5o3c+qvQ1i55Bfl8vgpc/WYhkqyPvwQDp+9hGWTvoHQVDu38xjiOXz6+EGsWlJ43o6bPE+Pad49hnh8WdeoKEOsa0RERIbgk08+wcuXLzF58mS8ePECISEhOHDggPIhKI8fP4ZAUDi+r3HjxtiyZQt+/PFHTJw4EX5+fggLC0P16tWVbcaNG4e0tDQMGTIEEokETZs2xYEDB2BmZqa1fwc7EKlcadasGdq3b48JEyagX79+b7UvdU9GevAkQUNr9aysbSAQCCAp9lcmqUQMWzs7tduIbO1emYhXKhHrbGJja2trCASCVx6YIpZIYGcr0kmG16lVvxl8/AuLX052FoC80Q4iOwfl+mRpIty91D85WtfqNmiq8qTMbGVmMWyLZJZKxPD08lW7D2trGwgExq88DEEqSYLI1l7tNmVBeR4Xe1+JRAyRbUnncfGcmtuXJZF1RRgLBK88MCVJmgJ7kXWJ226KPIL1ew7h94mj4OdRRWsZDfEcrlO/KXz9qymXC8/hpGLncBI8vf3U7sPaWpR3DovVncPaOzeUda1YLRZLJBprsa4Z4vE15LpWWrK4BAidHFTWCZ0ckC1NgTyzdHcn/BdWyuOkeg5LSvjZ6roOG2JdK2AINaI4Q8vMvNpnaJkL6pq67z0l1bVX66Buri8N8XsdvVtGjhypHEFY3PHjx19Z99FHH+Gjjz7SuD8jIyNMnz4d06dPL6uIr8VbmKncmT17NiIiInD2rOpcRTk5Obh48aJyOTo6GhKJBFWrVlW7H3VPRjIt5ZORTExM4OPrj2tXLyvXyeVyXLtyGQGBQWq3CQgMwrUrl1XWXfn3IgICq6ltX9ZMTEzg5+uLK1euKtfJ5XJcuXINVQN1czvn65ibW8LJ2U35cnHzho2tPW5eu6Bsk5Geipg7N+ATUEOPSQuZW1igsour8uXq7gWRrT2irhSek+npabgXfRN+gdXV7qOCiQm8ff0RdfWScp1cLsf1q5fgp8XzI+88DlA5L/PO40saz2P/wGqIuqp6Hl/996LG9mXJpEIFBHq5qTwARS6X4+KNaAT7eWvcbsOew1i9az9+G/8lgnw8tJrRMM9hS7Xn8PWrqudwzJ2Sz2Ev3wBcv6Z6Dt+4ehF+Aeq3KQvKuna1eF27Un7qmgEeX0Oua6Ul+ecK7Fs1VFnn0LoxxP9c0cn7mxQcpyuqxynqymWN1wfq6/AF+GvpuBpiXStgCDWiOEPLzLzaZ2iZC74nFa9r165c1lin/AOr4VqRzwsAuKaj70mG+L2OqLxhByKVO8HBwfj000+xaNEilfUmJiYYNWoUzp07h0uXLqFfv35o2LCh2tuXy1K3Hh/h8IG9OHbkIGIfP8IfSxYiU5aJ1m07AAAWzpuFjWtXKtt36fYB/r10AWG7/sST2MfYumkdYu7ewftdums1Z1E9e3TDvoOHcOjIUTx+HItFS5YhMzMT7du2BgDMnf8rVq9br2yfnZ2NmJj7iIm5j+ycHCQkJiEm5j6ePnumk7xGRkZo16U3Inaswb/nTyD24T2sWDgVtnYOqN2gubLdnEnDcWTvn8rlzIx0PLofjUf38zqaEuKf4dH9aCS+fKGTzO93+wi7t6/HxXOn8fhhDJYsmAlbO3vUa/Sest2MiV/jQESocrlT9144djACJ47ux5PYh1i1dB5kmRlo0aaTVvN26fERjhyMxF9HDuDJ40dYvuRXyDIz0aptRwDAb/N/xqZ1K5TtO3ftiX8vnUf4ru14EvsI2zavRcy9aHTs3EOrOQv06dQa4X+dQeSJf/Dg6QvMWbMNGTIZOjfP6wCYsnQ9lmwNV7Zfv+cQlu+IxKShn8HZ0Q4JEikSJFKkZ2bqJK+hnsMdu36MsO3rcfHcKTx+GINlC6bD1s4BdRs2U7ab+cMoHIzcqVzu1L0X/jq4ByeO7sPT2IdYs/QXyDIz0bxNZ63m7dGjBw4cOIDDR47g8ePH+H3JEshkMrRt2xYAMG/ePKxdu1bZPq+uxSAmJgY5OTlITExETEwMnumwrhnS8S3IbCh1zdjSAtY1A2FdM+9LtYWXK6xrBsLMzRkAEDBzDGqunaNs/2jFNlh4uSFw1lhYBnjDY1gfOH/UEQ9+W6e1jMV16fExjhyMxPEj+/Hk8UOsXDIfsswMtGz7PgBg0fyfsHndcmX797t+iCuXzmHPrm14GvsI2zevwf170ejY+QOd5DW0umZoNcIQMzMvMxeXV9f25l9fPsSKJQsgy8xQXl8umv+TyvVlp64f4sql89iTf325XcfXl4b4vY6oPOEtzFQuTZ8+Hdu3b1dZZ2Fhge+//x59+vTB06dP8d5772H16tVaz9K0eUtIkyXYunEtxGIxvLx9MGX6HOVQ+5cv42FUZL6CwKDqGDPuB2zesAab1q2GS5UqGD9pOjw8vbSetUCLZu9BKpViw6YtEIvF8Pb2xk/TpyqH28e/fAkjo8LJXxOTkjD8q2+Uyzt37cbOXbtRI7g65s3+WSeZ3+/RF7LMDKxd+jPS01LhX7Umvp28CKamhaNG4188RUqyRLn84N4tzJk0TLm8dU3efE1NWnbC4K+naj1z156fQpaZiRWL5yI9LRUBQcGYMH2+Sua4YpkbN2uNZKkEf25aBYk4CZ7evpgwfb7Wb91o2qwVkqUSbN20FhJxEry8fTFp+lzl+ya8jIOgyDkRGFQdo8dOwpaNq7F5/So4V6mC73+cCQ9PzSMAy1LbRnUgTk7Bip2RSJSkwN+jCn4b/6XyFua4BLFK3l2HTyE7JwfjF65S2c+gnu9jyIfa7ZwtYIjncJeen0GWmYlVv8/JP4drYPy0BSWew43ea4NkqQQ7N6+ERJwED28/jJ+2QOvncPPmzSFNTsamjRuRJBbDx9sbM6ZPV61rRWpxUlISRo4apVwODQ1FaGgogoODMXfOnFf2rw2GdHwLGEpds6lTHY2OblQuB82bCACI3bAL1wZOgNDZEeb5nYkAkPHwCS50HYqg+RPgOaovMp+8QNTQH5Fw+LTWMhbXJP84bdu0Rnmcfpg+r4Q6HIyvx07Gto2rsGX9SjhXccW4H3+Cu47qMGBYdc0Qa4ShZWZe7TO0zE2atYK0SF3z8vbFj9N/KVLX4mFkpPo96Zuxk7B142ps1kNdM8TvdYZG8R8eMEKGw0ihUCj0HYJIV27FPNV3hFKzUKTqO0KpPMt2fn2jcsS8gvbnvipLJkY5+o5Qaq7JN/QdoVRummt3VHNZExpn6ztCqYmMJfqOUCqSXJG+I5SKwEiu7wil8jSoqb4jlJr7rZP6jlAqqdnm+o5QKk6mL/Udgej/TrrCUt8RSsXYKFffEUqlqo/25uYuT/69W7pnDhiqWn4Or2/0DuItzERERERERERERKQROxCJiIiIiIiIiIhII86BSEREREREREREb0Wh4ByI7zKOQCQiIiIiIiIiIiKN2IFIREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxIeoEBERERERERHRW1GAD1F5l3EEIhEREREREREREWnEDkQiIiIiIiIiIiLSiB2IREREREREREREpBHnQCQiIiIiIiIioreiUHAOxHcZRyASERERERERERGRRuxAJCIiIiIiIiIiIo3YgUhEREREREREREQasQORiIiIiIiIiIiINOJDVIiIiIiIiIiI6K0owIeovMs4ApGIiIiIiIiIiIg0YgciERERERERERERacQORCIiIiIiIiIiItKIcyASEREREREREdFbUSg4B+K7jCMQiYiIiIiIiIiISCOOQKT/KybI0neEUjPNydB3hFKxNknTd4RSORXjrO8IpdLM55m+I5RaakUnfUcoFSGy9R2hVMQyS31HKLUUgbm+I5RKgHG0viOUyuX06vqOUCrut07qO0KpPa7aTN8RSsXl5hl9RyiVR+ku+o5QakYGNujGyEih7whUztTIuaDvCKUSVaGuviOUSlV9ByAqAxyBSERERERERERERBqxA5GIiIiIiIiIiIg04i3MRERERERERET0VuT6DkBaxRGIREREREREREREpBE7EImIiIiIiIiIiEgjdiASERERERERERGRRpwDkYiIiIiIiIiI3opCYaTvCKRFHIFIREREREREREREGrEDkYiIiIiIiIiIiDRiByIRERERERERERFpxA5EIiIiIiIiIiIi0ogPUSEiIiIiIiIioreiAB+i8i7jCEQiIiIiIiIiIiLSiB2IREREREREREREpBE7EImIiIiIiIiIiEgjzoFIRERERERERERvRaHgHIjvMo5AJCIiIiIiIiIiIo3YgUhEREREREREREQasQORiIiIiIiIiIiINGIHIhEREREREREREWnEh6gQEREREREREdFbUYAPUXmXsQOR9Kpfv35Yv349hg4dij/++EPlv3355ZdYunQpvvjiC6xbt04/AfNFRuxBaOhOiMVieHl5Y9jwEQgICFDb9tGjh9i0cSPu3buL+Ph4DB4yFN2799BxYmD33oPYFhaBJLEEvp4e+GpIf1T191Xb9sHjWKzd8ieiYx4gLv4lvhzYFx917aTTvPsjdyMsdBsk4iR4evli0LCv4BdQVWP7v08dx9ZNqxEf9wLOLq74vP9Q1KnXUHeBASgUCpzdtwhRZ3dAlpEMF6/aaP3xVNhW8tS4zdVTW3DtzFYkJz4FANg7+6FBhxHwCmqu9bz7IncjLHR7/jH2waBhX8G/hGN85tRxbN20RnmM+/YfotNjHLZ3P7bv2oMksQQ+Xh4YNXQgqvr7qW374FEs1m3ehjsx9xEX/xIjBvXDh9066ywrkHc+7Ny8CscO7UFaWgoCqtbAgBFj4eziVuJ2h/aGImLXZkjFSXD38kW/oWPg6x+ks8yR25fizJFdyEhPgXdACHoP+QGVnD00bnP35iUcDl+H2Pu3IBW/xJBxvyKkfiud5d2zbRlOHd6NjPQU+ATWxKdDJsLJRXPeOzcu4VD4BjyKuQmpOAHDv1+AWg1a6iRvYR2WwsfTHV+XUIcjDh3Fwb9O4sGjJwCAAB8vDP68l8b22qJQKHBg5xKcPbYTmWkp8AyohY8GTIJjCefEkbCVuHbhCOKfPYCJqRk8/UPQpfdoVHLx0nre/ZG7sCf/s8PDywcDh30NvwDNvz9/n/oL2zatxsu4F3B2qYLP+g9D7XqNtJ7TrmldeH87EDa1q8PMpRIu9hyBuD1HS96mWX0EzRuPikF+yIx9jnuzluHJht1az1qUQqHAjs2rcOxghLKuDRzxHZyrlFzXDkaGImLXFmVd6z90NHxL+LmUdeaI7ctwOr+u+QSEoPeQiXB6TV07FL4ej/Pr2rBxC3Ra1yK2LcOpInn7vFFdK8w7fNwChDRgHX5XMhta3p0H/sKmiENIkkjh6+GKbwf0RjVf9fU/7Mgp7D95FvdjnwEAArzdMbx3D43ttSHv+P6BU4d3Iz09Bb7K4+uucZs7Ny7hYPgGPIq5Bak4ASO+n6/Tc5iovOAtzKR3bm5u2LZtGzIyMpTrMjMzsWXLFri7ay7kunLyxAmsXLkSffp8hkWLf4eXtzcmTfoBEolEbXuZTIbKzpXRr/8A2Nra6jZsvmOn/sbSNRvQ75OeWLlgNny8PDB26s8QS6Rq28tkMjg7OWHI571hZyvSbVgAp08ew9qVS/Fxn36Yt2glPL18MH3SWEgkYrXtb9+8jgVzp6N1u06Yv2gV6jdqijkzf8Sjh/d1mvvikZW4cnIj2nw8Fb3H/AkTU3PsWjYQOdkyjdtUFFVG0y7foc/YXegzNhRu/g2xZ+WXSHh+V6tZ847xMnzS5wvMX7Qi/xiPe80xnoHW7d7H/EUr0aBRU8yeOQmPHj7Qas4Cf506g2Wr1qNv74+wfOFc+Hh54vvJM0s+hys7YfAXn+rlHAaAiNBNOBC5AwNHjMWMeasgNDPD7MmjkZWl+Xw4e+oINq5ahJ69B+DnhWvh4eWL2ZNHQypJ0knmw2FrcXzfVvQe8iPG/rwJQqE5Fs8YjuwSMmdlZsDVMwCfDJqgk4xFHdy9Dsf2bsVnwyZiwuwNEArN8duML0vMK5NlwNXTH30G6zbvsVN/Y8majfjikw+xcsEs+Hh54LupszSew1eibqL1e02wcOYkLJ07HY4O9vhu6s94maibc0GZO2INTh7YjI8GTsY3M7ZAKDTHH7OHlniMY25dRNN2vfH19C0YNnEFcnOy8cesIZBlpms165mTR7F+5RJ81Kcf5i5aBU8vX8yc9B2kGutaFBbmf3b8smgV6jV6D3Nn/oDHOvjsMLa0QPK1aFz/atobtTf3dEW9PcuRePwcTtfthgeL1yN4+Uw4tG2q5aSq9oRuxoGInRj05VjMnL8SQjMzzJo8psS69vfJI9i4ajE+7D0As35bAw8vX8yaPEbjz6WsHQpbh7/2bUGfIT/g+583wlRojsUzRpRcJzLz6kQvfdS1sHU4tm8LPh36A8bP2gihmTkWvSZvVn5d663jugYYVh0uYGiZDSnv4b8v4LcNOzDow85YP+dH+Hm44ZuffkOSNFlt+8s3o9G2SX0smfItVs78Hk72dvh65kLEJ+mmPgDAgd3rcTT/+E6cvR6mQnMsfO3xzcw/vuN1lpOoPGIHIuld7dq14ebmhl27dinX7dq1C+7u7qhVq5ZynUwmw1dffYVKlSrBzMwMTZs2xYULF7Seb/fuXejQoQPatmsHd3cPjBw5CmZCIQ4dOqi2vb9/AAYOHIzmzVvAxMRE6/nU2RG+F53atUbHNi3h6e6KMcMHwUxoin1H/lLbPtDPF8P7f4bWzZroJXPE7h1o26ETWrftCDd3TwwdOQZCMzMcO7RPbfvIPaGoVac+uvfsBVd3D/T5fCC8fPywP1J3IzMUCgUun9iA+u2Gw6dGGzhWCUSHz+ciTRqPmGtHNG7nE9wKXtWaw7aSJ2wreaFJ59EwEVrgxcMrWs27p9gxHpZ/jI8e2q+2fcEx7tGzF9zcPdDn8wHw9vHDPh0d4x1hEXi/fRt0bNMKnu5uGD1iCIRCIfYfPqa2faC/L4YN6ItWzZrq5RxWKBTYv+dP9Pi4H+o2bAYPL1+MGD0Z4qQEXPznpMbt9oZtQ6v2XdGiTWe4unth4IhxMBUKcfxwpE4yH9u7GR16DkbN+i3h6umPL0bNhFT8ElfPqz/OAFCtdlN07T0SIQ1aaz1jUQqFAkcit6DTh4MRkp+3/1czIEl6iX/Pq69tABBcuym69/kStRrqZnROgT/D96Jzu1Z4v00LeLq74ltlHT6utv2kb0ehx/vt4OftCQ/XKhg3cijkcgUuXb2us8wKhQIn9m9Eux5DEFy3FVw8AtBnxM9IFscj6qLm0XJDJyxH/ebd4ezmiyoegegz/CeIE57jyYObWs0bsftPtOnQGa3avg83d08MGflt/mfHXrXt9+3ZiZA69dGtZ2+4unui9+eD4OXjj/2Ru9S2L0svD57EnSkLEReu+fOhKI8hvZDx4AlujZuD1Nv38WjpZrwIPQivr/tpN2gRCoUC+8P/RI9PvkDdhu/Bw8sXX46ZlFfXzp7SuN3esO1o1b4LWrTtBFd3Lwz6cqxO69rRvZvRsWeROjFqBiTil7hSQp2oXrspuvUeiVo6GsVXQKFQ4GjkZrz/Yenzdu+jn7yGVIcBw8tsaHm3Rh5Gt9ZN0bllE3i5uuD7wZ/CzNQUkX+dUdt++leD8GH7FvD3dINnFWdMHNYXcoUCF6Nu6yRv3u/cFnT6cBBC6reAq6c/Bnw1Pf/4Hte4XXDtJujR50vU1sM5TFSesAORyoUBAwZg7dq1yuU1a9agf//+Km3GjRuH0NBQrF+/HpcvX4avry/at2+PpCTtjc7Izs7GvXt3ERJS2JEpEAgQElILt2/f0tr7vo3s7BxEx9xHnZrBynUCgQB1agbjZrR2R7n9F9nZ2Yi5F40aIXWU6wQCAWqE1EH0bfVfPu/cvqHSHgBq1a6vsb02SBOfID35JdwDGivXCc2tUNmjJp49/PeN9iGX5yL60l7kyNLh7Fnr9Rv8R3nH+A5qvnKMayP69g2120TfvqnSHgBCatfDHQ3ty1J2djbu3LuPOjVrKNcJBALUCQnGzehorb//fxEf9wwScSKqh9RVrrOwrAgf/yDcva2+AygnOxsP7kWjes3CbQQCAaqH1MPdaO13GiXGP0WyJAGBNRoo15lbWsHTLxj371zT+vuXVkJcXt6qNQvzWlhawcuvOu5Hl6+82dk5uBPzQG0dvhF95432IZPJkJObA2srS23FfEVi/BOkSBLgX73wll5zCyt4+NTAw7tX33g/GempAACLijZlnrFAdnY27t+7gxohqr8/wSF1NNY1dZ8dIbXr66SulZaoYQgSjp1VWffy8GnYNgzRWYaCuhZcrK75BgThzmvqWnBIPeW6vJ9LXY3blKWE/LpWtVhd8/ILxv07b34O64qyrqnLG12O8xpAHS5gaJkNKW92Tg6i7z9GveDC6XAEAgHqBVdF1J03G9mdKctCbk4urCvq5rMuIe4ppGqOr3c5PL6GSq74/3j9v2IHIpULn332GU6fPo1Hjx7h0aNHOHPmDD777DPlf09LS8OyZcvwyy+/oGPHjggKCsLKlSthbm6O1atXq92nTCZDcnKyyksm0zw0XZ3k5GTI5XKIit0SKRKJINbhUPvSkOZnthOpfnGzFdkgSSzRT6gSpCRL846xyE5lvUhkC4lYfeewRJz0SnubEtprQ3rySwCAhZW9ynoLK3ukJyeUuG3Cs2j8/l0tLBoTjKN/TkGXQUtg76y9ec4KjrGNSPWW+tcf41fbi8XaP++lySmQy+WwtS1+DovK5TkMANL842jzynlpp/EYJydLIJfnwsb2zbcpS1Jx3nlqLVI9h61t7JEsKfkc1oeCTFY2qsfLWmSPZHGiPiJpJE1ORq5cDtu3qMN/bNgCBztblU5IbUuR5h3jijaq50RFG3ukvOE5IZfLEbZhNrwCasHZTf2cpWUhr67lqqlrmn9/ysNnx5sSOjlAFqd6zGVxCTCxsYLATKiTDJKS6ppE/e+csq6VohaWpWQNdc3Kxg7JGjLrU0Fde7UO20FajvMaQh0uYGiZDSmvJDkVuXI57ETWKuttRVZI1DBdR3FLNofCwc5GpRNSmwp+r6yLHV8rkb3yuoiINONDVKhccHR0RKdOnbBu3TooFAp06tQJDg4Oyv8eExOD7OxsNGnSRLnOxMQE9evXx61b6kcCzpo1C9Omqc41NGrUV/jq62+08m+gd9utC3twdPsU5XL3ocv/875sK3nhs+/DIMtIwd0rB3Fw0/f46KtNWu1EpLJ1+vhBrFoyV7k8bvI8PaZ5M+dP7sXWFTOUy8Mn/K7HNK937sQ+bFo+U7k88odFekyjW5t3huPYqb/x20+TITQ11dr7XDodiT9XFX5ODh639K33Gbp2Jp7H3sNXUze89b5It07/dRArl/yiXP5+yi8ltC4fzp3ciy0rCuvElxMW6zHN6507uRebi9a1ieU8rwHWYUPLbGh5y9KGsP04cuYClkz9DkJT7Uw/88+Jfdi0/Cfl8qj/o+NLpA3sQKRyY8CAARg5ciQAYMmSJW+9vwkTJmDMmDEq62KfPCvVPqytrSEQCCApNmJEIpHA1k4/D0h5HZv8zEnF/vInlkj19nCJklhZ2+Qd42IPjZBIxBAVG5lVQGRr90p7aQnty4JPcCs4e9ZULufkZAEA0lMSUdGmknJ9ekoiHF0DS9yXcQVTiBzznqTn5F4dLx5H4d8TG9Cm13QtJC88xsUnsH/9MX61vS4eDGRjbQWBQACxuPg5LCk353Cd+k3h619NuZydnXc+SCVJsLUr/OOHVJIET2/1o7CsrUUQCIyVoxeLbqONc7lGvRbw9CsczVZwDidLEmFj66hcnyxNhKun+qfM61LN+s3h5V9duZyTnQ0ASJEmQWRXJK8kEW5e+s9blI21NYwFglcemPImdXjb7ghs2RWO+dN+gI+n5iduloVqdVriO9/CqQJy8s/jVKnqOZEqTYTLG5wToWt/ws3LJzByynqI7CuXfeAi8uqasZq6pvn3Rx+fHf+VLC4BQicHlXVCJwdkS1Mgzyzd3RRvqk6DpvANeLO65uH1mrr2ynHWTl2rWa8FvN6grqVIk+Dq6V/m719ar+TN1lSHk+BWHvIaYB02tMyGlrcokXVFGAsESJKoPjBFLEmBfbER+MVt3nMIG8IOYPGk0fDzcNVaxpD6zeFd5Phm5x/f5GLHN6UcHl+i8oi3MFO50aFDB2RlZSE7Oxvt27dX+W8+Pj4wNTXFmTOFE/JmZ2fjwoULCAoKUrs/oVAIa2trlZdQWLrbfkxMTODr64crV68o18nlcly5cgWBgboZal9aJiYVEODjjcvXopTr5HI5Ll27jqAA7d1O9l+ZmJjAxzcA165cVq6Ty+W4duUSAgLV/2z9A6sh6upllXVX/72osX1ZMDWrCJGjh/JlX9kXFtaOiL1TOEeVLCMVLx5dhUtp5zNUyJGb/6VHG/KOsf8rxzjqymUEBFZTu01AYBCuvXKML8FfQ/uyZGJiAn/fV8/hy1ejEBRQPi7uzC0sUdnFVflydfeCyNYe169eVLZJT09DzJ2b8AusrnYfFUxM4OUbgOvXLinXyeVy3Lh6EX4B6rd5G2bmlqjk7K58Obv6wFrkgOioc8o2GempeHg3Ct7+NUrYk268ktfNG9YiB9y6ppr3wd3r8A7Qf96iTEwqwN/HC5euFc75JpfLcfnadVQL0NwpsGXXHmz4cxfmTpmAQD8frec0M7eEY2V35auyqw+sRA64c/0fZZvM9FQ8irkGT7+aGvejUCgQuvYnRF04ihE/roF9Je19GSxgYmICb19/RF1R/f0pqa6p/+y4oJO6VlqSf67AvlVDlXUOrRtD/M8Vrb2nxrpW5Binp6fhXvRN+L+urhWphXK5HNevXtK4zdvQVNduR51XtsmrE1Hw9td8DuvKq3WthLwB5TFv+a/DhpbZ0PIWZVKhAgK83XHheuEDUORyOS5cv4Vgf2+N220MP4A1oZFYOPFrVPXx1GrG4sfXxc0bNiIH3L6m+jt3vxweX6LyiCMQqdwwNjZW3o5sbGys8t8sLS0xfPhwjB07FnZ2dnB3d8fcuXORnp6OgQMHajVXjx4fYMGCefDz84O/fwDCw3cjU5aJtm3bAQDmz/sF9vb26Nd/AIC8js3Hjx8DAHL+x959hzV1NWAAf0ExgAoBJygQNuIAt362bq3WXa2zte5Vta3aVqs4wNZqXXWvKgqOqoCKWxw4OhwVtygo08rKAoEIJt8faCBKUKpJSPv+nifP03s59+bt9eTcm5Nzz83PR0ZGOmJjY2FhYQF7e3udZn3h417dsODnNfB0c0Udd1fsDT+M3FwFunZsCwD4YdkqVK1iizFDBz/PnI+4xKSCzHn5SM+Q4P6DOFhYmKO2nW5HkQBAjz4fY+XSBXBz94S7Rx2E798LRW4u2nfqCgD4eckPqFKlKj4ZNgYA0L1nX/hN/wL7Q39F46YtcP7sKcTGRGPcpKk6z/qCiYkJGrUZij+PrYWwmhOsq9TGb4d+RkXr6nBt0FFdbu+qz+DWoBN8WxfM6Xn+wBKIvFujso0d8hRPcPfyQSTGXMRH44ufy/Nd6dnnY6xY+iNc3T3g7lEHB/fvRW5uLjp06gKg4BjbVqmGT4eNBlBwjGdN/xL7Q3drHOPxejrGH/fugR+XrYKnmyu8PNwQsv8QcnMV6NKxHQBgwdIVqFqlCkZ/NgRAwecu/kUdzs9HeoYYMQ8ewsLcHLXs7XSe18TEBF179se+X7eipr0Dqtewx57gDbCxrYomLVqry82fOQlNW7bBB937AQC69R6Itcvmw8XNC24e3jiy/1cocnPRpmN3vWRu320IjoRsRHU7J1SpXgvhu1bD2qYafJoVPmXw57mj4dO8Pdp2HQQAyM3JRtrjBPXfM1KSkfjwLipWsoZtNd0daxMTE3TsPhiH925CdTtHVK1RC/t3roHQthoaNmunLrd0zlj4Nm+H9h8OLJI3Uf339NRkJD6MhmUlK1TRYd7+vbphwc9r4eXmAi93N+wNP4ycXAW6dmwDAPh+2WpUq2KLMUMLjuuOkP3YvGMP/KZOQs3q1ZDxfOS7hbk5LC3MdZazKBMTE7Tp+ilO7NuAajWdYFu9Fo7sWQUrm+qo36Twqdtr5o9E/aYd8P4HBeeQkM3zceW3wxg5dQUEFhXVc3iZW1ZChQq6y96jT3+sWroAru6ecPOog0P790CRm4N2nT4EAKxY8j2qVKmKIcPGAgA+7NkPc6ZPxoHQXWjctCXOnz2JBzHRGDfpa51lfKFcRUtUdHNUL1s614aVjxeeimXITfwbnvOnwLxWDVwb/i0AIH7DLjhNGAKvBV8jMTAEVdu1gN3HXXGp51idZ33BxMQEXXv1R9ivW1GzVm1Ur2GP3cEbC9q1lu+rywV8NxlNW7ZGlx4v2rUBWLvse7i4F7Rrh/fvft6uddNL5g7qds0RVavXwoFdqyG0qQbfIu3Esrlj4Nu8Pdp1LdpOFLZr6Xps1zp0H4LDewvz7t/5at6lc8egYbP2aPehlrypbIf/LZmNLe+g7p0QsHoL6rg4wdvNGb8ejkCu4im6tS2Ydmreqs2oZivEhMEfAQC27TuKjbsPYN7kkbCrXkU9V6KFuQCW5ro/1xV85gbjkPr42mP/zrXPj29bdbklc8ai4UvHN/Wl45vwMBoV9VCHjY0KJoaOQDrEDkQqU6ysrLT+7ccff4RSqcSnn36KzMxMNGnSBMeOHdP5LZWt27SBTC5DcFAQJBIJXFxc4O8/X/2+aWmpMDEtbCjF4gxMnvS5ejk0JAShISGoX78+flyon/mE2r//P0jlcmzZsRtiiRRuziIsmjMDtkIhACAlPQMmpoUDkNPFYoz+6lv18q/7wvHrvnD41PPGz9/PeXn379x7rdtDLpNiZ/AWSCViOLu4wc9/kfp2p/S0FJiaFB5jL+96+OprP+wI+gXbt26CXa1a+HbWfDiJtP/aqQtNOo5G3tMcROyaDUWOHPYujfHR+E0ob1Y40lWWnoicrMJb7LKzMnAs+Fs8kaWigkVlVLX3xEfjf4GTV6vi3uKdKTjGMuwKDoREIoaziytm+y9UH+O0tFSYmBTWiYJjPAs7gjYj+Pkxnj4rAE4iZ53mfKHd+60glcmxZfsuSCRSuLqIsHDeTPXtn6lp6TAtkjdDLMGYLwo7AXaHHcDusAPwqeeNZQt0c2v4y3r0/QSK3FxsWrUQ2U+y4OndANPnLUWFCoX1IeVxMjLlUvVyy/c7Qi6TYu/2jZBKxHByccf0eUv1dktlp97DoVDkYMd6f2Q/yYSrV0NMnLUGZkUyp6UkIatI5oTYW1g+d5R6OWRrwfyPLdr2xNCJhXMs6sIHfYZBochB8Lr5yH6SCbc6vvjCb7Vm3seJGnnjY29jyezR6uU9W5YAAFq264Hhk3RXN160w5t37HneDjvhpznT1e1wano6TIucO/YfPYG8/HzMXrhMYz/DBvbF8EEf6yznK7l7jMBTRQ52b5qLnOxMOHs2wtjp6zSOcXpKIp5kFrZrFyJ+BQCsDhiusa9B4+ajWZveOsvaqnUHyGVS7AreDKlEDJGLG2b6Ly7h3FEfX3w9G7uCNmHH1o2wq1Ub38z6Ho56OHdYN66HlieD1Mvei78DACRuC8X1kTMgsKsGC4fCL6E5cUm41HMsvJfMgGjSUOQmPcaNsbOQfuK8zrMW1bPvEChyc7Bx5aLCds1/STHtWuHt+v9rXdCu7QneVNiu+S/RW7vWuXdBO7F9fUBBO+HVEJNeadcSkSUvrMPxsbewbG5hO7F3a0E70aJtDwzTdbvWexie5uYgeF1h3sl+mnnTHyciK1Mz79I5Rdq1wOftWtseGDaJ7bCxZzamvJ3+1xRSeSY27j6ADKkc7qLaWPbdZFR5/mCVx+limBRph0NPRCIvPx/fLdWcS3xkv+4Y3b+nznIW1aXPZ3iqyEHQ8+PrXscXX/iteun4Jr1yfBfPHqNe3r1lKYCC4ztikuac+0T/ZiYqleo//BBq+q+JiX1o6AilVjHvzZ5iVlaIy9cwdIRSORdrXL8atnYt3TyeZYG1smw9NfB1UqCfkcLvikRR0dARSq28qdLQEUrFs1y0oSOUyl/Z7/5WUV1ysCp7T0F+nYQ6rV9fqAyxv33h9YXKEGmu8bVrJkY26MbEhF8BSVOD/EuGjlAqN8o3MXSEUmld1/jatX8i8la2oSPoRZu6loaOYBCcA5GIiIiIiIiIiIi04i3MRERERERERET0VlQqIxuOTaXCEYhERERERERERESkFTsQiYiIiIiIiIiISCt2IBIREREREREREZFW7EAkIiIiIiIiIiIirfgQFSIiIiIiIiIieisqlaETkC5xBCIRERERERERERFpxQ5EIiIiIiIiIiIi0oodiERERERERERERKQV50AkIiIiIiIiIqK3ooSJoSOQDnEEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBU7EImIiIiIiIiIiEgrPkSFiIiIiIiIiIjeikrFh6j8m3EEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBU7EImIiIiIiIiIiEgrPkSFiIiIiIiIiIjeikpl6ASkSxyBSERERERERERERFpxBCL9p8ifWRk6QqlFxDsbOkKp9BRdN3SEUvGqJTR0hFKpnhtv6AillmIuMnSEUokXCw0doVQqCp4ZOkKp1bJMN3SEUrmT7WXoCKXS+ukRQ0colRt5bQ0dodTsb18wdIRSeeTdytARSsXtboShI5SaCiaGjkD0VhR5xvU9yal8kqEjlJKnoQMQvTWOQCQiIiIiIiIiIiKtOAKRiIiIiIiIiIjeCkdj/7txBCIRERERERERERFpxQ5EIiIiIiIiIiIi0oodiERERERERERERKQVOxCJiIiIiIiIiIhIKz5EhYiIiIiIiIiI3opSZegEpEscgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFORCJiIiIiIiIiOitqFQmho5AOsQRiERERERERERERKQVOxCJiIiIiIiIiIhIK3YgEhERERERERERkVbsQCQiIiIiIiIiIiKt+BAVIiIiIiIiIiJ6KyqVoROQLnEEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBXnQCQiIiIiIiIioreihImhI5AOcQQiERERERERERERacURiKRh9erV+Omnn/D48WP4+Phg5cqVaNasmaFjlQkqlQp7t2/CqeMH8ORJJjzrNMCICV/Dzt6hxO2OHwpBeOh2yCRiODq7YdjYKXDz8NZL3t8Pr8CN3/dAkSOHvXMjdOg/FzbVRVq3uXZuB65f2Al5RjIAoIqdO5p3mQBn7zY6zxt26Ch+DTsAsUQKV2cnTB4zAnU83Ist+zAhEVu2/4p7sQ+QkpqGz0cOQ79e3XSe8WUqlQrhu9biXEQocrIz4erpi8FjvkMNeyet29y7dQXH929FwoM7kEnSMP6bpfBt3l4veUOORGDH/iMQS2VwEzniq5GfwNvdpdiyB06cwZHI3/AwIQkA4Okiwtgh/bSW14UjB8OwL2QXpBIxRM5uGDVuMtw962gt/9u5M9gZ/AtSUx7Dzr42Ph0+Fo2bttBbXpVKhROhq3Dp9B7kZGdC5NEQvYfNRtWaIq3bnD6wAbcuRyD17wcwMzOHk7svug6cimp2znrLfHj3avx2MgQ5TzLh7OWLAaP8UN1Oex2OuX0ZJw8EIuHhbcglaRg1bTl8mnXQS95D4fuwL2Q3JBIxRM6uGDN+Ejw8vbSWv3AuEtuDtiA15THs7Wtj6IjRaNK0uV6yAs/biF/X4nyRNmLQmO9Qo4Tje/+2Zhsx7pul8G2mnzZid8QFbDsSiQxZJtwd7PDNJ71Rz9Wx2LKnLt/A5vBTSExNR37+MzjWrIpPurRBt1aN9ZL1BZVKhbCd6xF5Yh+yn2TB3asBho6bjpr2xecGgOhbf+FwWBDiY+9CKknHpOk/oXGLtnrLu2f7Jpw6Fq6+lhg5YRrsapV8LXHsYAjCQ3eoryWGj/0Kbp66vZawfa8JXKaOhHWjejC3r47LfScg5cDJkrdp3Qzei6ejkrc7chP/RsyCtUjaFqbTnEUdCt+PsOdthLOzK8aMn1hiG3H+XCS2BwU+byNq4TM9txGA8bVrzKt7xpY57NAx7NoXDrFEBleRI74YMxx1PNyKLRt+/CSOnT6Lh/HPry9dnTH604Fay+vCgYOHsCckDGKJBC7Ozvh83Bh4eXoUWzYuPgHbgrfjfkwsUlJTMW70SHzUu5feshKVNRyBSGq//vorpkyZgjlz5uCvv/6Cj48PPvjgA6Smpuo1x9OnT/X6fm8qPCQYRw/uwcgJXyNg8SYIzM3x4+yv8PSpQus2v5+LQNCmFeg7aAR+WL4FTs5u+HH2V5BJxTrPezliI6LOBqFj/7kYNGU3zCpYIHTtSOTnac9bSVgT7/WYhsFfh2Lw1yFw8GiBAxs/R/rf93Wa9dS5C1j7y1Z8NvBjbFi2EK4iJ3wz53tIpLJiyysUCtjXrI4xQ4fA1kao02wlObYvEKcO78CQsTMxfUEQBOYWWBEwAXkl1ImnihzUFnlg0OgZekwKRFz4EysDd2FE/97Y/NM8uDk5YErAYkhk8mLL/3XrLjq91xwr5n2L9T/MQvWqtvjK/yekZUj0kvf82VPYsnEN+g8ehsUrNkLk7Ap/v68hlRb//ndv38TSRf7o0LkblqzYhGYt38PC+bMQH/dAL3kBIPLQL/jteDB6D5+Dz+fugpnAApsXjSmxPjy8exktOg7C53N2YuS3m/DsWT5+WTgKT3Oz9ZI5Yv9mRB7ZgQGj/TD1h+0QCCyw5vuxJWZWKHJQS+SB/iNn6iXjC+ciT2PzxnUYMHgolq5cB2cXV8z1+1Zrnbhz+xYWL5yPjp27YtnK9WjeshUWBMxGfNxDvWU+vi8Qpw/vwOAxM/HtD0GoILDAyte0EYrcgjZi4Cj9thHH/4zC0p3hGNOrE7bP+xIeDvaYuHgTxPKsYstbVbTEiB7tEeg3EbvmT0GP95ti3qbd+O1GtF5zHw7bhhMHf8Vn42Zg9qItEJhbYMm8SSWemxW5OXB09sCnY7/RY9ICB0K242j4Xoz6/GvMX7IRAnNzLJg9pcS8v52NQNCmleg3aAQW/LwZTs5uWDB7CmRa6v67Uq6iJeTXo3Fz8rw3Km8hqo2mB9Yj48yfON+kFx6u3Ir66+ejaqf3dJrzhXORp/HLxnUYOPhTLFu5DiIXF8zxm/6aNuJ7dOrcBctXrkPzlq3wQ8AcvbYRxtauMS8zv+zUud+wenMQPhvQDxuXLoCrsxOmzV2g9Ro+6sZtdHi/FZbP98OaRf6oVrUKps39AWkZuv9uBABnzp7D+o2/4JPBA7FmxTK4OIvwnd8cSKTSYssrFArUrFkTI4YNha2NjV4yEpVl7EAktaVLl2L06NEYPnw4vL29sW7dOlhaWmLz5s3Flo+Li4OJiQlCQ0PRrl07WFpawsfHB7///rtGuZCQENStWxcCgQAikQhLlizR+LtIJEJAQACGDh0KKysrjBkzBoGBgRAKhTh48CA8PT1haWmJfv36ITs7G1u3boVIJIKNjQ0mT56MZ8+e6eyYvKBSqXDkwG706T8MTVq0hpOzGyZ8NRsScTou/3FW63aH9u1C+w96om3H7qjt6IyRE75BBYEAZ04c1HnevyK3oVnn8XBt0BHVanmhy6eL8ESWitjrEVq3c63fHs5128Cmugg21Z3RqvtXMBNY4nFclE7z7tl/EN06d0DXju0gcnTAlAljYC6ogCMRp4ot7+XuhnHDh6J961YwMzPTaTZtVCoVTh7cjg/7jYZvs3aoLfLA8EkBkErSEHXxtNbt6jV6D70HT0RDPY06fOHX8GPo0bENurV/H84OtfD12M8gEFTAwZPF19+5X47DR106wMPZCU617TF9/AgoVSpcvnFbL3nDw/agU5du6NCpKxwcRRg7cQoE5uY4dfxwseUPHghBw8bN0LvvQNR2dMLgT0fC2dUdRw7qZ+SLSqXChaPb0L7nWNRt3AF2jp4YMPZHyKWpuH1F+4idEd9sQJPWfVCjtjvsnbzw8ZgfIM34G0lxuj/OKpUKZw4H44OPxqBB0/ao5eSJTyf+AJkkDdcvFf/ZA4C6Dd9H94GT9Tbq8IX9YXvRucuH6Ni5CxwdRRg/8UsIBAJEHD9abPnw/aFo1LgpPuo3AA6OThgydDhcXN1xKHyfXvKqVCqcPLQdXfuWvo3oNUj/bUTw0bPo06Y5erZuCpdaNfDdsI9gXsEM+89eLLZ8kzquaN+kPpzta8ChRlUM7vw+3BzsEHVPf1+0VSoVjofvRM/+I9CoeRs4iNwx+ot5kIjT8defkVq3a9C4FfoOGY/GLdrpLSvw/Fpi/270GfAZmrR4H07Obvh8il/BtcTv57Rud2jfr2j/QQ+07dQNtR2dMerzr/VyLZF27CzuzVmOlP3arxuKchozEDkPk3Dnm4XIuvsA8Wu243HIMTh/MUynOV/YHxZSpI1wwoRSthGfDB0OF1c3HArfr5e8BZmNq11jXmZ+2e79h9C9c3t82LEtRI61MXX8KJgLKuBwxJliy/tNnYQ+H3aGu4sITrVr4ZuJY6FUqnDl2k295A0J24+uXTrjg04d4eToiC8mToDAXIBjx4tv5zw93DFm5HC0a9PaYN85iMoSdiASgIJRf1euXEHHjh3V60xNTdGxY8dXOgRfNnPmTEybNg1RUVHw8PDAoEGDkJ+fDwC4cuUK+vfvj4EDB+LGjRuYO3cu/Pz8EBgYqLGPxYsXw8fHB1evXoWfnx8AIDs7GytWrMCuXbtw9OhRnDlzBn369MHhw4dx+PBhBAUFYf369di7d++7PRjFSE15BKkkA/V8m6jXWVasBFcPb9y/W/wJLz8vDw9jolHPp3AbU1NT1PNtivvRuj1JyjKSkC1Pg6Pn/9TrBBaVUdPJB4/irr7RPpTKZ4i+cgj5imzYiRrqKiry8vJwL+YBGvs2UK8zNTVFI58GuHX3ns7e922lpyRDLk1HnQaFt4hYVKwMZ/f6eBB9zYDJXpWXl4/o2Dg0bVB4u5upqSmaNKiLm/di32gfuU8VyH/2DFaVKuoqplpeXh5iY6LRwLfwVkhTU1M08G2M6LvFd6zdu3tLozwANGzUTGv5d02cloRMWTrc6rVUrzO3rAwHlwaIj4l64/3k5mQCACwrWr/riK/ISE2CXJoOzwaFt3lbWFaGyK0+Ht4ra3U4D7Ex9+Dj20i9ztTUFD6+jbT+G0ffvQ2fhi/VicZN9FYn0lNLaCPK2vHNz8fduGQ0q1s4bYSpqSma1XXHjZj4126vUqlw8dZ9xP+dikae+pvmIC0lGTJJBrwbFE61UnBurovY6Ot6y/GmXlxL1H/pWsLN0xv3XnMtUd+3qXqdqakp6vs20bqNoQhb+CL9lOY1Y9qJ87Bp4avz987Ly0NMzD34FtNG3NXymb979zZ8GjbSWNeocVOt5d81Y2vXmFf3jC1zXl4+7sU+RGOf+up1pqamaOxTH7ei3+waXqFQIP9ZPqwq6+f68n5MDBr6+qrXmZqaoqGvD+7cvavz9/+vUKn+G6//Ks6BSACA9PR0PHv2DDVq1NBYX6NGDdx9TYM6bdo0dOtWMP/cvHnzULduXcTExMDLywtLly5Fhw4d1J2CHh4euH37Nn766ScMGzZMvY/27dtj6tSp6uVz584hLy8Pa9euhaurKwCgX79+CAoKQkpKCipVqgRvb2+0a9cOp0+fxoABA17JpVAooFBo3hL09KkCFSoI3vzAPCeTFAyrtxbaaqy3FtpCKil+yL1cLoVS+QzWNq9u8yjp9V/I3ka2PA0AYFm5isZ6y8pVkC1PL3Hb9EfR2LV0IPLzFaggsESPUatRxU5385LI5JlQKpWwEWp2mNgIrZGQnKyz931bcmnBcbQSah5jK2tbyKQZhoiklTQzE8+USti+dIxtra2QkPz3G+1jbdAeVLURokkD3c/fmSmXQalUQvjS500otEFyYkKx20gl4lfKWwtttH4+37Ws5/WhknVVjfWVrKsgS1byZ+4FpVKJg8E/wsmjEWo6FD//57skf15PK1tr1uHK1lXU9buskL+oEy/dPiQU2iApMbHYbQrqxKvlJXqqE3JJ8W1EZWtb9bEvK6SZT/BMqUQV60oa66tYV0Lc39qnMcnMzkHXL+fjaX4+ypmaYvrQPmhRr/h5pHThRVtr/Uo7XAUySdk6xgDU7VGx1xJa6oT6WqKYbZKTim8PDUVQoyoUKZpthyIlHWbWlWFqLoAyV/tt2m+rpDYiWWsbISmmjRDqr40wsnaNeXXP2DLL5HI803YNn/Rm1/Drtu1AVVsbjU5IXZHL5c+/cwg11tsIhUhMLLvfOYjKEnYg0hsZN24cgoOD1ctZWYVzIjVoUDhyzM7ODgCQmpoKLy8v3LlzB716aU4026pVKyxfvhzPnj1DuXLlAABNmjTByywtLdWdh0BBZ6ZIJEKlSpU01mmbo3HBggWYN09z3p4xE7/G2Enfvvb/9/yZY9i0epF6+ZvZi1+7jSHduXQAJ3+do17uPXb9P96XTXVnfPLtPihyMnE/6hiOBX+LjycH67QT0Rj8efYQtq+fr16e+N1KA6bRr6DQg4i48CdWzZsOQYUKho5TJly9EI6wLXPVy8Omrnvrfe7fGoDHSfcx3i/49YX/gUvnDmLXBn/18rgZq3XyPv9Vf549hB0bCtuIz2f8+9uIiuYC7Az4Ctm5Cly8HYOlO8NRq1oVNKnj+vqN/4HfIo9g69oF6uWvZi3Tyfu8K+dPH8PG1T+pl7+d81MJpYmI/lu2792PU+d+w8/fz+b1JZGRYAciAQCqVq2KcuXKISUlRWN9SkoKatasCX9/f0ybNq3YbYvOB2FiYgKgYCRNaVSs+Oqw9ZfnmTAxMSl2nbb3mjFjBqZMmaKx7nZC8ZPBv6xxs/fg5lFXvZyXV/BgF5lUDBvbwhFGMqkYIpfiRwpZWQlhalpOPXqx6DbCl0Ylvi3X+u1hJ/JRL+fnF+TNzsxAJevq6vXZmRmoVlv7U9wAoFz5ChBWK3hCaA3HeniccANXI7eh40D/Erf7p6ytKsPU1PSVyZYlUhlsX/qF0JB8mraFs3vhr6P5z+uEXJoBa5tq6vVymRgOIv2NwHkTwsqVUc7UFOKXjrFYJn9lVOLLduw/guCwQ1g+5xu4iUp+Sui7UtnKGqamppC+9LAhqVSi9bMjtLF9pbyshPJvy7tRezi4Ff548ux5fciSpcNKWFgfsmQZsHMq+TMHAPu3zsfdqEiMnbkN1rY1331gAPWbtIPIvTDzizqcKdOsw5myDNQSvT6zPlm9qBMSzUnkpVIJbGxLqhPFlNdRnXiljcgvvo3IlIlRu8y1ERVRztQUGTLNc2SGLAtVrStr3c7U1BQONQrOiZ5OtfDwUSq2HDylsw7Ehs1aw9Wjnno5X31uzoCwyLlZLsuAo7Phj3Hj5u/BzfPNriWcnF9zLfFK+/buryXeliIlHYIamqOwBTWqIk+WqdPRh0DJbYTQtvgHHwhtbIppI6Q6ayNeZgztWlHMq3vGltnaygrltF3Dv+Yhh7vCwrEjdD+WzJsJV5GTDlMWsrKyev6dQ6qxXiKVGvShjETGhHMgEgCgQoUKaNy4MU6eLJzsX6lU4uTJk2jZsiWqV68ONzc39etN1alTBxcuXNBYd+HCBXh4eKhHH+qKQCCAlZWVxutNb1+2sKyImva11a/ajs4Q2lTBzWuX1WWys58g9t5tuHvVK3Yf5c3M4OzmiZvXr6jXKZVK3Lp2Ge6exW/zT1UwrwRhNSf1q0pNN1haVUPivcK5iBQ5WXgcfw32pZ3PUKXEs3zdPRnbzMwMHm4u+OvaDfU6pVKJv67fQF0vw38BfMHcoiKq2zmqX3YOrrASVsXdG4UPGMjJzsLD+zfg4ulTwp70z8ysPDxdRRoPQFEqlbhy/TbqeWj/or9932EE7j2AJX5TUcfNWR9RARTUCVc3T1yP+ku9TqlU4nrUFXh6FX8LtYdXXdy49pfGumtXL2st/7YEFhVRtYaT+lW9lhsqW1dFzK0/1GVyc7KQ+OA6nNx8te5HpVJh/9b5uHUlAqNnbIZt9do6yQsU1OFqNR3Vr5q1C+pw9I0/1WVysrMQF3MDzh5lrQ6bwdXNA9evFc7hWlAnrmr9N/b08taoQwAQdVV7HXpbr7QRtUtoI8ra8S1fHl6iWrh0O0a9TqlU4tLtGNR3e/MvdiqVCnnP50DWBQuLiqhh56B+2Tu4wNqmCm5fv6Quk5Odhdh7t+Dq2aCEPemH1muJqMLrguzsJ4iJvg2P111LFLn+UCqVuHntitZtDEX6RxSqtG+hsa5qh/9B8keUzt/bzMwMbm4euHbt5fPGVXhp+cx7eXnjepTmvNBRV69oLf+uGUO7VhTz6p6xZTYzKw8PV2dcuV44H2vBNfxN1PXUfg2/I/QAtu0OxaI5M+DlrpsfnIpjZmYGdzc3REUVzkOsVCoRFXUddbzK1g+nxkylMvlPvP6r2IFIalOmTMHGjRuxdetW3LlzB+PHj8eTJ08wfPjwf7zPqVOn4uTJkwgICMC9e/ewdetWrFq1SutoxrLKxMQEXXv2x75ft+Lyn+eQEBeLtUv9YWNbFU1atFaXmz9zEo4dLHyoS7feA3H62AFEnjyM5MQ4bF7zExS5uWjTsbvO8zZqMxR/HluL2Bsnkf4oGseCv0FF6+pwbVD4oJy9qz5D1NnC2yXPH1iCpJhLkGUkIf1RNM4fWILEmIvwatJDp3k/7tUdB4+fxNGTZxCfmIRlazciN1eBLh0KnpD5w7KV2Lh1u7p8Xl4eYh48RMyDh8jPz0e6OAMxDx4i+dGbzef3LpiYmKBD9yE4vHcjrl06g+T4+9iyYhaENtXg26zwyZ5L547B6cO71Mu5OdlIfHgXiQ8L5hZNT01G4sO7EKfpNvuAHh8gPCISh0+fR1zSIyzesA25CgW6tX8fABCwYgPWBu9Rlw8OO4SNO0MxY8II2FWrigyJFBkSKbJzcnWa84UefT5GxLGDOB1xFEkJ8Vi/ehkUublo36krAODnJT8gOHCDunz3nn1x9cpF7A/9FUmJ8di1fQtiY6LRtXsfveQ1MTFBqy5DcWr/etz+6xQeJ97D7nXTYSWsDu/GhU8r3rhgOH47UViX928NwNXfwjFw/E8QmFdEpjQNmdI05D3V/XE2MTFB2w8/wbHQ9bhx+TQeJdxD0KrvYG1TDQ2aFj4BeKX/KEQe3aFeVuRmIynuLpLiCupwRmoykuLuQpyu2zrcq08/HD96CKcijiExIR7rVi9HriIXHTt9AABYtvhHbNuySV2+R6+P8NeVS9gXuhtJiQnYGbwVsffvoVuP3jrN+YKJiQk6dBuCIyGFbUTgylfbiGVzx+D0kRLaiBT9tBGfdGmNsMg/EX7+Mh4+SsGCraHIUTxFz/cLHt4xe/1OrNxd+BT0zeGn8MfNe0hKzcDDRykIOhKJQ79dQdeWjbS9xTtnYmKCzj0GIXzPZly9GInEuBhsWD4XNrZV0ah5G3W5hX7jEXFot3o5Nycb8Q+iEf8gGgCQnvoI8Q+ikZH2WOd5u/bqj7Ai1xJrlgYUXEu0fF9dLuC7yTgaXvRaYgBOHQtXX0v8smbx82uJbjrNW66iJax8vGDlU/DF2tK5Nqx8vGDuUDBdjef8KfDZslBdPn7DLlg6O8Brwdeo6OkCp3GDYfdxVzz8OVCnOV/o1acvjh89jJMRx5GYEI+1q39GriIXHTp1AVDQRmwtpo0IC92DpMQE7Ajeipj799CtRy9tb6GDzMbVrjEvM7+sf69uOHT8FI6eikRcYjKWrvsFObkKdO1Y0AZ/v2w1NmzbqS6/I2Q/Nm/fjW8njUPN6tX0fn3Zt08vHD52HMcjTiIhIRErVq9Fbm4uPuhUcK22aMky/BK4VV0+Ly8PsbEPEBv7AHn5+UjPECM29gGSHz3SS16isoa3MJPagAEDkJaWhtmzZ+Px48fw9fXF0aNHX3mwSmk0atQIu3fvxuzZsxEQEAA7Ozv4+/trPEDFWPTo+wkUubnYtGohsp9kwdO7AabPW6oxqjHlcTIy5VL1csv3O0Iuk2Lv9o2QSsRwcnHH9HlL9XLbUZOOo5H3NAcRu2ZDkSOHvUtjfDR+E8qbFeaVpSciJ6vwtofsrAwcC/4WT2SpqGBRGVXtPfHR+F/g5NVKp1nbv98KMpkcgTt+hVgihauLCAvnzlTfTpCalg5Tk8JfejLEEoz+8hv18q9h4fg1LBw+9byx/Id5L+9eZz7oPQxPc3MQvC4A2U8y4ebVEJP91sCsSJ1If5yIrMzCYxwfewtL54xWL+8JXAIAaNm2B4ZNCtBZ1o6tmkMqy8SmXWEQS2Vwd3bEkllT1bcwp6RnqKcgAICwY6eQl5+PWYs158kb0b8XRg7Qfafce63bQy6TYmfwFkglYji7uMHPf5H6s5OelqJRJ7y86+Grr/2wI+gXbN+6CXa1auHbWfPhJNLfE2HbdBuJp4ochG6eg9zsTIg8GmH41xs06kNGaiKeFKkPf5ws6Dja8MNnGvvqN/p7NGmt++PcsdcIPFXkYOf6ecjJzoSLV0NM+G6dZh1OScSTIu1aQuwtrJg3Qr0ctq1gXrdmbXri08+/11nW99u0g1wuw46gQEgkEji7uGKO/49F6kQqTE0L60Qd77qY+s1MBG/bjKDAzbCvVQsz/PzhJNLfaNrOvYdBocjB9vWFbcSkWZptRFpKIrLkmm3EsrmFbcTerQVtRIu2PTBsou7aiM7NfSGRP8G60GPIkGXCw9EeK6eNQpXntzA/FkthUuT45iqe4sdtYUgVSyGoYAaRXXXMHzsInZv76ixjcT7sMxSK3BxsWfMDsp9kwaOOD6bOXqFxbk596dz8MOYOFvqNUy/v3Fwwl2Krdt0w+ou5Os3bs+8QKHJzsHHlosJrCf8lxVxLFN4S+L/WBdcSe4I3FV5L+C/R+bWEdeN6aHkySL3svfg7AEDitlBcHzkDArtqsHjemQgAOXFJuNRzLLyXzIBo0lDkJj3GjbGzkH7ivE5zvvB+m3aQFWkjXFxcMdd/AWyeP5AiLS0VJqaFYycK2ojvsH3bFnUb8Z3fPL22EcbWrjEvM7+s/fv/g1Qux+YdeyCWSOHm7ISf5kxXT0OUmp6ukXf/0RPIy8/H7IWac9gOG9gXwwd9rPO8bVu/D5lMhm3BO563Ey743n+uup1ITUvTuB7OEIsxfvKX6uW9oWHYGxqGBvXrYfGPP+g8L1FZY6JS/ZcfQk3/NX/dK3tPZXydiw+rvL5QGdJTdN3QEUrlXp7un3b7LtVDlKEjlFqKucjQEUrlnrj66wuVIRUFzwwdodQcK2l/sm9Z9He2cbXDTZ+cMHSEUrlh3dbQEUrNvLzupvbQhUfeuv0h8F1zuxth6AilpsJ/95Y2+ncQ5qUZOkKpKMpbGjpCqTi5eRo6gl4cuGx816X/RM8mup2OraziLcxERERERERERESkFW9hJiIiIiIiIiKit6Lk/a3/ahyBSERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacU5EImIiIiIiIiI6K2oOAfivxpHIBIREREREREREZFW7EAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiIi04kNUiIiIiIiIiIjorahgYugIpEMcgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFORCJiIiIiIiIiOitKFWGTkC6xBGIREREREREREREpBU7EImIiIiIiIiIiEgrdiASERERERERERGRVuxAJCIiIiIiIiIiIq34EBUiIiIiIiIiInorKj5E5V+NIxCJiIiIiIiIiIhIK3YgEhERERERERERkVa8hZn+U8S5lQwdodSaiCSGjlAqOWbGdYwFyjxDRyiVjAq1DR2h1MxNcgwdoVQyc8oZOkKpNLKNMXSEUrvp1dPQEUplUY8tho5QKvv9jKsdrlEhzdARSi0+297QEUrF7W6EoSOUSoxXR0NHIPrPMbZ2Il1hY+gIpeJk6ABE7wA7EImIiIiIiIiI6K1wDsR/N97CTERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacUORCIiIiIiIiIiItKKD1EhIiIiIiIiIqK3olSZGDoC6RBHIBIREREREREREZFW7EAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiN6KSvXfeOmKWCzGkCFDYGVlBaFQiJEjRyIrK6vE8pMmTYKnpycsLCzg6OiIyZMnQyaTaZQzMTF55bVr165S5+NDVIiIiIiIiIiIiAxoyJAh+Pvvv3HixAnk5eVh+PDhGDNmDHbs2FFs+UePHuHRo0dYvHgxvL29ER8fj3HjxuHRo0fYu3evRtktW7agS5cu6mWhUFjqfOxAJCIiIiIiIiIiegMKhQIKhUJjnUAggEAg+Mf7vHPnDo4ePYpLly6hSZMmAICVK1fiww8/xOLFi2Fvb//KNvXq1UNISIh62dXVFd9//z0++eQT5Ofno3z5wi4/oVCImjVr/uN8AG9hJiIiIiIiIiIieiMLFiyAtbW1xmvBggVvtc/ff/8dQqFQ3XkIAB07doSpqSn+/PPPN96PTCaDlZWVRuchAHz++eeoWrUqmjVrhs2bN0P1D+7F5ghEIiIiIiIiIiKiNzBjxgxMmTJFY93bjD4EgMePH6N69eoa68qXLw9bW1s8fvz4jfaRnp6OgIAAjBkzRmO9v78/2rdvD0tLSxw/fhwTJkxAVlYWJk+eXKqM7EAkIiIiIiIiIqK3ossHjJQlpbldefr06Vi4cGGJZe7cufPWmeRyObp16wZvb2/MnTtX429+fn7q/27YsCGePHmCn376iR2IREREREREREREhjZ16lQMGzasxDIuLi6oWbMmUlNTNdbn5+dDLBa/du7CzMxMdOnSBZUrV0ZYWBjMzMxKLN+8eXMEBARAoVCUauQkOxCJiIiIiIiIiIjesWrVqqFatWqvLdeyZUtIpVJcuXIFjRs3BgCcOnUKSqUSzZs317qdXC7HBx98AIFAgAMHDsDc3Py17xUVFQUbG5tS33bNDkQiIiIiIiIiIiIDqVOnDrp06YLRo0dj3bp1yMvLw8SJEzFw4ED1E5iTk5PRoUMHbNu2Dc2aNYNcLkfnzp2RnZ2N4OBgyOVyyOVyAAUdl+XKlUN4eDhSUlLQokULmJub48SJE/jhhx8wbdq0UmdkByIREREREREREb0V5X9kDkRd2b59OyZOnIgOHTrA1NQUffv2xYoVK9R/z8vLQ3R0NLKzswEAf/31l/oJzW5ubhr7evjwIUQiEczMzLB69Wp89dVXUKlUcHNzw9KlSzF69OhS52MHIhERERERERERkQHZ2tpix44dWv8uEomgKvKkmrZt22osF6dLly7o0qXLO8ln+k72QkRERERERERERP9KHIFIAIAFCxYgNDQUd+/ehYWFBf73v/9h4cKF8PT0NHS0MkOlUuHQr2tw4WQIcp5kwsXLFwNHz0J1Oyet29y/fRkRBwKR+OAOZJI0jPl6OXyatddb3pAdG3H6+H48eZIFjzr1MWL8N6hp71jidscP7cWhsGDIJGI4OrvhszFT4epRV+d5w8PDEbJ3LyQSCZxdXDB+/Hit9S8+Ph5BQUGIuX8fqampGDNmDHr36aPzjC9TqVQI27kekSf2IftJFty9GmDouOklHuPoW3/hcFgQ4mPvQipJx6TpP6Fxi7Z6yXsofD/CQnZDIhHD2dkVY8ZPhIenl9by589FYntQIFJTHsPevhY+GzEaTZpqn8D3XTO2OqFSqXD2wApcPbcHihw5ars2Qtchc2FbQ6R1mytnduCvyJ2QZiQDAKrZu+O9bhPgVr+NzvMeOHgIe0LCIJZI4OLsjM/HjYGXp0exZePiE7AteDvux8QiJTUV40aPxEe9e+k84wu27zWBy9SRsG5UD+b21XG57wSkHDhZ8jatm8F78XRU8nZHbuLfiFmwFknbwvSUuNCIgQ7o3qkGKlmWw427mVi64QGS/87VWt7UFBg2wAGdW1eDrdAM6ZI8HD2dim17knSedc+xM9gefgIZMjncHWtj6vABqOsmKrbsvpPncfjsH3iQ9AgA4OXsiPEDe2stryvh4eHYGxICyfN6/CbtxP2YGHU70ad3b73mValUCP91Lc5HhCInOxOunr4YNOY71CjxWuIKju/fioTn1xLjvlkKXz1dSxjTecPY2gljywsYX2bm1Q9jaieAgnZ43851OBsRhuwnWXDz8sHQsTNQ4zXX70f3bUNc7B3IJOmYOH0xGjVvp7fMRGUFRyASACAyMhKff/45/vjjD5w4cQJ5eXno3Lkznjx5ovcsT58+1ft7vokT+7fgzJEdGDjGD18v2I4KAgusmj8OeU8VWrd5qshBbSdP9B/5nR6TFjgYGoRjB3dj+Phv4f/TJggEFvhxzpd4WkLe38+dwPZffsZHA0dh/rKtcBS548c5X0ImFes0a2RkJDZu2IDBQ4Zg5cqVcHF2ht+sWZBKpcWWV+Tmwq5mTQwfPhw2NjY6zVaSw2HbcOLgr/hs3AzMXrQFAnMLLJk3qcRjrMjNgaOzBz4d+40ekwLnIk/jl43rMHDwp1i2ch1ELi6Y4zcdUqmk2PJ3bt/C4oXfo1PnLli+ch2at2yFHwLmID7uoV7yGmOd+P3YRlw6FYSun8zFsBm7YSawwM6fRyI/T3t9qGxTE+0+moaRM0MxYmYInDxbYM+az5H26L5Os545ew7rN/6CTwYPxJoVy+DiLMJ3fnMg0XZ8FQrUrFkTI4YNha0Bjm+5ipaQX4/Gzcnz3qi8hag2mh5Yj4wzf+J8k154uHIr6q+fj6qd3tNxUk2D+tTCR93ssGRdLMZNv4FchRKL/bxRwcxE6zaD+9RCrw9qYvmmhxg6OQrrg+IxqHct9P2wpk6znvjtMn4OCsHIft2wdcF3cHOqjS8WrIBYJi+2/F+376Fzq6ZY4/cVNvl/g+pVbDH5hxVIFUt1mrOoyMhIbNi4EUMGD8bKlSvh7OKCWX5+WtuJXIUCNe3sDNpOHN8XiNOHd2DwmJn49ocgVBBYYGXAhBKvJRS5Oagt8sDAUTP0mNT4zhvG1k4YW17A+DIzr+4ZWzsBAEfCtiLi0C4MHfsdZi3cCoHAAkv8J762HXYQeeCTMd/qLSdRWcQORAIAHD16FMOGDUPdunXh4+ODwMBAJCQk4MqVK1q3iYuLg4mJCUJDQ9GuXTtYWlrCx8cHv//+u0a5kJAQ1K1bFwKBACKRCEuWLNH4u0gkQkBAAIYOHQorKyuMGTMGgYGBEAqFOHjwIDw9PWFpaYl+/fohOzsbW7duhUgkgo2NDSZPnoxnz57p5JgUpVKpcPpQMLr0HQ2fpu1Qy8kDn038HjJJGq5dOqV1u7oN30ePQZPg27yDzjMWpVKpcPTAr+jdfziatGgNR2d3jP9qDqTidFz546zW7Y7s34l2nXuhTcfuqO3ojBETvoVAYI7IiIM6zRsWFoYuXbuic+fOcHRywsRJkyAQCHD8+PFiy3t4emLkqFFo07YtzMzMdJpNG5VKhePhO9Gz/wg0at4GDiJ3jP5iHiTidPz1Z6TW7Ro0boW+Q8ajcQv9/mq5PywEnbt8iI6du8DR0QkTJn4JgUCAiONHiy0fvj8UjRo3xUf9BsDB0QmfDB0OF1c3HArfr5e8xlYnVCoVLkZsw3vdxsPTtyNq1PZCz+GLkClNRfTVCK3befi0h1v9NrCtIUKVGs5o1+crVBBYIvlBlE7zhoTtR9cunfFBp45wcnTEFxMnQGAuwLHjxWf19HDHmJHD0a5Na4Mc37RjZ3FvznKk7Nd+LItyGjMQOQ+TcOebhci6+wDxa7bjccgxOH8xTLdBX/JxdzsE7U3ChUsSPIjPxg8r7qOKbQW818xW6zZ1PSvjwkUx/rgiweM0BSJ/z8ClKCm83CvrNOvOQyfRq30r9Gj7P7jUtsP0UYNgXqECws/8Xmx5/0kj0K9zG3iIHCCqVRMzx34CpUqFyzfv6jRnUWFhYejapQs6d+4MJ0dHTJo4scR2wtPDA6NGjkTbNm0M1k6cPLQdXfuOhm+zdqgt8sDwSQGQStIQdfG01u3qNXoPvQZNRMPm+hl1+IKxnTeMrZ0wtryA8WVmXt0ztnZCpVLhxMEd6PHxSDRs3hYOIneM+mIepOI0/PXnGa3bNWjcCh8NmYDGLfTbDhsjlcrkP/H6r2IHIhVLJpMBKJjE83VmzpyJadOmISoqCh4eHhg0aBDy8/MBAFeuXEH//v0xcOBA3LhxA3PnzoWfnx8CAwM19rF48WL4+Pjg6tWr8PPzAwBkZ2djxYoV2LVrF44ePYozZ86gT58+OHz4MA4fPoygoCCsX78ee/fufbf/88XISE2GXJoOz/ot1OssKlaGyK0+HkZf0/n7l1ZayiNIJRmo69NUvc6yYiW4etTF/egbxW6Tn5eHhzHRqOdbuI2pqSnq+TTF/bvFb/Mu5OXlIeb+ffj6+mq8r6+vL+7euaOz931baSnJkEky4N2gmXrdi2McG33dgMlelZeXh5iYe/D1baReZ2pqCh/fRrh793ax29y9exs+DRtprGvUuKnW8u+SMdYJaXoSnsjTIKrzP/U6c8vKqOXsg+QHV99oH0rlM9y6eAh5T7NRy6WhrqIiLy8P92Ni0PCl49vQ1wd37uqv80eXhC18kX5Ks+Mr7cR52LTw1VsGuxoCVLGpgCvXpOp1T7Kf4c79TNT11N4ZeCs6E40aWKO2nTkAwFVkifp1KuPPq8WP5ngX8vLzcfdhAprVL7zlzNTUFE3re+HGvQdvtI9cxVM8y38Gq4oVdRVTw4t6XFw7UVbrcfrza4k6DQpv1bOoWBnO7vXx4F7ZupYwtvPGP1EW2onSMLa8gPFlZt7SMcZ2Qn397lPYDltWrAwX93pl7vqdqCziHIj0CqVSiS+//BKtWrVCvXr1Xlt+2rRp6NatGwBg3rx5qFu3LmJiYuDl5YWlS5eiQ4cO6k5BDw8P3L59Gz/99BOGDRum3kf79u0xdepU9fK5c+eQl5eHtWvXwtXVFQDQr18/BAUFISUlBZUqVYK3tzfatWuH06dPY8CAAa/kUigUUCg0h6I/fQpUqCAo9TGRS9MBAFbCKhrrKwurQC7NKPX+dE0qKchkLdTsALYW2qr/9rJMuRRK5bNXtrES2uBRcpxOcgKAXC6HUql85XYyoY0NEpN0P+fXPyWTvjjGmnXCyroKZFqOsaHI5TIolUoIXz7GQhskJyYWu41UIoFQ+HJ5ISQS3d7ODhhnnXgiTwMAVKysWR8qWlVBljy9xG1Tk6IRuHAg8vMUqCCwRL/xq1HN3k1nWdXHVyjUWG8jFCIxMVln76tPghpVoUjRPO6KlHSYWVeGqbkAylzttym9K7bCCgAAsSxPY71Emgdbmwpat9semgxLi3IIWtkQSqUKpqYm2LQjARFnS65Hb0Mqz8IzpRK21lYa622trRCfnPJG+1i9IwxVbazRtL72ea/eJW3thI1QiCQt7ZqhySVariWsbcvctYSxnTf+ibLQTpSGseUFjC8z85aOMbYTL9paK+uXv+/Yqq/tiUg7diDSKz7//HPcvHkT58+fV68bN24cgoOD1ctZWVnq/27QoIH6v+3s7AAAqamp8PLywp07d9Crl+ZE+61atcLy5cvx7NkzlCtXDgDQpEmTV3JYWlqqOw8BoEaNGhCJRKhUqZLGutTU1GL/PxYsWIB58zTnEPl03EwMHe+n/X/+uYvnDmHnen/18oQZq1+7jSFdOHMUv6xZqF7+evaSEkrTP/Fb5BFsXbtAvfzVrGUGTEOGdvPPAzgcPEe9PGDi+n+8ryo1nTHKbx8UOZm4e+UYwrd8i0+mBeu0E5HevY6tq2Lq2MJz1vTv/9lo2Xb/q4JOrashYNk9xCXmwM25IiaOECFd/BTHzqS9q7jv1Nb9x3Dit8tYM/srCCoYZlqJsujPs4ewY8N89fLnM1YaMA0R0X/P75GHsW3dD+rlL2f+bMA0RMaPHYikYeLEiTh48CDOnj2L2rVrq9f7+/tj2rRpxW5TdB4hE5OC+QCUSmWp3rdiMbc8vTw/kYmJSbHrtL3XjBkzMGXKFI115++9WZ4GTdpC5FZfvZyfX/BgF7k0A9Y21dTrM6UZqC0y/JOqGzV7X+NJyfn5BSNeZFIxbGyrqtfLpGI4ubgXu4/KVkKYmpZ75YEpcqnklVF275KVlRVMTU0hkWjenieVSAzysAZtGjZrDVePwhG5+XkFdUImzYCwyDGWyzLg6Fz8k2wNxcrKGqamppC+fIylEghtiz/GQhubVybAlkqlsLF5/bQGb8sY6oS7T3uMcvZRLz973kY8ycxAZWF19fon8gzUcCh5RFa58hVgW73gCax2TvXwKO4GLp3chg8/9S9xu39KfXxfetCERCqFrY1QJ++pb4qUdAhqVNVYJ6hRFXmyTJ2NyLhwUYw79wp/XDN7/qAUW2sziCWFoxBthGaIeaj9AWXjPxNhe2gyTl0oGAnxICEbNaoJMOSjWjrrQBRaVUI5U9NXHpgilslhK7TSslWB4PAT2Lb/GFbN/ALuTrVLLPsuaWsnJFIpbN5g+hV98GnaFs7ub3AtIROjtojnDX0zRDvxNowtL2B8mZm3dIyhnfBt1gYuHkXa4efX73KZGELbwnZYLhWXuet3Y6VSGToB6RLnQCQABRPKTpw4EWFhYTh16hScnZ01/l69enW4ubmpX2+qTp06uHDhgsa6CxcuwMPDQz36UFcEAgGsrKw0Xm96+7K5RUVUt3NUv+xqu8JKWBXRN/9Ul8nJzkJczA04e/qUsCf9sLCsiJr2DupXLQdnCG2q4Na1S+oy2dlPEHvvFtw96xe7j/JmZnB289TYRqlU4ub1S3D3Kn6bd8HMzAxu7u64FhWl8b5RUVHwqlNHZ+9bWhYWFVHDzkH9sndwgbVNFdy+Xni8crKzEHvvFlw9G5SwJ/0zMzODm5sHrl37S71OqVTietRVeHl5F7uNl5c3rkdpzt0XdfWK1vLvkjHUCYF5JdhWd1K/qtq5oaJVNcTdKZyLSJGTheSH10o9n6FKpVR3SOqCmZkZ3N3cEBVVOOdawfG9jjpe+rn9VNekf0ShSvsWGuuqdvgfJH9E6ew9c3KVSH6cq37FJeYgQ/IUjRoI1WUsLcqhjntl3IrO1LofgcAUqpeuvl/cyqwrZuXLw8vZEZduRhd5TyUu3YxGfQ8XrdsFHTiOzaGHsXzGRNRxddJZvuKo6/G1l+txVJmpx9quJe7euKguk5OdhYf3b8DFw/DXEkUZ23njnzBEO/E2jC0vYHyZmbd0jKGd0H79rtkOP7h/s8xdvxOVRexAJAAFty0HBwdjx44dqFy5Mh4/fozHjx8jJyfnrfY7depUnDx5EgEBAbh37x62bt2KVatWaR3NWFaZmJigXbdPcDRkA65fOo3k+HvYtmomrG2qwadp4dO4fp43CmeO7FQv5+ZkI/HhXSQ+LJjQPSM1GYkP70Kc9rfO83bpOQD7dgfiyp9nkRAXg3XL5kFoWxWNW7RWl/th1kQcP7hHvdy11yCcPn4AZ08eQnLiQ2xZuwiK3Fy06dBNp3n79OmDo0ePIuLECSQkJGD1qlVQKBTo1KkTgIKH7GzZskVdPi8vD7GxsYiNjUV+fj4yMjIQGxuLR48e6TRnUSYmJujcYxDC92zG1YuRSIyLwYblc2FjWxWNmrdRl1voNx4Rh3arl3NzshH/IBrxDwq+qKenPkL8g2hkpD3Wad5effri+NHDOBlxHIkJ8Vi7+mfkKnLRoVMXAMCyxT9i65ZN6vI9en2Ev65cQljoHiQlJmBH8FbE3L+Hbj16aXuLd8rY6oSJiQmadRyKC4fX4l7USaQmRePA5m9QWVgdng07qsttX/oZLp0qnA7idOgSJNy7BGl6ElKTonE6dAni711E3eY9dJq3b59eOHzsOI5HnERCQiJWrF6L3NxcfNCp4Inxi5Yswy+BW9XlC47vA8TGPkBefj7SM8SIjX2AZD0d33IVLWHl4wUrn4KOIUvn2rDy8YK5Q8G0GZ7zp8BnS+E0DvEbdsHS2QFeC75GRU8XOI0bDLuPu+Lhz4F6yfvCnoN/Y2i/2vhfUxu4OFriu8luyBA/xfmLhSO9l871Rp+uNdXLv12S4JN+tdGisQ1qVhPg/ea26N/DHuf+1O38UIO6dcD+U+dxKPJ3PEz+Gwt/2YlchQLd27QEAMxdHYjVO/epy2/bfwzrd4dj1rhPYV+tCjKkMmRIZcjOzdVpzqJetBMnIiKQkJCAVatXl/l2okO3ITgSshHXLp1Bcvx9BK6cBaFNNfg2a6cut2zuGJw+sku9/PK1RHqKfq4ljO28YWzthLHlNcbMzKt7xtZOmJiYoFP3wTi45xdcvRiJpPj72PTzbAhtq6FR87bqcj/NHoeTh39VL+fmZCPhYTQSHj6/fk95hISH0cjQcTtMVNbwFmYCAKxduxYA0LZtW431W7Zs0XjYSWk1atQIu3fvxuzZsxEQEAA7Ozv4+/u/1T4NpVOv4Xiam4Md6/2Rk50JV6+G+HzmWpgVGdWYnpKEJ5mFw/ITHtzCz3NHqpdDtv4EAGjepieGTiycF0kXun/0KRS5ufhl9Y/IfpIFD+8G+Hbuco1RmCmPk5Apl6qXW77fCZkyKfbu2AiZJANOLu74du4yWNvo7hZmAGjTpg3kMhmCgoMhEYvh4uoK/4AA9eT4aampMDUpHH0jFosxaeJE9XJISAhCQkJQv359LFy0SKdZi/qwz1AocnOwZc0PBce4jg+mzl6hcYxTHydrHOOHMXew0G+cennn5oK5FFu164bRX8zVWdb327SDTC7DjqBASCQSuLi4Yq7/gsJjnJYKE9PC35TqeNfF1G++w/ZtWxAUuBn2tWrhO795cBI5a3uLd8oY60TLD0YjT5GDw8GzkZsth4NbYwz8YhPKmxXWB0laInKyCtuIJ5kZOLDlW2TJUiGwqIzqtTwx6Itf4OLdSqdZ27Z+HzKZDNuCdzyvDy743n+u+vimpqWpp6QAgAyxGOMnf6le3hsahr2hYWhQvx4W//gDdM26cT20PBmkXvZe/B0AIHFbKK6PnAGBXTVYPP+CBQA5cUm41HMsvJfMgGjSUOQmPcaNsbOQfuL8K/vWpZ1hybAQmGLaOFdUqlgeN+7I8XXAbTzNKxxhaF/THNZWhdNz/LzpAUYOdsRXY1xgY1Ue6ZI8HDj+GFv36PYBQp3+1wRSeRY27DmIDKkcHk61sXz6JFR5fgtzSrpY4zMXeuIs8vLzMWPZRo39jOrbDaM/7q7TrC+0adMGMrkcwUFBEEskcHVxQYC/v2Y9LtKuicViTJw0Sb1ctJ1YtHDhK/vXhc69h0GhyMH29QHIfpIJN6+GmDRrjca1RFpKIrLkhe1EfOwtLJs7Wr28d2vBPMct2vbAsIkBOstqbOcNY2snjC2vMWZmXt0ztnYCALr2+QyK3BxsXfs9sp9kwr2OL6b4rdRoh1Nf+o4UF3sbi/zGqpd3bVkKAGjVrjtGTtacc5/o38xE9fJ9MkT/YhHXy978Ja8jFGQbOkKp2JhJXl+oDElVVH19oTLEtoLM0BFKrbxJ3usLlSEXErXfslkWtakV/fpCZczNOj0NHaFUFvXY8vpCZch+P/2NAnwXxFb6vf35XYjPtjd0hFKxt9TdU7x1Icar4+sLEdE75XY3wtARSiVdUTbmxX5Trbwrvb7Qv8C2SEMn0I+hbV5f5t+IIxCJiIiIiIiIiOitKDk87V+NcyASERERERERERGRVuxAJCIiIiIiIiIiIq3YgUhERERERERERERacQ5EIiIiIiIiIiJ6K3xE778bRyASERERERERERGRVuxAJCIiIiIiIiIiIq3YgUhERERERERERERasQORiIiIiIiIiIiItOJDVIiIiIiIiIiI6K3wISr/bhyBSERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacU5EImIiIiIiIiI6K0oOQfivxpHIBIREREREREREZFW7EAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiIi04kNUiIiIiIiIiIjoraj4EJV/NY5AJCIiIiIiIiIiIq3YgUhERERERERERERasQORiIiIiIiIiIiItOIciPSfYoxzMpiYGFfocsp8Q0coFRVMDB2hVPJVxtdslzfJM3SEUjE1Na7PnLHVYdI9ZTkzQ0f41zMxso8d2wkieh1jayfyVRwLVRYplYZOQLrETx0RERERERERERFpxQ5EIiIiIiIiIiIi0oodiERERERERERERKQVOxCJiIiIiIiIiIhIK+ObjZ+IiIiIiIiIiMoUY3xoKb05jkAkIiIiIiIiIiIirdiBSERERERERERERFqxA5GIiIiIiIiIiIi04hyIRERERERERET0VjgH4r8bRyASERERERERERGRVuxAJCIiIiIiIiIiIq3YgUhERERERERERERasQORiIiIiIiIiIiItOJDVIiIiIiIiIiI6K0o+RCVfzWOQCQiIiIiIiIiIiKt2IFIREREREREREREWrEDkYiIiIiIiIiIiLTiHIhERERERERERPRWVKr/yiSIJoYOYBAcgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFORAJALB27VqsXbsWcXFxAIC6deti9uzZ6Nq1q2GDlSEqlQqHdq/BbydDkPMkEy5evhgwahaq2zlp3Sbm9mVEHAhEwsM7kEvSMHracvg0a6+3vHu3b8Tp4wfw5EkmPOo0wIgJ38DO3qHE7Y4f2ouDodshk4jh6OyGz8ZOgZtHXZ3nPXDwEPaGhEIskcDF2RkTxo2Fl6dHsWXj4uOxLXg7YmJikZKairGjR+Gj3r10nvFlKpUK+3auR+SJMGQ/yYK7lw8+HTcdNe0dtW4TfesvHAkLQnzsHUgl6Zg0fTEatWirl7xHDoZhX8guSCViiJzdMGrcZLh71tFa/rdzZ7Az+BekpjyGnX1tfDp8LBo3baGXrAAQHh6OkL17IZFI4OzigvHjx8PT07PYsvHx8QgKCkLM/ftITU3FmDFj0LtPH71lBQrqQ+T+lbh6bg9ys+VwcGuErp/MQZUaIq3bXD69E1fO7IQ0IxkAUM3eDa17fA63+q11nteYPnO27zWBy9SRsG5UD+b21XG57wSkHDhZ8jatm8F78XRU8nZHbuLfiFmwFknbwvSUuNCIgQ7o3qkGKlmWw427mVi64QGS/87VWt7UFBg2wAGdW1eDrdAM6ZI8HD2dim17knSede/RU9h+4BjEUhncnBwwZcQg1HV3Kbbs/oizOBL5Ox4kFtRdTxcnjBvUR2t5XQkPD8fekBBIntfjN2kn7sfEqNuJPr176zWvSqVC+K61OBcRipzsTLh6+mLwmO9Qw177tcS9W1dwfP9WJDy4A5kkDeO/WQrf5vq5ljgUvg/7QnZDIhFD5OyKMeMnwcPTS2v5C+cisT1oC1JTHsPevjaGjhiNJk2b6yWrsbUTxpYXML7MzKsfxtROAAXt8IFda3HuRFhBO+zlgyFv1A5vQ3zsbcgk6Rj/7VI0bN5Ob5mJygqOQCQAQO3atfHjjz/iypUruHz5Mtq3b49evXrh1q1bes3x9OlTvb5faUTs34LIIzswcLQfpv2wHRUEFlj9/TjkPVVo3UahyEEtkScGjPxOj0kLhIcE49jBPRgx4RsELP4F5uYW+HH2l3haQt7fz0UgeNMKfDRoJL5fHghHZ3f8OPsryKRinWY9c/YcNmzchCGDB2H1iuVwcXbGTL/ZkEqlxZZXKBSwq1kTI4Z9BlsbG51mK8nhsK04cXAXho6bAb9Fgahgbo6l8yaVXCdyc+Dg7I5Pxn6rx6TA+bOnsGXjGvQfPAyLV2yEyNkV/n5fQyqVFFv+7u2bWLrIHx06d8OSFZvQrOV7WDh/FuLjHuglb2RkJDZu2IDBQ4Zg5cqVcHF2ht+sWdrrRG4u7GrWxPDhw2FjoDrx29FNuHgyCB9+MhcjvtsNM4EFdiwbhfw87fXByqYG2vedilF+IRg1ay9EXi3w66rPkZp8X6dZje0zV66iJeTXo3Fz8rw3Km8hqo2mB9Yj48yfON+kFx6u3Ir66+ejaqf3dJxU06A+tfBRNzssWReLcdNvIFehxGI/b1Qw0z7x9uA+tdDrg5pYvukhhk6OwvqgeAzqXQt9P6yp06wRFy5ixdbdGPlxDwQunA13Jwd89f1yiGXyYsv/dSsand5rhlVzpmHD9zNQo4oNvpy/DKkZxbcpuhAZGYkNGzdiyODBWLlyJZxdXDDLz09rPc5VKFDTzs6g7cSxfYE4dXgHhoydiekLgiAwt8CKgAklnjeeKnJQW+SBQaNn6DEpcC7yNDZvXIcBg4di6cp1cHZxxVy/b7WeN+7cvoXFC+ejY+euWLZyPZq3bIUFAbMRH/dQL3mNrZ0wtryA8WVmXt0ztnYCAI6FBeLUoZ34ZNx3mPHjNggEFvg54PPXfqerLfLAYD23w8ZIpfpvvP6r2IFIAIAePXrgww8/hLu7Ozw8PPD999+jUqVK+OOPP4otHxcXBxMTE4SGhqJdu3awtLSEj48Pfv/9d41yISEhqFu3LgQCAUQiEZYsWaLxd5FIhICAAAwdOhRWVlYYM2YMAgMDIRQKcfDgQXh6esLS0hL9+vVDdnY2tm7dCpFIBBsbG0yePBnPnj3T2TEpSqVS4fThYHzw0Wg0aNoOtZw8MHTi95BJ0nDt0imt29Vt+D56DJwEn2Yd9JLzBZVKhaMHfkXv/sPQpEVrODq7YfxXsyEVp+PyH2e1bnd43060+6An2nbsjtqOzhg54RsIBAJEnjio07yhYfvQpcsH+KBTRzg5OmLyxAkQmAtw7PiJYst7enhg9MgRaNumNczMzHSaTRuVSoUT4TvRo/9INGreFg4id4z+wh8ScRr++vOM1u0aNG6FvkMmoHEL/f5qGR62B526dEOHTl3h4CjC2IlTIDA3x6njh4stf/BACBo2bobefQeitqMTBn86Es6u7jhyUD+/aoeFhaFL167o3LkzHJ2cMHHSJAgEAhw/frzY8h6enhg5ahTatG1rkDqhUqlwMWIb3u8+Dp4NO6CGgyd6jViITGkq7l6N0Lqdh297uDdogyo1RKhS0xntP/oKFQSWSH5wTad5je0zl3bsLO7NWY6U/dqPZVFOYwYi52ES7nyzEFl3HyB+zXY8DjkG5y+G6TboSz7uboegvUm4cEmCB/HZ+GHFfVSxrYD3mtlq3aauZ2VcuCjGH1ckeJymQOTvGbgUJYWXe2WdZt158AR6dngf3du9B2cHe3wz5hMIKlTAwVPniy0/74vR6PtBO3g4O0JUyw4zxg2DUqXC5Zt3dJqzqLCwMHTt0gWdO3eGk6MjJk2cWGI74enhgVEjR6JtmzYGaydOHtyOD/uNhm+zdqgt8sDwSQGQStIQdfG01u3qNXoPvQdPREM9jTp8YX/YXnTu8iE6du4CR0cRxk/8EgKBABHHjxZbPnx/KBo1boqP+g2Ag6MThgwdDhdXdxwK36eXvMbWThhbXsD4MjOv7hlbO6FSqRBxcAe6FW2HJwdAKk7D1RLa4fqN3kPvwZ+jYQv9tsNEZQ07EOkVz549w65du/DkyRO0bNmyxLIzZ87EtGnTEBUVBQ8PDwwaNAj5+fkAgCtXrqB///4YOHAgbty4gblz58LPzw+BgYEa+1i8eDF8fHxw9epV+Pn5AQCys7OxYsUK7Nq1C0ePHsWZM2fQp08fHD58GIcPH0ZQUBDWr1+PvXv36uQYvCwjNRlyaTq8GhTevmlhWRkit/qIu6fbL/r/RGrKI0glGajn21S9zrJiJbh6eOP+3ZvFbpOfl4eHMdGo51O4jampKer5NsX96OK3eRfy8vJwPyYGjXx9NN63oa8vbt+N1tn7vq20lGTIJBmo26CZel3BMa6HmOgbBkz2qry8PMTGRKOBb2P1OlNTUzTwbYzou7eL3ebe3Vsa5QGgYaNmWsu/S3l5eYi5fx++vr7qdaampvD19cXdO/rrnCgNaXoSsmRpcK7zP/U6c8vKqOXSAMmxUW+0D6XyGW5ePIS8p9mo7eqrm6Aw3s9caQhb+CL9lOYPWmknzsOmha/eMtjVEKCKTQVcuSZVr3uS/Qx37meirqf2zsBb0Zlo1MAate3MAQCuIkvUr1MZf17V3ci+vLx8RD+IR9MG3up1pqamaNqgDm7ee7NRx7lPnyI//xmsKlXUVUwNL+pxce3Enbt39ZKhtNJTCq4l6jQovFXPomJlOLvXx4PosnUtUXDeuAcf30bqdaampvDxbaT1PBB99zZ8Gr503mjcRC/njX+iLLQTpWFseQHjy8y8pWOM7YS6HfYpbIctK1aGs3s9PIi+rpcMRMaMcyCS2o0bN9CyZUvk5uaiUqVKCAsLg7e3d4nbTJs2Dd26dQMAzJs3D3Xr1kVMTAy8vLywdOlSdOjQQd0p6OHhgdu3b+Onn37CsGHD1Pto3749pk6dql4+d+4c8vLysHbtWri6ugIA+vXrh6CgIKSkpKBSpUrw9vZGu3btcPr0aQwYMKDYbAqFAgqF5lD0p0+BChUEpT42cmk6AKCydRWN9ZWtq0AuzSj1/nRNJinIZC3UHOViLbRV/+1lmXIplMpnsLZ5dZtHSfG6CQpALpdDqVRCKNS8ncxGKERiou7n/PqnZM//3a2EmnXCylr7MTaUTLns+THW/LcVCm2QnJhQ7DZSifiV8tZCG0glur2dHSisEy/fYii0sUFiUtmsE1myNABARSvN+lDRqiqyZOklbpuSFI0tCwYhP0+BCgJLfDxhFarZu+ksq7F+5kpDUKMqFCmax12Rkg4z68owNRdAmav9NqV3xVZYAQAgluVprJdI82BrU0HrdttDk2FpUQ5BKxtCqVTB1NQEm3YkIOJsyfXobUgzs/BMqYSttZXGeltrK8QnP36jfawJ3otqtkI0rV/ydcO7oq2dsBEKkZSYqJcMpfXiWqLY80YZu5aQvzhvvNwOC220Ht+C88ar5SV6OG/8E2WhnSgNY8sLGF9m5i0dY2wnCr/TaV7jWgmrQF7Grt+JyiJ2IJKap6cnoqKiIJPJsHfvXnz22WeIjIzEihUrEBwcrC6XlZWl/u8GDRqo/9vOzg4AkJqaCi8vL9y5cwe9emlOst+qVSssX74cz549Q7ly5QAATZo0eSWLpaWluvMQAGrUqAGRSIRKlSpprEtNTdX6/7NgwQLMm6c5h8gnY2di6Hi/Eo8DAFw6dwg7N/irl8fPWP3abQzp/Jlj+GX1QvXyN7MXGzDNv9PvkUewde0P6uUvZy03XBgyuBt/hONQ0Bz18qDJ6/7xvqrWdMaY2WFQ5GTi9pVjOLB5OoZ+E6TTTkR69zq2roqpYwvPW9O//2ejZdv9rwo6ta6GgGX3EJeYAzfnipg4QoR08VMcO5P2ruK+U9vCDuPEhYtYM+9rCCoYZlqJsujPs4ewff189fLE71YaMA0R0X/Pn5GHEVy0HZ65woBp/huUSkMnIF1iByKpVahQAW5uBV9YGzdujEuXLuHnn39GQEAApk2bVuw2RecQMjEpmBReWcpWo2LFV293enluIhMTk2LXlfReM2bMwJQpUzTWnXvDu/PqN2kLkXt99XJ+XsHDXTJlGbC2qaZenynLQG1R8U971KfGzd6Dm0fhqI/8vIIRLzKpGDa2VdXrZVIxnFyKf8pqZSshTE3LQfbSL4AyqRhCmyrFbvMuWFlZwdTU9JXJliVSqcEmuS+Ob7PWcPGop15+USfk0gwIixxjuUwMB+fij7GhVLayfn6MNf9tpVIJhDbFz8UmtLF9pbyshPLv0os6IZFo1gmpRGLQh+YU5eHbDrWcC39Ayc8vqA9P5BmoLKyuXv9Eno6aDtqfdA0A5cpXgG2Ngif/2Ynq4e+4m7gYsQ3dhvqXuN0/ZSyfubehSEmHoEZVjXWCGlWRJ8vU2YiMCxfFuHOv8Ac2s+cPSrG1NoNYUjgK0UZohpiHT7TuZ/xnImwPTcapCwUjIR4kZKNGNQGGfFRLZx2IwsqVUM7U9JUHpohlclQRWpe47fYDxxC07whWzJ4KNycHneQrjrZ2QiKVwsZW9+3Um/Bp2hbOxVxLyKWa1xJymRgOorJ13rB6cd54uR2WSrQe34LzRjHl9XDe+CcM0U68DWPLCxhfZuYtHWNoJ3yatYGzxvV7wfk4UyaG0LZIOyzNgIOz4b/TEZV1nAORtFIqlVAoFKhevTrc3NzUrzdVp04dXLhwQWPdhQsX4OHhoR59qEsCgQBWVlYarze9fdncoiKq1XRUv2rWdoWVsCqib/ypLpOTnYW4mBsQefiUsCf9sLCsiJr2DupXLUdnCG2q4Na1y+oy2dlPEHvvNty96hW7j/JmZnB288St64XbKJVK3Lp2Ge6exW/zLpiZmcHdzQ1XowrnHVEqlYiKugZvr7JzIrewqIgadg7ql72DC6xtquD29UvqMjnZWYi9dxNunvVL2JP+mZmZwdXNE9ej/lKvUyqVuB51BZ5exd9u6OFVFzeu/aWx7trVy1rLv0tmZmZwc3fHtago9bqCOhEFrzold8bpi8C8EmxrOKlf1ezdUMm6Gh7eKZyLSJGTheQH11GrlPMZqlRKdYekLhjLZ+5tSP+IQpX2LTTWVe3wP0j+iNLZe+bkKpH8OFf9ikvMQYbkKRo1EKrLWFqUQx33yrgVnal1PwKBKVQvPd7vxa3MumJmVh6eLk64fKNw1KRSqcTlG3dRz8NF63bB+49gy96DWDbzS9RxFeksX3Fe1OOoa4VzB75oJ+p4eek1izbmFhVR3c5R/bJzKLiWuHvjorpMTnYWHt6/ARdPw19LFFVw3vDA9WtX1esKzhtXtZ4HPL28Nc4zABB1Vft5xtAM0U68DWPLCxhfZuYtHWNoJ15th11gJayKO9c1v9M9vH8TLp4NStgTEQHsQKTnZsyYgbNnzyIuLg43btzAjBkzcObMGQwZMuQf73Pq1Kk4efIkAgICcO/ePWzduhWrVq3SOpqxLDMxMUG7Dz/B0dANuH75NJIT7iFo1UxY21SDT9PCp3Gt8B+FyKM71cuK3Gwkxd1FUlzBhO4ZqclIirsLcfrfOs/bpecAhP0aiCt/nkNCXAzWLvWH0LYqmrRorS73/cyJOHZwj3r5w96DcPrYAZw9eQjJiXHYvGYRcnNz0aZjd53m/ahPbxw5dgwnIk4iISERK1evQW5uLjp36ggAWLRkKTYHblWXz8vLQ2zsA8TGPkBefj4yMjIQG/sAyY8e6TRnUSYmJujUYxDC9/yCqxcjkRgXg43L58DGthoaNW+rLrfIbzwiDv2qXs7NyUbCg2gkPCgYDpuWmoyEB9HISHuzecb+qR59PkbEsYM4HXEUSQnxWL96GRS5uWjfqSsA4OclPyA4cIO6fPeefXH1ykXsD/0VSYnx2LV9C2JjotG1ex+d5nyhT58+OHr0KCJOnEBCQgJWr1oFhUKBTp06ASh4+NKWLVvU5QvqRCxiY2ORr64TsXikpzphYmKCZh2H4vyhdYiOOoWUpGjs++VbVBZWh1fDjupyQYuH4dKpwikhToYsQfy9S5CmJyElKRonQ5YgLvoi6jfvodO8xvaZK1fRElY+XrDyKegYsnSuDSsfL5g7FEyd4Tl/Cny2FE7jEL9hFyydHeC14GtU9HSB07jBsPu4Kx7+HKiXvC/sOfg3hvarjf81tYGLoyW+m+yGDPFTnL9YOLp36Vxv9OlaU7382yUJPulXGy0a26BmNQHeb26L/j3sce5P3c4PNah7Jxw4eRaHzlxAXNIjLNoYjFyFAt3btQIAzFv5C9ZsD1GXD9p3BBt27cfMCcNgV60qMiQyZEhkyM7J1WnOol60EyciIpCQkIBVq1eX+XaiQ/chOLx3I65dOoPk+PvYsmIWhDbV4Nusnbrc0rljcPrwLvVybk42Eh/eReLDgmuJ9NRkJD68C3Gabq8levXph+NHD+FUxDEkJsRj3erlyFXkomOnDwAAyxb/iG1bNqnL9+j1Ef66cgn7QncjKTEBO4O3Ivb+PXTr0VunOV8wtnbC2PIaY2bm1T1jaydMTEzQsftgHN67CVEXzyAp/j42r/CD0LYaGhZth+eMxalX2uFoJD4suH4vaIejkaHjdpiorOEtzASgYN7CoUOH4u+//4a1tTUaNGiAY8eOqS/C/4lGjRph9+7dmD17NgICAmBnZwd/f3+NB6gYk469hkOhyMHO9f7Iyc6Eq1dDTPhuLcyKjGpMT0lClrxwWH587C2smDdSvRy67ScAQPM2PfHp54XzcehCj76fQJGbg02rfkT2kyx4eDfA9HnLNEZhpjxORqZcpl5u+X5HyGUS7N2+CVJJBpxc3DF93rJXHqzyrrVt/T5kMhm2BW+HRCKBi4sLvvefp76dMi0tDaYmhaNvMsRiTJj8hXp5b2gY9oaGoUH9evjpxwU6zVrUh30+w9PcXASu+QHZTzLhUccXU2av0KgTqY+TkCWXqpfjYm5jod849fKuzcsAAK3adceoL+bqLOt7rdtDLpNiZ/AWSCViOLu4wc9/kfqW5PS0FI1j7OVdD1997YcdQb9g+9ZNsKtVC9/Omg8nkfbRSO9SmzZtIJfJEBQcDIlYDBdXV/gHBBTWidRUjbxisRiTJk5UL4eEhCAkJAT169fHwkWL9JL5f11GIU+Rg0PbZiM3Ww5H98YY/OVGlDcrrA+StARkZxa2EdmZYuz/5VtkydIgsKiMGrU9MeTLTXCp20qnWY3tM2fduB5angxSL3sv/g4AkLgtFNdHzoDArhosnn/BAoCcuCRc6jkW3ktmQDRpKHKTHuPG2FlIP3Fe51mL2hmWDAuBKaaNc0WliuVx444cXwfcxtO8whGG9jXNYW1VOEXHz5seYORgR3w1xgU2VuWRLsnDgeOPsXWPbh9w07FVM0jkWdj0635kSOVwFzlg2cwvYfv8FuaU9AyNOhF6/Azy8vPx3ZK1GvsZ+XEPjOqvOf+xrrRp0wYyuRzBQUEQSyRwdXFBgL+/uh6npqXBxLTwt3KxWIyJkyapl4u2E4sWLnxl/7rwQe9heJqbg+B1Ach+kgk3r4aY7LdG81ricSKyMjWvJZbOGa1e3hO4BADQsm0PDJsUoLOs77dpB7lchh1BgZBIJHB2ccUc/x+LnDdSNUbG1vGui6nfzETwts0ICtwM+1q1MMPPH04iZ51lLMrY2gljy2uMmZlX94ytnQCAD/oMg0KRg+B18wva4Tq++MJvtUY7nPY4UeP6PT72NpbMLtIOb3neDrfrgeGTdDPlDFFZZKJ6+T4Zon+xE9fK3vwlr2NroX2urLKoiqnunhSqC4/y7F5fqAyxNst6faEyxtw0x9ARSuX3ZP1dxL4L79ndN3SEUrtVR7cjLN+1RT22vL5QGRI295mhI5SKtKK9oSOUWkKOcWWuaWFcTxeN9epg6AhE/zmud08aOkKppOSWzflVtWlT19LQEfRi+YH/RvfSlz11N7VMWcZbmImIiIiIiIiIiEgrdiASERERERERERGRVuxAJCIiIiIiIiIiIq34EBUiIiIiIiIiInoryv/GFIj/WRyBSERERERERERERFqxA5GIiIiIiIiIiIi0YgciERERERERERERacUORCIiIiIiIiIiItKKD1EhIiIiIiIiIqK3ouJDVP7VOAKRiIiIiIiIiIiItGIHIhEREREREREREWnFDkQiIiIiIiIiIiLSinMgEhERERERERHRW1Ep/yuTIJoYOoBBcAQiERERERERERERacUORCIiIiIiIiIiItKKHYhERERERERERESkFTsQiYiIiIiIiIiISCs+RIWIiIiIiIiIiN7Kf+YZKv9RHIFIREREREREREREWrEDkYiIiIiIiIiIiLRiByIRERERERERERFpxTkQiYiIiIiIiIjorag4B+K/GjsQ6T9FBRNDRyg1E7AVJtInUyNrJlQmvJlA10yMrVKYGFleI2RiwnMzEZEhqVQ81xHpG791EBERERERERERkVbsQCQiIiIiIiIiIiKt2IFIREREREREREREWnEORCIiIiIiIiIieitKJecI/jfjCEQiIiIiIiIiIiLSih2IREREREREREREpBU7EImIiIiIiIiIiEgrzoFIRERERERERERvRcUpEP/VOAKRiIiIiIiIiIiItGIHIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBUfokJERERERERERG+FD1H5d+MIRCIiIiIiIiIiItKKHYhERERERERERESkFTsQiYiIiIiIiIiISCvOgUhERERERERERG9FyUkQ/9U4ApGIiIiIiIiIiIi0YgciERERERERERERacUORCIiIiIiIiIiItKKHYhERERERERERESkFR+iQgCAuXPnYt68eRrrPD09cffuXQMlKntUKhUO716N306GIOdJJpy9fDFglB+q2zlp3Sbm9mWcPBCIhIe3IZekYdS05fBp1kFvefdu34RTxw/gyZNMeNZpgBETvoadvUOJ2x0/FILw0O2QScRwdHbDsLFT4ObhrfO8Bw4ewt6QUIglErg4O2PCuLHw8vQotmxcfDy2BW9HTEwsUlJTMXb0KHzUu5fOM75MpVJh3871iDwRhuwnWXD38sGn46ajpr2j1m2ib/2FI2FBiI+9A6kkHZOmL0ajFm31kvfIwTDsC9kFqUQMkbMbRo2bDHfPOlrL/3buDHYG/4LUlMews6+NT4ePReOmLfSSFQDCw8MRsncvJBIJnF1cMH78eHh6ehZbNj4+HkFBQYi5fx+pqakYM2YMevfpo7esQEF9OLN/Jf46uwe52XI4uDVCt0/noEoNkdZtLp3eictndkKangwAqG7vhtY9P4d7/dY6z3sg/CD2hoRA8uIzN36c1uMbFx+PoKBg3I+JQWpqKsaOGY0+vXvrPOMLtu81gcvUkbBuVA/m9tVxue8EpBw4WfI2rZvBe/F0VPJ2R27i34hZsBZJ28L0lLjQ8AEO6N6xOipZlsfNaDmWbniI5Me5WsubmgLD+jug0/tVYSusgHTJUxw9k4qgvck6z7r3yClsP3AUYqkMbk4OmDJyMOq6uxRbdv+JSByJ/B0PEgtyebo4Ydzgj7SW15Xw8HCNevwm7cSLejxmzBi91mOgoJ04sGstzp0IQ052Jly9fDBkzHeoYa/9WuLerSs4vn8b4mNvQyZJx/hvl6Jh83Z6yXsofB/2heyGRCKGyNkVY8ZPgoenl9byF85FYnvQFqSmPIa9fW0MHTEaTZo210tWY2snjC0vYHyZmVc/jKmdAAra4fBda3EuIrSgHfb0xeA3aoe3IuHBHcgkaRj/zVL4Nm+vt8zGRKU0dALSJY5AJLW6devi77//Vr/Onz+v9wxPnz7V+3u+qYj9mxF5ZAcGjPbD1B+2QyCwwJrvxyLvqULrNgpFDmqJPNB/5Ew9Ji0QHhKMowf3YOSErxGweBME5ub4cfZXeFpC3t/PRSBo0wr0HTQCPyzfAidnN/w4+yvIpGKdZj1z9hw2bNyEIYMHYfWK5XBxdsZMv9mQSqXFllcoFLCrWRMjhn0GWxsbnWYryeGwrThxcBeGjpsBv0WBqGBujqXzJpVcJ3Jz4ODsjk/GfqvHpMD5s6ewZeMa9B88DItXbITI2RX+fl9DKpUUW/7u7ZtYusgfHTp3w5IVm9Cs5XtYOH8W4uMe6CVvZGQkNm7YgMFDhmDlypVwcXaG36xZ2utEbi7satbE8OHDYWOgOnHhyCb8GRGEbp/OxaiZu1FBYIHgpaOQn6e9PljZ1EDHvlMxZnYIxvjthahOC+xa+TlSk+/rNGtk5Fls3LgRnwwejFUrV8DFxRkz/fxK/MzVtKuJEcOHGeT4lqtoCfn1aNycPO/1hQFYiGqj6YH1yDjzJ8436YWHK7ei/vr5qNrpPR0n1TSotz36flgTSzc8wPjvbiBHocRPfnVQwcykhG1qoVfnGvj5l4f47MsobAiOx6BetfDRhzV1mjXiwkWs2PorRn7cE4GL5sBd5ICv5i+DWCYvtvxft6LR6b1mWDX3a2z44TvUqGqLLwOWIjWj+DZFFyIjI7Fh40YMGTwYK1euhLOLC2aVUI9zFQrUtLMzaDtxLCwQpw7txCfjvsOMH7dBILDAzwGfv/ZaorbIA4NHz9BjUuBc5Gls3rgOAwYPxdKV6+Ds4oq5ft9qPW/cuX0LixfOR8fOXbFs5Xo0b9kKCwJmIz7uoV7yGls7YWx5AePLzLy6Z2ztBAAc2xeIU4d3YMjYmZi+IAgCcwusCJhQYjv89Hk7PEjP7TBRWcMORFIrX748atasqX5VrVpVa9m4uDiYmJggNDQU7dq1g6WlJXx8fPD7779rlAsJCUHdunUhEAggEomwZMkSjb+LRCIEBARg6NChsHoB97oAAN/HSURBVLKywpgxYxAYGAihUIiDBw/C09MTlpaW6NevH7Kzs7F161aIRCLY2Nhg8uTJePbsmU6OxctUKhXOHA7GBx+NQYOm7VHLyROfTvwBMkkarl86pXW7ug3fR/eBk/U26vAFlUqFIwd2o0//YWjSojWcnN0w4avZkIjTcfmPs1q3O7RvF9p/0BNtO3ZHbUdnjJzwDSoIBDhz4qBO84aG7UOXLh/gg04d4eToiMkTJ0BgLsCx4yeKLe/p4YHRI0egbZvWMDMz02k2bVQqFU6E70SP/iPRqHlbOIjcMfoLf0jEafjrzzNat2vQuBX6DpmAxi30M3rkhfCwPejUpRs6dOoKB0cRxk6cAoG5OU4dP1xs+YMHQtCwcTP07jsQtR2dMPjTkXB2dceRg/r5VTssLAxdunZF586d4ejkhImTJkEgEOD48ePFlvfw9MTIUaPQpm1bg9QJlUqFPyO2oXX3cfBq2AE1HDzRe+RCZEpTcfevCK3befq2h3uDNqhSQ4QqNZ3R4aOvUEFgiaQH13SaNzQsDF26dEHnzp3g5OiISRMnQiAwxzEtx7fgMzcSbdu0McjxTTt2FvfmLEfKfu3HsiinMQOR8zAJd75ZiKy7DxC/ZjsehxyD8xfDdBv0Jf262SEoJAkXLknwID4bC1bGoKpNBbzXzFbrNvU8K+P8JQn++EuKx2kKRP4hxqVrUtRxq6TTrDvDj6Nnx9bo3v49ODvY45sxn0IgqICDp4r/MXHel2PQt0t7eDg7QlTLDjPGDYNSpcLlG3d0mrOosLAwdO3SBZ07dy5Sj7W3E54eHhhlwHqsUqkQcXAHuvUbDd9m7VBb5IHhkwMgFafh6sXTWrer3+g99B78ORq20O9ol/1he9G5y4fo2LkLHB1FGD/xSwgEAkQcP1ps+fD9oWjUuCk+6jcADo5OGDJ0OFxc3XEofJ9e8hpbO2FseQHjy8y8umds7YRKpcLJg9vxYdF2eFIApJI0RJXQDtdr9B56D56Ihhx1SP9x7EAktfv378Pe3h4uLi4YMmQIEhISXrvNzJkzMW3aNERFRcHDwwODBg1Cfn4+AODKlSvo378/Bg4ciBs3bmDu3Lnw8/NDYGCgxj4WL14MHx8fXL16FX5+fgCA7OxsrFixArt27cLRo0dx5swZ9OnTB4cPH8bhw4cRFBSE9evXY+/eve/8OBQnIzUJcmk6PBsU3r5pYVkZIrf6eHhPt1/0/4nUlEeQSjJQz7eJep1lxUpw9fDG/bs3i90mPy8PD2OiUc+ncBtTU1PU822K+9HFb/Mu5OXl4X5MDBr5+mi8b0NfX9y+G62z931baSnJkEkyULdBM/W6gmNcDzHRNwyY7FV5eXmIjYlGA9/G6nWmpqZo4NsY0XdvF7vNvbu3NMoDQMNGzbSWf5fy8vIQc/8+fH191etMTU3h6+uLu3f01zlRGtL0JGTJ0uDi/T/1OnPLyqjt0gCJsVFvtA+l8hlu/nkIeU+z4eDqq5ugKPzMNXzp+Db09cWdf8m0FcIWvkg/pfmDVtqJ87Bp4au3DHbVBahiUwFXrsvU655kP8Pt+1nw9qisdbub0ZloXN8Kte3MAQCuTpao71UZf16V6ixrXl4+oh/Eo2mDwikNTE1N0bS+N25Gx77RPnKfKpD/7BmsKlXUVUwNL+pxce1EWa3H6SnJkEvTUcen8FY9y4qV4exeDw+irxsw2asKzhv34OPbSL3O1NQUPr6NtJ4Hou/ehk/Dl84bjZvo5bzxT5SFdqI0jC0vYHyZmbd0jLGdULfDDQrbYYuKleHsXh8PosvedzqisoZzIBIAoHnz5ggMDISnpyf+/vtvzJs3D++//z5u3ryJypW1f9GZNm0aunXrBgCYN28e6tati5iYGHh5eWHp0qXo0KGDulPQw8MDt2/fxk8//YRhw4ap99G+fXtMnTpVvXzu3Dnk5eVh7dq1cHV1BQD069cPQUFBSElJQaVKleDt7Y127drh9OnTGDBgQLHZFAoFFArNoehPn5qgQgVBqY+PXJoBAKhsXUVjfWXrKpBL00u9P12TSQpuObYWao5ysRbaQiop/nZkuVwKpfIZrG1e3eZRUrxuggKQy+VQKpUQCjVvJ7MRCpGYmKSz931bsud1wkqoWSesrG0hk2QYIpJWmXLZ82Os+W8rFNogObH4HwqkEvEr5a2FNlrrz7v0ok68fIuh0MYGiUlls05kydIAABWtNOtDRauqeCIvuY1ISYrGLz8MQn6eAhUElhjw+SpUs3fTWVb1Z85GqLFeKBQiMTFRZ++rT4IaVaFI0TzuipR0mFlXhqm5AMpc7bcpvSu2NgUj3MTSPI31EtlT2Aq1j37bEZaMihblsO1nXyiVKpiammDTzgREnNPduUaamYlnSiVsra001tsKrRCf/Pcb7WNN8F5UsxGiaQPdz5kLaG8nbIRCJJXRevzieqGytWbbaiWsAnkZO2/IX5w3Xm6HhTZaj2/BeePV8hI9nDf+ibLQTpSGseUFjC8z85aOMbYTL9rhYq/fpWWrHSYqi9iBSACArl27qv+7QYMGaN68OZycnLB7925cunQJwcHB6r9nZWVplH3Bzs4OAJCamgovLy/cuXMHvXppPtiiVatWWL58OZ49e4Zy5coBAJo0aYKXWVpaqjsPAaBGjRoQiUSoVKmSxrrU1FSt/08LFix45cEwn4ydhU/H+2nd5oVL5w5i1wZ/9fK4Gatfu40hnT9zDJtWL1IvfzN7sQHT/Dv9HnkEW9f+oF7+ctZyw4Uhg7v+RzgObpujXh78xbp/vK+qNZ0xbk4YcnMycfvKMez7ZTqGfRuk005Eevc6vl8VU8cUPkBk+oJ/Ngqu3f+qoOP7VTH/5/t4mJgDN5ElJg4XIUOch2ORae8q7ju1LewwTly4iDVzv4GggmGmlSiL/ow8jOD189XLE2euMGAaIqL/nj/PHsL2ou3wdysNmOa/QaVSGToC6RA7EKlYQqEQHh4eiImJgb+/P6ZNm1ZsuaJzCJmYFEwKr1SW7tFLFSu+ervTy3MTmZiYFLuupPeaMWMGpkyZorHubLT2ieuLqt+kHUTuhZ2j+XkFD3fJlGXA2qaaen2mLAO1RNqfMqYvjZu9BzePuurlvOd5ZVIxbGwL57KUScUQubgXuw8rKyFMTcupRy8W3UZoo32+rrdlZWUFU1PTVyZblkilBpvkvji+zVrDxaOeevlFnZBLMyAscozlMjEcnIt/erShVLayfn6MNf9tpVKJ1n9boY3tK+VlJZR/l17UCYlEs05IJRKDPjSnKE+fdqg9p0gbkV9QH57IM1BZWF29/ok8HTUctD/pGgDKla8A2xoFT/6zF9XDo4c38UfENvQY6l/idv+U+jMnkWqsl0qlsLEtG8f3bSlS0iGooTmPr6BGVeTJMnU2IuPCJTHu3C/8gc2sfMH5xlZopjEK0ca6AmLinmjdz7hPnbBjXzJOXSgYCfEwIRs1qwkw5KNaOutAFFaujHKmpq88MEUslaOK0LrEbbfvP4qgsMNYMXsa3EQOOslXHG3thEQqhY2t7tupN+HTrA2cNc4bBfUgUyaG0LbwWkIuzYCDc/FPjjYUqxfnjZfbYalE6/EtOG8UU14P541/whDtxNswtryA8WVm3tIxhnbCp2lbOLvXVy8XvX4v+p1OLhPDQVS2rt+JyiLOgUjFysrKQmxsLOzs7FC9enW4ubmpX2+qTp06uHDhgsa6CxcuwMPDQz36UJcEAgGsrKw0Xm96+7K5RUVUq+moftWs7QorYVVE3/hTXSYnOwtxMTfg7OFTwp70w8KyImra11a/ajs6Q2hTBTevXVaXyc5+gth7t+HuVa/YfZQ3M4OzmyduXr+iXqdUKnHr2mW4exa/zbtgZmYGdzc3XI0qnP9JqVQiKuoavL3KzhcqC4uKqGHnoH7ZO7jA2qYKbl+/pC6Tk52F2Hs34eZZv4Q96Z+ZmRlc3TxxPeov9TqlUonrUVfg6VX87YYeXnVx49pfGuuuXb2stfy7ZGZmBjd3d1yLilKvK6gTUfCqU3JnnL4ILCrBtoaT+lXN3g2VrKvhwZ3CuYgUOVlIenC91PMZqlRKPMvT3RPpX3zmoq5Fqde9OL51vAz/g8i7IP0jClXat9BYV7XD/yD5I0pn75mTq0Ty41z1Ky4pBxmSp2hUv7ADztKiHLzdK+H2vUyt+xEITPHyb2PPlCqYvNnvX/+ImVl5eLo4aTwARalU4vKNO6jn6ap1u+B9R7Al5CCWzfoKddxEugtYjMJ6XDhnVVmrx+YWFVHdzlH9snNwgZWwKu5c17yWeHj/Jlw8G5SwJ/0rOG944Pq1q+p1BeeNq1rPA55e3hrnGQCIuqr9PGNohmgn3oax5QWMLzPzlo4xtBOvtsMF3+nu3rioLlPQDt+Ai6fhv9MRlXXsQCQABXMZRkZGIi4uDr/99hv69OmDcuXKYdCgQf94n1OnTsXJkycREBCAe/fuYevWrVi1apXW0YxlmYmJCdp++AmOha7Hjcun8SjhHoJWfQdrm2po0LTwaVwr/Uch8ugO9bIiNxtJcXeRFFdwK1tGajKS4u5CnP5mc0q9Td6uPftj369bcfnPc0iIi8Xapf6wsa2KJi1aq8vNnzkJxw4WPoimW++BOH3sACJPHkZyYhw2r/kJitxctOnYXad5P+rTG0eOHcOJiJNISEjEytVrkJubi86dOgIAFi1Zis2BW9Xl8/LyEBv7ALGxD5CXn4+MjAzExj5A8qNHOs1ZlImJCTr1GITwPb/g6sVIJMbFYOPyObCxrYZGzduqyy3yG4+IQ7+ql3NzspHwIBoJDwoeEJOWmoyEB9HISHus07w9+nyMiGMHcTriKJIS4rF+9TIocnPRvlPB9AU/L/kBwYEb1OW79+yLq1cuYn/or0hKjMeu7VsQGxONrt376DTnC3369MHRo0cRceIEEhISsHrVKigUCnTq1AlAwcOXtmzZoi5fUCdiERsbi3x1nYjFIz3VCRMTEzTvOBTnDq5DdNQppCRFI2zTt6gsrA6vRh3V5bb9NAwXTxZOCRERsgTx0ZcgTU9CSlI0IkKWIC76Iuq36KHTvB/16YMjR4/hREQEEhISsHL1auQqctH5+fH9afESbN4SqC7/8vFN1/PxLVfRElY+XrDyKegYsnSuDSsfL5g7FEyd4Tl/Cny2LFSXj9+wC5bODvBa8DUqerrAadxg2H3cFQ9/Dixu9zqz99Df+LRvbfyviQ2cHS3x3SQ3pEue4vzFwtG9S+Z4o0+Xmurl3y9L8GnfWmjRSIia1QR4r5kt+ne3x7mLup0falCPzjgQcRaHzlxAXNIjLNoYjFyFAt3btQIAzFuxCWu2h6jLB4UdxoZd+zBzwjDYVauKDIkMGRIZsnNydZqzqBftxIt6vGr16jLfTnTsPhiH925C1MUzSIq/j80r/CC0rYaGzdqpyy2dMxanDu9SL+fmZCPxYTQSHxacN9JTk5H4MBoZabq9lujVpx+OHz2EUxHHkJgQj3WrlyNXkYuOnT4AACxb/CO2bdmkLt+j10f468ol7AvdjaTEBOwM3orY+/fQrUdvneZ8wdjaCWPLa4yZmVf3jK2dMDExQYfuQ3B470Zcu3QGyfH3sWXFLAhtqsG3aDs8dwxOv9IO30Xiw4LvdAXt8F2IddwOE5U1vIWZAABJSUkYNGgQMjIyUK1aNbz33nv4448/UK1atddvrEWjRo2we/duzJ49GwEBAbCzs4O/v7/GA1SMScdeI/BUkYOd6+chJzsTLl4NMeG7dTArMqoxPSURT+RS9XJC7C2smDdCvRy27ScAQLM2PfHp59/rNG+Pvp9AkZuLTasWIvtJFjy9G2D6vKUaozBTHicjs0jelu93hFwmxd7tGyGViOHk4o7p85bq/LbVtq3fh0wmw7bg7ZBIJHBxccH3/vPUtzCnpaXBtMjwmwyxGBMmf6Fe3hsahr2hYWhQvx5++nGBTrMW9WGfz/A0NxeBa35A9pNMeNTxxZTZKzTqROrjJGQVOcZxMbex0G+cennX5mUAgFbtumPUF3N1lvW91u0hl0mxM3gLpBIxnF3c4Oe/SP1vm56WonGMvbzr4auv/bAj6Bds37oJdrVq4dtZ8+EkctH2Fu9UmzZtIJfJEBQcDIlYDBdXV/gHBBTWidRUjbxisRiTJk5UL4eEhCAkJAT169fHwkWLXtm/LrTqOgp5T3MQvnU2crPlcHRvjE++2ojyZoX1QZyWgOyswlt3nsjFCPvlW2TJ0iCwqIwatT3xyVeb4Fq3lU6ztmnTGjK5DEFBwerP3Hx/f/XxTU1Lg4mp5mfu80mT1cshIaEICQlF/fr18dPCH3WaFQCsG9dDy5NB6mXvxd8BABK3heL6yBkQ2FWDxfMvWACQE5eESz3HwnvJDIgmDUVu0mPcGDsL6SfO6zxrUTv3PYK5oBymjXVBpYrlceOuHN/Mv4OneYXzA9WqIYC1VeHl2M+/PMTIgY74crQLbKzMkC55ivATKdi6V7cPEOrYqhkk8kxs2rUPGVI53EUOWDbzK9g+v4U5JV0M0yJ1IvT4GeTl5+O7xWs19jPy454YNUBz/mNdadOmDWRyOYKDgiCWSODq4oKAV+px4W/lYrEYEydNUi8XbScWLVz4yv514YM+w6BQ5CB43XxkP8mEWx1ffOG3WuO8kfY4UeO8ER97G0tmj1Yv79myBADQsl0PDJ+km6kOAOD9Nu0gl8uwIygQEokEzi6umOP/Y5HzRqpGnajjXRdTv5mJ4G2bERS4Gfa1amGGnz+cRM46y1iUsbUTxpbXGDMzr+4ZWzsBAB/0HoanuTkIXhdQ0A57NcRkvzWa3+keJyIrs/B6LT72FpbOKdIOBz5vh9v2wLBJAXrLbgxKOZsZGRkTFWe5pP+Q49d0d1ugrlS10H6rW1lka2pcTzB7lGf3+kJliLVZ1usLlTHmpjmGjlAqfz7S30Xsu9DSLtbQEUrttlc3Q0colZ96BRo6QqmEznlm6AilIrU0rnYYABJzjStzDfOy+SRkbWK9Ohg6AtF/juvdk4aOUCqPc6q8vlAZ0raehaEj6MWcbXmvL/QvMG/of/OhcbyFmYiIiIiIiIiIiLRiByIRERERERERERFpxQ5EIiIiIiIiIiIi0ooPUSEiIiIiIiIiorfCR2z8u3EEIhEREREREREREWnFDkQiIiIiIiIiIiLSih2IREREREREREREpBXnQCQiIiIiIiIiorei5BSI/2ocgUhERERERERERERasQORiIiIiIiIiIiItGIHIhEREREREREREWnFDkQiIiIiIiIiIiLSig9RISIiIiIiIiKit6LiU1T+1TgCkYiIiIiIiIiIiLRiByIRERERERERERFpxQ5EIiIiIiIiIiIi0opzIBIRERERERER0VtRcQrEfzWOQCQiIiIiIiIiIiKt2IFIREREREREREREWrEDkYiIiIiIiIiIiLRiByIRERERERERERFpxYeoEBERERERERHRW1Eq+RSVfzN2IBIRGREVTAwdgYiIiIiIiP5jeAszERERERERERGRAYnFYgwZMgRWVlYQCoUYOXIksrKyStymbdu2MDEx0XiNGzdOo0xCQgK6desGS0tLVK9eHV9//TXy8/NLnY8jEImIiIiIiIiIiAxoyJD/s3ffYU1dfRzAv0QhDIGAKEPZUxTFvfderaO1jmpV3FU7tK0LF+5VR617gqNWRMUNbn3dihNRUARcrIQhm+T9AwlEEpRqgrTfz/Pkebwn59z743ruucnJuecMwMuXLxEUFITs7GwMGTIEI0aMwM6dO4stN3z4cMyePVu+ra+vL/93bm4uunbtCgsLC/zvf//Dy5cvMWjQIGhra2PevHklio8diERERERERERE9FFkMs6B+E+Fhobi2LFjuHbtGurVqwcAWLVqFbp06YIlS5bAyspKZVl9fX1YWFgofe/EiRN48OABgoODYW5uDk9PT/j4+OC3337DzJkzoaOj88Ex8hFmIiIiIiIiIiKiD5CZmYnk5GSFV2Zm5kft89KlSxCJRPLOQwBo164dBAIBrly5UmzZHTt2wMzMDDVq1MDkyZORlpamsF8PDw+Ym5vL0zp27Ijk5GTcv3+/RDGyA5GIiIiIiIiIiOgDzJ8/H8bGxgqv+fPnf9Q+X716hcqVKyuklS9fHqampnj16pXKcv3794efnx9Onz6NyZMnw9fXF99++63Cfgt3HgKQbxe3X2X4CDMREREREREREdEHmDx5Mn7++WeFNKFQqDTvpEmTsHDhwmL3Fxoa+o9jGTFihPzfHh4esLS0RNu2bREREQFHR8d/vF9l2IFIRERERERERET0AYRCocoOw3dNmDABgwcPLjaPg4MDLCwsEBsbq5Cek5ODxMRElfMbKtOwYUMAQHh4OBwdHWFhYYGrV68q5Hn9+jUAlGi/ADsQiYiIiIiIiIjoI8mkpR3B56dSpUqoVKnSe/M1btwYEokEN27cQN26dQEAp06dglQqlXcKfoiQkBAAgKWlpXy/c+fORWxsrPwR6aCgIBgZGcHd3b1EfwvnQCQiIiIiIiIiIiol1apVQ6dOnTB8+HBcvXoVFy9exNixY9G3b1/5CszPnz+Hm5ubfERhREQEfHx8cOPGDURGRuLgwYMYNGgQWrRogZo1awIAOnToAHd3dwwcOBC3b9/G8ePHMW3aNHz//fcfPIoyHzsQiYiIiIiIiIiIStGOHTvg5uaGtm3bokuXLmjWrBnWr18vfz87OxthYWHyVZZ1dHQQHByMDh06wM3NDRMmTEDv3r0RGBgoL1OuXDkcOnQI5cqVQ+PGjfHtt99i0KBBmD17donj4yPMREREREREREREpcjU1BQ7d+5U+b6dnR1kMpl829raGmfPnn3vfm1tbXHkyJGPjo8diERERERERERE9FGkhTq36N+HjzATERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIiKkRERERERERE9FFkXETlX40jEImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpU4ByIREREREREREX0UqZRzIP6bsQORAAB2dnZ49uxZkfQxY8Zg9erVpRDR50cmk+HIntX430l/pL9Jgb2bJ74Z5o3KlrYqy4Q/uI6TB7ci6ukDJIvjMGzictRq0FZj8e7dsRGnThzEmzcpcK1WE0PH/AJLK+tiy5047I/AfTuQJE6Ejb0TBo/8GU4u7mqP9+Chw9jrvw+JYjEc7O0xZtRIuLm6KM0b+ewZtvvtQHh4BF7HxmLk8GHo1eNLtcf4LplMhv271uFsUADS3qTC2a0WBo6aBAsrG5Vlwu7fxNEAXzyLCIVEHI9xk5agTqNWGon36KEAHPDfDYk4EXb2jvAa9QOcXaupzP+/86exy28z4l6/gqVVFXw7ZBTq1m+kkVgBIDAwEP5790IsFsPewQGjR4+Gq6ur0rzPnj2Dr68vwh8/RmxsLEaMGIEePXtqLFYgrz6cObAKN8/9jYy0ZFg71UHXgTNQ0dxOZZlrp3fh+pldkMQ/BwBUtnJCiy++h7NHC7XHezDwEPb6+0Ocf82NHqXy/EY+ewZfXz88Dg9HbGwsRo4Yjp49eqg9xnymzerBYYIXjOvUgK5VZVzvPQavD54svkyLBnBfMgkV3J2REf0S4fPXIGZ7gIYiLjDkG2t0a1cZFfTL415YMpatf4rnrzJU5hcIgMF9rNG+uRlMRTqIF2fh2JlY+O59rvZY9x49hR0HjyFRkgQnW2v87NUf1Z0dlOY9EHQWR89ewpPovLhcHWwxqn8vlfnVJTAwUKEef0g7kV+PR4wYodF6DOS1Ewd3r8H5oACkp6XA0a0WBoyYAnMr1Z8lHt2/gRMHtuNZxAMkieMx+rdlqN2wtUbiPRy4H/v990D89r4xYvQ4uLi6qcx/8fxZ7PDdgtjXr2BlVRWDhg5HvfoNNRJrWWsnylq8QNmLmfFqRllqJ4C8djhw9xqcD96X1w67eqL/B7XD2xD1JBRJ4jiM/nUZPBu20VjMRJ8LPsJMAIBr167h5cuX8ldQUBAA4Ouvv9ZoHFlZWRo9XkkEH9iMs0d34pvh3pgwbweEQj38OXcksrMyVZbJzExHFTsX9PGaqsFI8wT6++HYob/hNeYX+CzZCKGuLhZM/wlZxcR76XwwfDeuRO9+QzFv+RbY2jthwfSfkCRJVGusZ86dx/oNGzGgfz+sXrkcDvb2mOo9HRKJRGn+zMxMWFpYYOjg72BqYqLW2IpzJGAbgg7txqBRk+G9aCt0dHWxbNa44utERjqs7Z3x7cjfNBgpcPHcKWzdsBp9+n+HxSs3wNbeET7eE5EkESvN//DBPfy+yAdtO3TBkpUb0KBxcyyaMxVRkU80Eu/Zs2exYf169B8wAKtWrYKDvT28p01TXScyMmBpYYEhQ4bApJTqxMWjG3El2BddB87EsKl7oCPUg9+yYcjJVl0fjEzM0a73BIyY7o8R3nthV60Rdq/6HrHPH6s11rNnz2HDhg34tn9//LFqJRwc7DHV27vYa87C0gJDhwwulfNbzkAfyXfCcG/8rA/Kr2dXFfUPrkPCmSu4UO9LPF21DR7r5sCsfTM1R6qoXw8r9O5igWXrn2D0lLtIz5RisXc16GhrFVOmCr7sYI4Vm57iux9DsN7vGfp9WQW9ulioNdbgi1excttf8Pr6C2xdNAPOdtb4ac7vSExKVpr/5v0wtG/WAH/M/AXr502BuZkpfvRZhtgE5W2KOpw9exbrN2zAgP79sWrVKtg7OGBaMfU4IzMTFpaWpdpOHA/YilOHd+HbUVMwecF2CIV6WOHz/Xs/S1S1c0H/4ZM1GClw/uxpbN6wFt/0H4Rlq9bC3sERM71/g0TFfSP0wX0sWTgH7Tp0xu+r1qFh46aY7zMdzyKfaiTestZOlLV4gbIXM+NVv7LWTgDA8f1bcerITgwYORWT5vtCqKuHlT5jim2Hs962w/003A4TfW7YgUgAgEqVKsHCwkL+OnToEBwdHdGyZUul+SMjI6GlpYV9+/ahdevW0NfXR61atXDp0iWFfP7+/qhevTqEQiHs7OywdOlShfft7Ozg4+ODQYMGwcjICCNGjMDWrVshEolw6NAhuLq6Ql9fH1999RXS0tKwbds22NnZwcTEBOPHj0dubq7azklhMpkMZ474oWOvEahZvw2q2Lpi4Nh5SBLH4c61UyrLVa/dHN36jtfYqMN8MpkMRw/uQc8+g1GvUQvY2jthzE/TIU6Mx/XL51SWO7x/N9p0/AKt2nVDVRt7eI35FTpCIc4EHVJrvPsC9qNTp47o2L4dbG1sMH7sGAh1hTh+IkhpflcXFwz3GopWLVtAW1tbrbGpIpPJEBS4C937eKFOw1awtnPG8B9mQ5wYh5tXzqgsV7NuU/QeMAZ1G2lm9Ei+wIA9aNepG9q07wJrGzuMHDsBQl1dnDxxRGn+wwf3onbdBujRux+q2tih30Av2Du64OghzfyqHRAQgE6dO6NDhw6wsbXF2HHjIBQKceLECaX5XVxd4TVsGFq2alUqdUImk+FK8Ha06DYKbrXbwtzaFT28FiJFEouHN4NVlnP1bAPnmi1R0dwOFS3s0bbXT9AR6iPmyW21xrsvIACdOnVChw7tYWtjg3Fjx0Io1MVxFec375rzQquWLUvl/MYdP4dHM5bj9QHV57Iw2xF9kf40BqG/LkTqwyd49ucOvPI/DvsfBqs30Hd81dUSvv4xuHhNjCfP0jB/VTjMTHTQrIGpyjI1XA1x4ZoYl29K8CouE2cvJ+LabQmqOVVQa6y7Ak/gi3Yt0K1NM9hbW+HXEQMhFOrg0KkLSvPP+nEEendqAxd7G9hVscTkUYMhlclw/W6oWuMsLCAgAJ07dUKHDh0K1WPV7YSriwuGlWI9lslkCD60E12/Gg7PBq1R1c4FQ8b7QJIYh1tXT6ss51GnGXr0/x61G2l2tMuBgL3o0KkL2nXoBBsbO4we+yOEQiGCTxxTmj/wwD7UqVsfvb76BtY2thgwaAgcHJ1xOHC/RuIta+1EWYsXKHsxM171K2vthEwmw8lDO9ClcDs8zgcScRxCimmHa9Rphh79x6I2Rx3Sfxw7EKmIrKws+Pn5YejQodDSUj1KAgCmTp2KiRMnIiQkBC4uLujXrx9ycnIAADdu3ECfPn3Qt29f3L17FzNnzoS3tze2bt2qsI8lS5agVq1auHXrFry9vQEAaWlpWLlyJXbv3o1jx47hzJkz6NmzJ44cOYIjR47A19cX69atw969e9VyDt6VEBuDZEk8XGsWPL6pp28IOycPPH2k3i/6/0Ts6xeQiBNQw7OePE3foAIcXdzx+OE9pWVysrPxNDwMNWoVlBEIBKjhWR+Pw5SX+RSys7PxODwcdTxrKRy3tqcnHjwMU9txP1bc6+dIEieges0G8rS8c1wD4WF3SzGyorKzsxER/gg1PevK0wQCAWp61sWjh/eVlnn08L5CfgDwrFMfYSryf0rZ2dkIf/wYnp6e8jSBQABPT088DNVc50RJSOJjkJoUBwf3JvI0XX1DVHWoieiIkA/ah1Sai3tXDiM7Kw3Wjp7qCRQF11ztd85vbU9PhD58qLbjapKokSfiTyn+oBUXdAEmjTw1FoNlZSEqmujgxp0kedqbtFw8eJwKdxdDleXuhaWgrocRqlrqAgAcbfXh4WaIK7ckaos1OzsHYU+eoX7NgikNBAIB6nu4415YxAftIyMrEzm5uTCqYKCuMBXk12Nl7cTnWo/jXz9HsiQe1WoVPKqnb2AIe+caeBJ2pxQjKyr/vlHLs448TSAQoJZnHYQ9fKC0TNjDB6hVW/G+UbtuPZX5S9vn0E6URFmLFyh7MTPekimL7YS8Ha5Z0A7rGRjC3tkDT8I+v+90RJ8bzoFIRezfvx8SiQSDBw9+b96JEyeia9euAIBZs2ahevXqCA8Ph5ubG5YtW4a2bdvKOwVdXFzw4MEDLF68WGHfbdq0wYQJE+Tb58+fR3Z2NtasWQNHR0cAwFdffQVfX1+8fv0aFSpUgLu7O1q3bo3Tp0/jm2++URpbZmYmMjMVh6JnZWlBR0dYktMBAEiWJAAADI0rKqQbGldEsiS+xPtTtyRx3iPHxiLFUS7GIlNIxMofR05OlkAqzYWxSdEyL2KKzo/5qSQnJ0MqlUIkUnyczEQkQnR0jNqO+7GS3tYJI5FinTAyNkWSOKE0QlIpJTkJUmlukXNsLDLB8+gopWUk4kQYv5NfJDJRWX8+pfw68e4jhiITE0THfJ51IjUpDgBgYKRYHwyMzPAmufg24nVMGDbN64ec7EzoCPXxzfd/oJKVk9pilV9zJiKFdJFIhOjoaLUdV5OE5mbIfK143jNfx0Pb2BACXSGkGaofU/pUTE3yRrglSrIV0sVJWTAVqR79tjPgOQz0ymH7Ck9IpTIIBFrYuCsKwefVd6+RpKQgVyqFqbGRQrqpyAjPnr/8oH386bcXlUxEqF9T/XPmAqrbCRORCDGfaT3O/7xgaKx4nzUSVUTyZ3bfSE5OettOFL0PqDq/EnFikfuMSGQCsQbuG//E59BOlERZixcoezEz3pIpi+1Efjus9PO75PNqh8sqGddQ+VdjByIVsWnTJnTu3BlWVlYAgFGjRsHPz0/+fmpqqvzfNWvWlP/b0tISABAbGws3NzeEhobiyy8VF7Zo2rQpli9fjtzcXJQrVw4AUK9ePbxLX19f3nkIAObm5rCzs0OFChUU0mJjY1X+HfPnz8esWYpziHw7choGjvZW/ce/de38IexeP1u+PWry572QzIUzx7Fx9SL59q/Tl5RiNP9Ol84exbY18+TbP05bXnrBUKm7czkQh7bPkG/3/2HtP96XmYU9Rs0IQEZ6Ch7cOI79myZh8G++au1EpE+vXXMzTBhRsIDIpPn/bBRc6yYV0a65GeaseIyn0elwstPH2CF2SEjMxvGzcZ8q3E9qe8ARBF28ij9n/gqhTulMK/E5unL2CPzWzZFvj526shSjISL677ly7jB2FG6Hp6wqxWiIyj52IJKCZ8+eITg4GPv27ZOnzZ49GxMnTlSav/AcQvmPO0ul0hId08Cg6ONO785NpKWlpTStuGNNnjwZP//8s0LaubDiH8nO51GvNeycCzpHc7LzFndJSUqAsUkleXpKUgKq2KleZUxT6jZoBieX6vLt7LfxJkkSYWJqJk9PkiTCzsFZ6T6MjEQQCMrJRy8WLiMyUT1f18cyMjKCQCAoMtmyWCIptUnulfFs0AIOLjXk2/l1IlmSAFGhc5yclAhre+WrR5cWQyNjCATlipzjJIlY5f+tyMS0yAIrkmLyf0r5dUIsfuf4YnGpLppTmGut1qg6o1AbkZNXH94kJ8BQVFme/iY5HubWqle6BoBy5XVgap638p+VXQ28eHoPl4O3o/ug2cWW+6fk15xYopAukUhgYvp5nN+Plfk6HkJzM4U0obkZspNS1DYi4+K1RIQ+LviBTbt83v3GVKStMArRxFgH4ZFvVO5n1EBb7Nz/HKcu5o2EeBqVBotKQgzoVUVtHYgiQ0OUEwiKLJiSKElGRZFxsWV3HDgG34AjWDl9IpzsrNUSnzKq2gmxRAITU/W3Ux+iVoOWsFe4b+TVg5SkRIhMCz5LJEsSYG2vfOXo0mJkZPy2nSh6H1B1fkUmpkXuMxKJGCYauG/8E6XRTnyMshYvUPZiZrwlUxbaiVr1W8He2UO+Xfjze+HvdMlJibC2+7w+vxN9jjgHIinYsmULKleuLH8sGQAqV64MJycn+etDVatWDRcvXlRIu3jxIlxcXOSjD9VJKBTCyMhI4fWhjy/r6hmgkoWN/GVR1RFGIjOE3b0iz5OelorI8Luwd6lVzJ40Q0/fABZWVeWvqjb2EJlUxL3b1+V50tLeIOLRAzi71VC6j/La2rB3csW9OzfkaVKpFPdvX4ezq/Iyn4K2tjacnZxwK6Rg/iepVIqQkNtwd/t8vlDp6RnA3NJa/rKydoCxSUU8uHNNnic9LRURj+7BydWjmD1pnra2NhydXHA3RPH/9k7ITbi4VVdaxsWtOu7cvqGQdufWdbiqyP8paWtrw8nZGbdDQuRpeXUiBG7Viu+M0xShXgWYmtvKX5WsnFDBuBKehBbMRZSZnoqYJ3dKPJ+hTCZFbrb6VqTPv+ZCbofI0/LPbzW30v9B5FOQXA5BxTaNFNLM2jaB+HKI2o6ZniHF81cZ8ldkTDoSxFmo41HQAaevVw7uzhXw4FGKyv0IhQK8+9tYrlSG90xJ/FG0tcvD1cFWYQEUqVSK63dDUcPVUWU5v/1HscX/EH6f9hOqOdmpL0AlCupxwZxVn1s91tUzQGVLG/nL0toBRiIzhN5R/Czx9PE9OLjWLGZPmpd/37hz+5Y8Le++cQuubsofU3d1c8edkJsKaSG3bqjMX9pKo534GGUtXqDsxcx4S6YstBNF2+G873QP716V58lrh+/CwbX0v9MRfe7YgUhyUqkUW7ZswXfffYfy5T9+cOqECRNw8uRJ+Pj44NGjR9i2bRv++OMPlaMZP2daWlpo1eVbHN+3Dnevn8aLqEfw/WMKjE0qoWb9gtW4Vs0ehrPHdsq3MzPSEBP5EDGReY+yJcQ+R0zkQyTGf9icUh8Tb+cv+mD/X9tw/cp5REVGYM2y2TAxNUO9Ri3k+eZMHYfjhwoWounaoy9OHz+IsyeP4Hl0JDb/uRiZGRlo2a6bWuPt1bMHjh4/jqDgk4iKisaq1X8iIyMDHdq3AwAsWroMm7duk+fPzs5GRMQTREQ8QXZODhISEhAR8QTPX7xQa5yFaWlpoX33fgj8exNuXT2L6MhwbFg+AyamlVCnYSt5vkXeoxF8+C/5dkZ6GqKehCHqSd4CMXGxzxH1JAwJca/UGm/3nn0QfPwwTgcfQ0xUJNavXobMjHS0ad8ZALBy6Vz4bV0vz9/1i68QcuMqDu77CzHRz/DXji2ICA9D52491Rpnvp49e+LYsWMIDgpCVFQUVv/xBzIzM9G+fXsAeYsvbdmyRZ4/r05EICIiAjnyOhGBFxqqE1paWmjYbhDOH1qLsJBTeB0ThoCNv8FQVBluddrJ821fPBhXTxZMCRHsvxTPwq5BEh+D1zFhCPZfisiwq/Bo1F2t8fbq2RNHjx1HUHAwoqKisGr1amRkZqDD2/O7eMlSbN6yVZ7/3fMbr+HzW85AH0a13GBUK69jSN++KoxquUHXOm/qDNc5P6PWloXy/M/W74a+vTXc5v8CA1cH2I7qD8uvO+Ppiq3Kdq82ew+/xMDeVdGkngnsbfQxZZwT4sVZuHC1YKT30hnu6NnJQr596boYA3tXQaM6IlhUEqJZA1P06WaF81fVOz9Uv+4dcDD4HA6fuYjImBdYtMEPGZmZ6Na6KQBg1sqN+HOHvzy/b8ARrN+9H1PHDIZlJTMkiJOQIE5CWnqGWuMsLL+dyK/Hf6xe/dm3E+269ceRvRsRcvUMYp49xuaV3hCZVkLtBq3l+ZbNGIlTR3bLtzPS0xD9NAzRT/PuG/GxzxH9NAwJcer9LPFlz69w4thhnAo+juioZ1i7ejkyMjPQrn1HAMDvSxZg+5aN8vzdv+yFmzeuYf++PYiJjsIuv22IePwIXbv3UGuc+cpaO1HW4i2LMTNe9Str7YSWlhbadhuAI3s34Pa1M3j+7DG2rJwGkUkleBZuh2eOwOki7fBDRD/N+06X1w4/RKKa2+GySCaV/Sde/1V8hJnkgt9+AB86dOgn2V+dOnWwZ88eTJ8+HT4+PrC0tMTs2bM/aHGWz1G7L4ciKzMdu9bNQnpaChzcamPMlLXQLjSqMf51NN4kS+TbURH3sXJWwfkM2L4YANCg5RcY+P1ctcbbvfe3yMzIwMY/FiLtTSpc3Wti0qxlCqMwX796jpRC8TZu3g7JSRLs3bEBEnEibB2cMWnWMrU/ttqqRXMkJSVhu98OiMViODg4YO7sWfJHmOPi4iAoNPwmITERY8b/IN/euy8Ae/cFoKZHDSxeMF+tsRbWped3yMrIwNY/5yHtTQpcqnni5+krFepE7KsYpBY6x5HhD7DQe5R8e/fm3wEATVt3w7AfZqot1qYt2iApSYLdfpshESfC3sEJ02Yvlv/fxsfFQkur4DclN/ca+PEXb+zy3YQd2zbAskpV/DptLmzsHFQd4pNq2bIlkpOS4OvnB3FiIhwcHTHbx6egTsTGKtSJxMREjBs7Vr7t7+8Pf39/eHh4YOGiRUX2rw5NOw9DdlY6ArdNR0ZaMmyc6+LbnzagvHZBfUiMi0JaasGjO2+SExGw6TekJsVBqGcI86qu+PanjXCs3lStsbZs2QJJyUnw9fWTX3NzZs+Wn9/YuDhoCRSvue/HjZdv+/vvg7//Pnh4eGDxwgVqjRUAjOvWQOOTvvJt9yVTAADR2/fhjtdkCC0rQe/tFywASI+MwbUvRsJ96WTYjRuEjJhXuDtyGuKDLqg91sJ27X8BXWE5TBzpgAoG5XH3YTJ+nROKrOyCD55VzIUwNir4OLZi01N49bXBj8MdYGKkjXhxFgKDXmPbXvUuINSuaQOIk1Owcfd+JEiS4Wxnjd+n/gTTt48wv45PhKBQndh34gyyc3IwZckahf14ff0Fhn2jOP+xurRs2RJJycnw8/VFolgMRwcH+BSpxwXtWmJiIsaOGyffLtxOLFq4sMj+1aFjz8HIzEyH39o5SHuTAqdqnvjBe7XCfSPuVbTCfeNZxAMsnT5cvv33lqUAgMatu2PIOPVMdQAAzVu2RnJyEnb6boVYLIa9gyNmzF6gcN8oXCequVfHhF+nwm/7Zvhu3QyrKlUw2Xs2bO3s1RZjYWWtnShr8ZbFmBmv+pW1dgIAOvYYjKyMdPit9clrh91qY7z3n4rf6V5FIzWl4PPas4j7WDajUDu89W073Ko7Bo/z0VjsRKVNSybjOjn033HitvoeC1QXMz3Vj7p9jkwFZWsFsxfZlu/P9Bkx0lY9d9rnSk+QVtohlMiVF5r7EPspNLaMKO0QSuyBW9f3Z/qMLP5ya2mHUCL7ZuSWdgglItEvW+0wAERnlK2YzXU/z5WQVYlwa1vaIRD95zg+PFnaIZTIq/SK78/0GWlVQ6+0Q9CIH1aUre+u/9SKHwxLO4RSwUeYiYiIiIiIiIiISCV2IBIREREREREREZFKnAORiIiIiIiIiIg+ipQz5P2rcQQiERERERERERERqcQORCIiIiIiIiIiIlKJHYhERERERERERESkEudAJCIiIiIiIiKijyKTcg7EfzOOQCQiIiIiIiIiIiKV2IFIREREREREREREKrEDkYiIiIiIiIiIiFRiByIRERERERERERGpxEVUiIiIiIiIiIjoo3ARlX83jkAkIiIiIiIiIiIildiBSERERERERERERCqxA5GIiIiIiIiIiIhU4hyIRERERERERET0UTgF4r8bRyASERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIiKkRERERERERE9FFkXEXlX40jEImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpU4ByIREREREREREX0UmYxzIP6bcQQiERERERERERERqcQORCIiIiIiIiIiIlKJHYhERERERERERESkEjsQiYiIiIiIiIiISCUuokJERERERERERB9FKuUiKv9mHIFIREREREREREREKrEDkYiIiIiIiIiIiFRiByIRERERERERERGpxDkQiYiIiIiIiIjoo8hknAPx34wjEImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqcREVIiIiIiIiIiL6KDIpF1H5N+MIRCIiIiIiIiIiIlKJHYhERERERERERESkEjsQiYiIiIiIiIiISCXOgUhERERERERERB+FcyD+u3EEIhEREREREREREanEEYj/AefOncPixYtx48YNvHz5EgEBAejRo4f8fZlMhhkzZmDDhg2QSCRo2rQp1qxZA2dn59IL+jMkk8lwZM9q/O+kP9LfpMDezRPfDPNGZUtblWXCH1zHyYNbEfX0AZLFcRg2cTlqNWirsXj37tiIUycO4s2bFLhWq4mhY36BpZV1seVOHPZH4L4dSBInwsbeCYNH/gwnF3e1x3vw0GHs9d+HRLEYDvb2GDNqJNxcXZTmjXz2DNv9diA8PAKvY2Mxcvgw9OrxpdpjfJdMJsP+XetwNigAaW9S4exWCwNHTYKFlY3KMmH3b+JogC+eRYRCIo7HuElLUKdRK43Ee/RQAA7474ZEnAg7e0d4jfoBzq7VVOb/3/nT2OW3GXGvX8HSqgq+HTIKdes30kisABAYGAj/vXshFoth7+CA0aNHw9XVVWneZ8+ewdfXF+GPHyM2NhYjRoxAj549NRYrkFcfzhxYhZvn/kZGWjKsneqg68AZqGhup7LMtdO7cP3MLkjinwMAKls5ocUX38PZo4Xa4z0YeAh7/f0hzr/mRo9SeX4jnz2Dr68fHoeHIzY2FiNHDEfPQvcRdTNtVg8OE7xgXKcGdK0q43rvMXh98GTxZVo0gPuSSajg7oyM6JcIn78GMdsDNBRxgSHfWKNbu8qooF8e98KSsWz9Uzx/laEyv0AADO5jjfbNzWAq0kG8OAvHzsTCd+9ztce69+gp7Dh4DImSJDjZWuNnr/6o7uygNO+BoLM4evYSnkTnxeXqYItR/XupzK8ugYGBCvX4Q9qJ/Ho8YsQIjdZjIK+dOLh7Dc4HBSA9LQWObrUwYMQUmFup/izx6P4NnDiwHc8iHiBJHI/Rvy1D7YatNRLv4cD92O+/B+K3940Ro8fBxdVNZf6L589ih+8WxL5+BSurqhg0dDjq1W+okVjLWjtR1uIFyl7MjFczylI7AeS1w4G71+B88L68dtjVE/0/qB3ehqgnoUgSx2H0r8vg2bCNxmIm+lxwBOJ/wJs3b1CrVi2sXr1a6fuLFi3CypUrsXbtWly5cgUGBgbo2LEjMjJUf8FRl+zsbI0f80MFH9iMs0d34pvh3pgwbweEQj38OXcksrMyVZbJzExHFTsX9PGaqsFI8wT6++HYob/hNeYX+CzZCKGuLhZM/wlZxcR76XwwfDeuRO9+QzFv+RbY2jthwfSfkCRJVGusZ86dx/oNGzGgfz+sXrkcDvb2mOo9HRKJRGn+zMxMWFpYYOjg72BqYqLW2IpzJGAbgg7txqBRk+G9aCt0dHWxbNa44utERjqs7Z3x7cjfNBgpcPHcKWzdsBp9+n+HxSs3wNbeET7eE5EkESvN//DBPfy+yAdtO3TBkpUb0KBxcyyaMxVRkU80Eu/Zs2exYf169B8wAKtWrYKDvT28p01TXScyMmBpYYEhQ4bApJTqxMWjG3El2BddB87EsKl7oCPUg9+yYcjJVl0fjEzM0a73BIyY7o8R3nthV60Rdq/6HrHPH6s11rNnz2HDhg34tn9//LFqJRwc7DHV27vYa87C0gJDhwwulfNbzkAfyXfCcG/8rA/Kr2dXFfUPrkPCmSu4UO9LPF21DR7r5sCsfTM1R6qoXw8r9O5igWXrn2D0lLtIz5RisXc16GhrFVOmCr7sYI4Vm57iux9DsN7vGfp9WQW9ulioNdbgi1excttf8Pr6C2xdNAPOdtb4ac7vSExKVpr/5v0wtG/WAH/M/AXr502BuZkpfvRZhtgE5W2KOpw9exbrN2zAgP79sWrVKtg7OGBaMfU4IzMTFpaWpdpOHA/YilOHd+HbUVMwecF2CIV6WOHz/Xs/S1S1c0H/4ZM1GClw/uxpbN6wFt/0H4Rlq9bC3sERM71/g0TFfSP0wX0sWTgH7Tp0xu+r1qFh46aY7zMdzyKfaiTestZOlLV4gbIXM+NVv7LWTgDA8f1bcerITgwYORWT5vtCqKuHlT5jim2Hs962w/003A4TfW7Ygfgf0LlzZ8yZMwc9lYzGkclkWL58OaZNm4Yvv/wSNWvWxPbt2/HixQvs379f5T7PnDkDLS0tnDx5EvXq1YO+vj6aNGmCsLAwhXxr1qyBo6MjdHR04OrqCl9fX4X3tbS0sGbNGnzxxRcwMDDA3LlzMXPmTHh6emLz5s2wsbFBhQoVMGbMGOTm5mLRokWwsLBA5cqVMXfu3E9yfj6ETCbDmSN+6NhrBGrWb4Mqtq4YOHYeksRxuHPtlMpy1Ws3R7e+4zU26jCfTCbD0YN70LPPYNRr1AK29k4Y89N0iBPjcf3yOZXlDu/fjTYdv0Crdt1Q1cYeXmN+hY5QiDNBh9Qa776A/ejUqSM6tm8HWxsbjB87BkJdIY6fCFKa39XFBcO9hqJVyxbQ1tZWa2yqyGQyBAXuQvc+XqjTsBWs7Zwx/IfZECfG4eaVMyrL1azbFL0HjEHdRpoZPZIvMGAP2nXqhjbtu8Daxg4jx06AUFcXJ08cUZr/8MG9qF23AXr07oeqNnboN9AL9o4uOHpIM79qBwQEoFPnzujQoQNsbG0xdtw4CIVCnDhxQml+F1dXeA0bhpatWpVKnZDJZLgSvB0tuo2CW+22MLd2RQ+vhUiRxOLhzWCV5Vw928C5ZktUNLdDRQt7tO31E3SE+oh5clut8e4LCECnTp3QoUN72NrYYNzYsRAKdXFcxfnNu+a80Kply1I5v3HHz+HRjOV4fUD1uSzMdkRfpD+NQeivC5H68Ame/bkDr/yPw/6HweoN9B1fdbWEr38MLl4T48mzNMxfFQ4zEx00a2CqskwNV0NcuCbG5ZsSvIrLxNnLibh2W4JqThXUGuuuwBP4ol0LdGvTDPbWVvh1xEAIhTo4dOqC0vyzfhyB3p3awMXeBnZVLDF51GBIZTJcvxuq1jgLCwgIQOdOndChQ4dC9Vh1O+Hq4oJhpViPZTIZgg/tRNevhsOzQWtUtXPBkPE+kCTG4dbV0yrLedRphh79v0ftRpod7XIgYC86dOqCdh06wcbGDqPH/gihUIjgE8eU5g88sA916tZHr6++gbWNLQYMGgIHR2ccDtyvkXjLWjtR1uIFyl7MjFf9ylo7IZPJcPLQDnQp3A6P84FEHIeQYtrhGnWaoUf/sajNUYf0H8cOxP+4p0+f4tWrV2jXrp08zdjYGA0bNsSlS5feW37q1KlYunQprl+/jvLly2Po0KHy9wICAvDDDz9gwoQJuHfvHkaOHIkhQ4bg9GnFxnnmzJno2bMn7t69Ky8fERGBo0eP4tixY9i1axc2bdqErl27IiYmBmfPnsXChQsxbdo0XLly5ROdieIlxMYgWRIP15oFj2/q6RvCzskDTx+p94v+PxH7+gUk4gTU8KwnT9M3qABHF3c8fnhPaZmc7Gw8DQ9DjVoFZQQCAWp41sfjMOVlPoXs7Gw8Dg9HHc9aCset7emJBw/DiilZuuJeP0eSOAHVazaQp+Wd4xoID7tbipEVlZ2djYjwR6jpWVeeJhAIUNOzLh49vK+0zKOH9xXyA4BnnfoIU5H/U8rOzkb448fw9PSUpwkEAnh6euJhqOY6J0pCEh+D1KQ4OLg3kafp6huiqkNNREeEfNA+pNJc3LtyGNlZabB29FRPoCi45mq/c35re3oi9OFDtR1Xk0SNPBF/SvEeFhd0ASaNPDUWg2VlISqa6ODGnSR52pu0XDx4nAp3F0OV5e6FpaCuhxGqWuoCABxt9eHhZogrtyRqizU7OwdhT56hfs2CKQ0EAgHqe7jjXljEB+0jIysTObm5MKpgoK4wFeTXY2XtxOdaj+NfP0eyJB7VahU8qqdvYAh75xp4EnanFCMrKv++UcuzjjxNIBCglmcdhD18oLRM2MMHqFVb8b5Ru249lflL2+fQTpREWYsXKHsxM96SKYvthLwdrlnQDusZGMLe2QNPwj6/73RlkVQm+0+8/qs4B+J/3KtXrwAA5ubmCunm5uby94ozd+5ctGzZEgAwadIkdO3aFRkZGdDV1cWSJUswePBgjBkzBgDw888/4/Lly1iyZAlaty4YfdW/f38MGTJEYb9SqRSbN2+GoaEh3N3d0bp1a4SFheHIkSMQCARwdXXFwoULcfr0aTRsqHzOjMzMTGRmKg5Fz8rSgo6O8L1/17uSJQkAAEPjigrphsYVkSyJL/H+1C1JnPfIsbFIcZSLscgUErHyx5GTkyWQSnNhbFK0zIuYZ+oJFEBycjKkUilEIsXHyUxEIkRHx6jtuB8r6W2dMBIp1gkjY1MkiRNKIySVUpKTIJXmFjnHxiITPI+OUlpGIk6E8Tv5RSITlfXnU8qvE+8+YigyMUF0zOdZJ1KT4gAABkaK9cHAyAxvkotvI17HhGHTvH7Iyc6EjlAf33z/BypZOaktVvk1ZyJSSBeJRIiOjlbbcTVJaG6GzNeK5z3zdTy0jQ0h0BVCmqH6MaVPxdQkb4RbokRxag5xUhZMRapHv+0MeA4DvXLYvsITUqkMAoEWNu6KQvB59d1rJCkpyJVKYWpspJBuKjLCs+cvP2gff/rtRSUTEerXVP+cuYDqdsJEJELMZ1qP8z8vGBor3meNRBWR/JndN5KTk962E0XvA6rOr0ScWOQ+IxKZQKyB+8Y/8Tm0EyVR1uIFyl7MjLdkymI7kd8OK/38Lvm82mGizxE7EOm9OnfujPPnzwMAbG1tcf9+wQikmjVryv9taWkJAIiNjYWNjQ1CQ0MxYsQIhX01bdoUK1asUEirV68e3mVnZwdDw4IRGubm5ihXrhwEAoFCWmxsrMq458+fj1mzFOcQ+XbkNAwc7a2yTL5r5w9h9/rZ8u1Rk5XPH/m5uHDmODauXiTf/nX6klKM5t/p0tmj2LZmnnz7x2nLSy8YKnV3Lgfi0PYZ8u3+P6z9x/sys7DHqBkByEhPwYMbx7F/0yQM/s1XrZ2I9Om1a26GCSMKFhCZNP+fjYJr3aQi2jU3w5wVj/E0Oh1OdvoYO8QOCYnZOH427lOF+0ltDziCoItX8efMXyHUKZ1pJT5HV84egd+6OfLtsVNXlmI0RET/PVfOHcaOwu3wlFWlGA1R2ccOxP84C4u8Sdlfv34t7wDM385/LGjjxo1IT08HgCJzBhXe1tLKmxReKpWWKAYDg6KPO717HC0tLaVpxR1r8uTJ+PnnnxXSzoWpnri+MI96rWHnXNA5mpOdBQBISUqAsUkleXpKUgKq2KleZUxT6jZoBieX6vLt7LfxJkkSYWJqJk9PkiTCzkH56tpGRiIIBOXkoxcLlxGZqJ6v62MZGRlBIBAUmWxZLJGU2iT3yng2aAEHlxry7fw6kSxJgKjQOU5OSoS1vfLVo0uLoZExBIJyRc5xkkSs8v9WZGJaZIEVSTH5P6X8OiEWv3N8sbhUF80pzLVWa1SdUaiNyMmrD2+SE2AoqixPf5McD3Nr1StdA0C58jowNc9b+c/KrgZePL2Hy8Hb0X3Q7GLL/VPya04sUUiXSCQwMf08zu/HynwdD6G5mUKa0NwM2UkpahuRcfFaIkIfp8q3tcvn3W9MRdoKoxBNjHUQHvlG5X5GDbTFzv3Pcepi3kiIp1FpsKgkxIBeVdTWgSgyNEQ5gaDIgimJkmRUFBkXW3bHgWPwDTiCldMnwsnOWi3xKaOqnRBLJDAxVX879SFqNWgJe4X7Rl49SElKhMi04LNEsiQB1vbKV44uLUZGxm/biaL3AVXnV2RiWuQ+I5GIYaKB+8Y/URrtxMcoa/ECZS9mxlsyZaGdqFW/FeydPeTbhT+/F/5Ol5yUCGu7z+vzO9HniHMg/sfZ29vDwsICJ0+elKclJyfjypUraNy4MQCgSpUqcHJygpOTE2xtVS9v/65q1arh4sWLCmkXL16Eu7tmHm8SCoUwMjJSeH3o48u6egaoZGEjf1lUdYSRyAxhdwvmXExPS0Vk+F3Yu9QqZk+aoadvAAurqvJXVRt7iEwq4t7t6/I8aWlvEPHoAZzdaijdR3ltbdg7ueLenRvyNKlUivu3r8PZVXmZT0FbWxvOTk64FVIw/5NUKkVIyG24u30+X6j09Axgbmktf1lZO8DYpCIe3Lkmz5OeloqIR/fg5OpRzJ40T1tbG45OLrgbovh/eyfkJlzcqist4+JWHXdu31BIu3PrOlxV5P+UtLW14eTsjNshIfK0vDoRArdqxXfGaYpQrwJMzW3lr0pWTqhgXAlPQgvmIspMT0XMkzslns9QJpMi9+0HXHXIv+ZCbofI0/LPbzW30v9B5FOQXA5BxTaNFNLM2jaB+HKI2o6ZniHF81cZ8ldkTDoSxFmo41HQAaevVw7uzhXw4FGKyv0IhQK8+9tYrlQGrQ/7/esf0dYuD1cHW4UFUKRSKa7fDUUNV0eV5fz2H8UW/0P4fdpPqOZkp74AlSioxwVzVn1u9VhXzwCVLW3kL0trBxiJzBB6R/GzxNPH9+DgWrOYPWle/n3jzu1b8rS8+8YtuLop/xzn6uaOOyE3FdJCbt1Qmb+0lUY78THKWrxA2YuZ8ZZMWWgnirbDed/pHt69Ks+T1w7fhYNr6X+n+zeQSWX/idd/FTsQ/wNSU1MREhKCkLdfxp8+fYqQkBBERUVBS0sLP/74I+bMmYODBw/i7t27GDRoEKysrNCjR4+POu4vv/yCrVu3Ys2aNXj8+DGWLVuGffv2YeLEiR//R2mYlpYWWnX5Fsf3rcPd66fxIuoRfP+YAmOTSqhZv2A1rlWzh+HssZ3y7cyMNMREPkRMZN6jbAmxzxET+RCJ8R82p9THxNv5iz7Y/9c2XL9yHlGREVizbDZMTM1Qr1ELeb45U8fh+KG98u2uPfri9PGDOHvyCJ5HR2Lzn4uRmZGBlu26qTXeXj174Ojx4wgKPomoqGisWv0nMjIy0KF93uI+i5Yuw+at2+T5s7OzERHxBBERT5Cdk4OEhARERDzB8xcv1BpnYVpaWmjfvR8C/96EW1fPIjoyHBuWz4CJaSXUadhKnm+R92gEH/5Lvp2RnoaoJ2GIepK3QExc7HNEPQlDQtz75xz9GN179kHw8cM4HXwMMVGRWL96GTIz0tGmfWcAwMqlc+G3db08f9cvvkLIjas4uO8vxEQ/w187tiAiPAyduxVdzV0devbsiWPHjiE4KAhRUVFY/ccfyMzMRPv27QEAS5YswZYtW+T58+pEBCIiIpAjrxMReKGhOqGlpYWG7Qbh/KG1CAs5hdcxYQjY+BsMRZXhVqdgkartiwfj6kk/+Xaw/1I8C7sGSXwMXseEIdh/KSLDrsKjUXe1xturZ08cPXYcQcHBiIqKwqrVq5GRmYEOb8/v4iVLsXnLVnn+d89vvIbPbzkDfRjVcoNRrbyOIX37qjCq5QZd67yR865zfkatLQvl+Z+t3w19e2u4zf8FBq4OsB3VH5Zfd8bTFVuV7V5t9h5+iYG9q6JJPRPY2+hjyjgnxIuzcOFqwUjvpTPc0bOThXz70nUxBvaugkZ1RLCoJESzBqbo080K56+qd36oft074GDwORw+cxGRMS+waIMfMjIz0a11UwDArJUb8ecOf3l+34AjWL97P6aOGQzLSmZIECchQZyEtPQMtcZZWH47kV+P/1i9+rNvJ9p1648jezci5OoZxDx7jM0rvSEyrYTaDQrmhl42YyROHdkt385IT0P00zBEP827b8THPkf00zAkxKn3s8SXPb/CiWOHcSr4OKKjnmHt6uXIyMxAu/YdAQC/L1mA7Vs2yvN3/7IXbt64hv379iAmOgq7/LYh4vEjdO3eQ61x5itr7URZi7csxsx41a+stRNaWlpo220AjuzdgNvXzuD5s8fYsnIaRCaV4Fm4HZ45AqeLtMMPEf007ztdXjv8EIlqboeJPjd8hPk/4Pr16wqLluQ/1vvdd99h69at+PXXX/HmzRuMGDECEokEzZo1w7Fjx6Crq/tRx+3RowdWrFiBJUuW4IcffoC9vT22bNmCVq1afdR+S0u7L4ciKzMdu9bNQnpaChzcamPMlLXQLjSqMf51NN4kS+TbURH3sXJWoZWpty8GADRo+QUGfj9XrfF27/0tMjMysPGPhUh7kwpX95qYNGuZwijM16+eI6VQvI2bt0NykgR7d2yARJwIWwdnTJq1TO2PrbZq0RxJSUnY7rcDYrEYDg4OmDt7lvwR5ri4OAgKDb9JSEzEmPE/yLf37gvA3n0BqOlRA4sXzFdrrIV16fkdsjIysPXPeUh7kwKXap74efpKhToR+yoGqYXOcWT4Ayz0HiXf3r35dwBA09bdMOyHmWqLtWmLNkhKkmC332ZIxImwd3DCtNmL5f+38XGx0NIq+E3Jzb0GfvzFG7t8N2HHtg2wrFIVv06bCxs7B1WH+KRatmyJ5KQk+Pr5QZyYCAdHR8z28SmoE7GxCnUiMTER48aOlW/7+/vD398fHh4eWLhoUZH9q0PTzsOQnZWOwG3TkZGWDBvnuvj2pw0or11QHxLjopCWWvDozpvkRARs+g2pSXEQ6hnCvKorvv1pIxyrN1VrrC1btkBSchJ8ff3k19yc2bPl5zc2Lg5aAsVr7vtx4+Xb/v774O+/Dx4eHli8cIFaYwUA47o10Pikr3zbfckUAED09n244zUZQstK0LMumIYjPTIG174YCfelk2E3bhAyYl7h7shpiA+6oPZYC9u1/wV0heUwcaQDKhiUx92Hyfh1Tiiysgt+ua5iLoSxUcHHsRWbnsKrrw1+HO4AEyNtxIuzEBj0Gtv2qncBoXZNG0CcnIKNu/cjQZIMZztr/D71J5i+fYT5dXwiBIXqxL4TZ5Cdk4MpS9Yo7Mfr6y8w7Jsv1RprvpYtWyIpORl+vr5IFIvh6OAAnyL1uKBdS0xMxNhx4+TbhduJRQsXFtm/OnTsORiZmenwWzsHaW9S4FTNEz94r1a4b8S9ila4bzyLeICl04fLt//eshQA0Lh1dwwZp56pDgCgecvWSE5Owk7frRCLxbB3cMSM2QsU7huF60Q19+qY8OtU+G3fDN+tm2FVpQome8+GrZ292mIsrKy1E2Ut3rIYM+NVv7LWTgBAxx6DkZWRDr+1PnntsFttjPf+U/E73atopKYUfF57FnEfy2YUaoe3vm2HW3XH4HE+GoudqLRpyWT/4TWo6T/nxG31PRaoLmZ6qh91+xyZCsrWCmYvsi3fn+kzYqSteu60z5WeIK20QyiRKy809yH2U2hsGVHaIZTYA7eupR1CiSz+cmtph1Ai+2bklnYIJSLRL1vtMABEZ5StmM11P8+VkFWJcGtb2iEQ/ec4Pjz5/kyfkVfpFd+f6TPSqoZeaYegEd9NV+9TVZ+LbbMt3p/pX4iPMBMREREREREREZFKfISZiIiIiIiIiIg+Ch9w/XfjCEQiIiIiIiIiIiJSiR2IREREREREREREpBI7EImIiIiIiIiIiEglzoFIREREREREREQfRSrlHIj/ZhyBSERERERERERERCqxA5GIiIiIiIiIiIhUYgciERERERERERERqcQORCIiIiIiIiIiIlKJi6gQEREREREREdFHkXERlX81jkAkIiIiIiIiIiIildiBSERERERERERERCqxA5GIiIiIiIiIiIhU4hyIRERERERERET0UWQyzoH4b8YRiERERERERERERKQSOxCJiIiIiIiIiIhIJXYgEhERERERERERkUrsQCQiIiIiIiIiIiKVuIgKERERERERERF9FJlUWtohkBpxBCIRERERERERERGpxA5EIiIiIiIiIiIiUomPMNN/inOFqNIOocTuSexKO4QSCc8yKe0QSmTVgoulHUKJBI2NKO0QSizGoWVph1AiFXTL1qMXEqmotEMoMceHJ0s7hBLZgozSDqFEcjMTSzuEEkmTGZR2CCVWM+daaYdQIpnZRqUdQok4PQwu7RBKTAat0g6B6KNEuLUt7RBKxCb0XGmHUEJ6pR0A0UdjByIREREREREREX0UqVRW2iGQGvERZiIiIiIiIiIiIlKJHYhERERERERERESkEjsQiYiIiIiIiIiISCV2IBIREREREREREZFKXESFiIiIiIiIiIg+ikzGRVT+zTgCkYiIiIiIiIiIiFRiByIRERERERERERGpxA5EIiIiIiIiIiIiUolzIBIRERERERER0UeRSTkH4r8ZRyASERERERERERGRSuxAJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIiKkRERERERERE9FG4iMq/G0cgEhERERERERERkUrsQCQiIiIiIiIiIiKV2IFIREREREREREREKnEORCIiIiIiIiIi+ihSmbS0QyA14ghEIiIiIiIiIiIiUqlMdyBqaWlh//79xeYZPHgwevTooZF4PifvOzcymQwjRoyAqakptLS0EBISorHYAODMmTPQ0tKCRCLR6HGJiIiIiIiIiKhkSvQIc6tWreDp6Ynly5erKZySefnyJUxMTAAAkZGRsLe3x61bt+Dp6SnPs2LFCshkZXMpcVV/06dw7NgxbN26FWfOnIGDgwPMzMw+6f4LU1ZvmjRpgpcvX8LY2Fhtx/2UDgYewl5/f4jFYjjY22PM6FFwdXVVmjfy2TP4+vrhcXg4YmNjMXLEcPQshU5smUyG43v/wJXTe5H+JgX2LrXRa+h0VLK0VVnm5IENuHstCHEvnqK8ji7snD3Rtd/PqGxlr5F4TwWswvWzfyMjLQU2zrXxxaAZqGhhp7LM2UPrEXojCHEvn0BbWxfWTrXRoc8EVLJUf7z5vPrbont7C1QwKIe7D5OxdE04Yl5mqMwvEABD+tqiQ6vKqCjSRnxiFo6eeo1te6LVHuvuszew7eQVxCenwqVKZUz6ugM87KzeW+7o9QeYtPUAWtd0xvIRX6k9znyHAg/C338vxGIx7O0dMGr0GJXX3bNnkfDz9UV4+GPExsZi+IiR6NGjp8ZiBfLq8An/P3Dl9N9If5MCu/xrrpg6fOrAety9Hoy4F0/k11yXvhM0cs3lx/z3jo04dTwQb96kwLVaTXiNmQjLKtbFljt+yB+B+3YiSZwIG3snDBn5E5xc3dUe7+HA/djvvwdicSLs7B0xYvQ4uLi6qcx/8fxZ7PDdgtjXr2BlVRWDhg5HvfoN1R5nvrJ27/A/EoRd+48gUZIERztr/DRsENxdHJXmPXjiNI6duYAnUTEAAFdHe4wc8LXK/Opy9FAADvjvhuRtnfAa9QOcXaupzP+/86exy28z4l6/gqVVFXw7ZBTq1m+ksXj3HjsNv8ATSJQkwcm2KiYM7YfqTsqv9/3B53H03CU8iX4BAHB1sMHofj1V5leHgMPHsXt/IBLFSXC0s8EPI4agmouT0ryBJ07i+OlzePqsoE4MH9hXZX51OBx4AAFv2wh7e0eMGD222Dbiwvmz2OG79W0bUQXfabiNAMpeu8Z41a+sxGzarB4cJnjBuE4N6FpVxvXeY/D64Mniy7RoAPclk1DB3RkZ0S8RPn8NYrYHqD3Wwo4e2oeDb+8btvL7hurPMP87fxq7/TYp3Dfq1G+swYiJPh+ffASiTCZDTk7Op96tUhYWFhAKhcXmMTY2hkgk0kg8ZUlERAQsLS3RpEkTWFhYoHz5on3JWVlZaju+jo4OLCwsoKWlpbZjfCpnz57Dhg0b8G3//vhj1Uo4ONhjqre3ytGTmZmZsLC0wNAhg+Ud3KXhdOAmXDi+A72HzsB4n13Q0dXDhgUjkJ2VqbLMk9BraNq+H8bN3oWRkzcgNzcH6xcMR2ZGmtrjPX9kIy4H+eGL72Zi5PS/oCPUx7alw4uNN/LhNTRo0x8jvHfju182QZqbjW1LvJCVqf54AaB/r6ro3dUKS9Y8xshfQpCeIcXSmTWgo626Xg/oZY0enS2xfF04vh17A2u3R+btp9v7O/I+xrEbD7Ak4CRGdm6G3b8NhWsVc4xe/RcSUt4UW+55ggTL9p9CHcfiO5Q+tXNnz2LDhg3o3/9brFz1B+wdHODtPfW9193gIUNL7bo7c2gTLhz3Q68hMzBu9m7oCPWw8T3XXMTD62jSrh/GztqFEZM2Ijc3BxsWDEOWBq45ADjovwPHAvdi2Pe/YM7SDRDq6mL+9J+RVUzM/zsXDN+Nq/BVv6GYv2IzbO2dMH/6z0iSiNUa6/mzp7F5w1p8038Qlq1aC3sHR8z0/g0SFccNfXAfSxbOQbsOnfH7qnVo2Lgp5vtMx7PIp2qNM19Zu3ecvHAZf2zZiSHf9MSmpT5wsrPBz7MXQSxJUpr/1v1QtGveGKt8pmDdghkwNzPFz7MWIS4hUWMxXzx3Cls3rEaf/t9h8coNsLV3hI/3RJV18eGDe/h9kQ/aduiCJSs3oEHj5lg0ZyqiIp9oJN6g/13Diu1/Y9hX3bBt4TQ421rjx7krkJiUrDT/zQdhaN+0AVbPmIANc36DeUVT/DBnOWIT1Xut5Tt1/n9YvdkX333zFTYsmw9He1tMnDlfZZ0IufsAbZs3xfI53vhz0WxUMquIiTPnaaxOnD97Gps2rEXf/gPx+6q1sHNwwAzvSe9pI+aifYdOWL5qLRo2bop5PjM01kbkx1yW2jXGy5gLK2egj+Q7Ybg3ftYH5dezq4r6B9ch4cwVXKj3JZ6u2gaPdXNg1r6ZmiMtcPHcSWzbsBpf9x+MRSs3ws7eCXOKvW/cxfJFs9G2Q1csXrkR9TV83yD63HxwB+LgwYNx9uxZrFixAlpaWtDS0kJkZKT8UdSjR4+ibt26EAqFuHDhAiIiIvDll1/C3NwcFSpUQP369REcHKywTzs7O8ybNw9Dhw6FoaEhbGxssH79evn7WVlZGDt2LCwtLaGrqwtbW1vMnz9f/n7hx3Tt7fN+ja1duza0tLTQqlUredyFH2HOzMzE+PHjUblyZejq6qJZs2a4du2a/P38v+fkyZOoV68e9PX10aRJE4SFhak8N5GRkdDS0sKePXvQvHlz6OnpoX79+nj06BGuXbuGevXqoUKFCujcuTPi4uIUym7cuBHVqlWDrq4u3Nzc8Oeff8rfU/U3Xbt2De3bt4eZmRmMjY3RsmVL3Lx58z3/gwUGDx6McePGISoqClpaWrCzswOQN1Jw7Nix+PHHH2FmZoaOHTsCAJYtWwYPDw8YGBjA2toaY8aMQWpqqsI+L168iFatWkFfXx8mJibo2LEjxGLxe+tN4S9S/v7+qF69OoRCIezs7LB06VKFY7yvvqjLvoAAdOrUCR06tIetjQ3GjR0LoVAXx0+cUJrf1cUFw7280KplS2hra6s9PmVkMhnOH/NFux4jUaNeG1jZuKLv6PlIlsTi3nXVvwwOn7Qe9Vv2hEVVJ1jZuqHvqLmQxL9EzNMHao/30ontaPnFKFSr0xYW1q7oPXwBUsSxCL0ZrLLcdxM3oE7znjCv4gxLGzf0GjYfSQkv8SLyvlrjzdenexVs/zsKF64mIuJZGuYuD0NFUyGaN1I9oreGmyEuXEnApRtivIrNxJn/xePqLQncnQ3VGqvvqavo1aQWejSuCUdLM0zr2wm6OuWx/9IdlWVypVJM2XYQo7s0R1UzkVrje1dAwD506tQJ7Tt0gI2NLcaOHQddoRAnThxXmt/FxRVeXsPRsmWrUrnu8q657WjbYyRq1Gv79ppbgGRJLO7fKOaa+y3/mnOGla0bvhk5D5IE9V9z+TEfPbAHPb/5DvUaNYetvRO+/9kb4sR4XL90XmW5w/v/QpuO3dGqfVdUtbHHsO9/gY5QiDNBh9Qa74GAvejQqQvadegEGxs7jB77I4RCIYJPHFOaP/DAPtSpWx+9vvoG1ja2GDBoCBwcnXE4cL9a48xX1u4duw8eRff2rdC1bQvYW1fBL6OGQFcoxKGT55Tmn/HTGPTq3A7O9rawrWqF38YMg1QmxfU76q+7+QID9qBdp25o074LrG3sMHLsBAh1dXHyxBGl+Q8f3IvadRugR+9+qGpjh34DvWDv6IKjhzQz+mXXoSB82bYZurVuCvuqVvht+ADo6ujg0OmLSvPPHj8MX3VsBRc7a9hVscSUUYMglclw/e5DjcS758BhdOvQBl3atYKdTVVMGD0MukIdHAk+ozS/94Rx6NmlA5wd7GBbtQp+HTsSUqkMN27f00i8BwL8C7URthhTwjbi20FD4ODohMOBBzQSb17MZatdY7yMubC44+fwaMZyvD6g+rN6YbYj+iL9aQxCf12I1IdP8OzPHXjlfxz2PwxWb6CFvHvfGPH2vnHqxGGl+Y8c3AvPug3wpfy+MeztfWOfxmIua2RS2X/i9V/1wR2IK1asQOPGjTF8+HC8fPkSL1++hLV1wYiUSZMmYcGCBQgNDUXNmjWRmpqKLl264OTJk7h16xY6deqE7t27IyoqSmG/S5cuRb169XDr1i2MGTMGo0ePlnfWrVy5EgcPHsSePXsQFhaGHTt2yDu73nX16lUAQHBwMF6+fIl9+5Rf1L/++iv8/f2xbds23Lx5E05OTujYsSMSExV/HZ06dSqWLl2K69evo3z58hg6dOh7z9GMGTMwbdo03Lx5E+XLl0f//v3x66+/YsWKFTh//jzCw8Mxffp0ef4dO3Zg+vTpmDt3LkJDQzFv3jx4e3tj27Ztxf5NKSkp+O6773DhwgVcvnwZzs7O6NKlC1JSUt4bI5D3fzl79mxUrVoVL1++VOhA3bZtG3R0dHDx4kWsXbsWACAQCLBy5Urcv38f27Ztw6lTp/Drr7/Ky4SEhKBt27Zwd3fHpUuXcOHCBXTv3h25ubnvrTf5bty4gT59+qBv3764e/cuZs6cCW9vb2zdulUhX3H1RR2ys7PxODwctQs9Qi4QCFDb0xOhDzXzAf6fSIyNQYokHs41Ch7L0tM3hI1jTTx7fPuD95ORllen9Cuo91FzcVwMUpPi4ehe8DiArr4hqjrWRHRECeJNz4tXz0D9j8ZbmuuioqkOrt+WyNPepOUi9FEKqruq7gy89zAFdWuKYG2lBwBwtDNATXcjXL6pvhEa2Tm5CI1+hUauBY+9CQRaaORqhztPn6sst+7oBZhUMECvJrXUFpsy2dnZCA9/DE/P2vI0gUAAT8/aePgwVKOxfKjEuLfXXPWCOlxwzYV88H40dc0BQOzrF5CIE+DhWU+epm9QAU6u7nj0UPkX/pzsbDwND4OHZ315mkAggIdnPZVlPoXs7GxEhD9CLc86Cset5VkHYQ+Vd1iFPXyAWrXrKqTVrltPZf5PqazdO7Kzc/AoIhL1alWXpwkEAtSrWR33w8I/aB+ZWZnIyc2FUQUDdYWpIL9O1PQs+D8WCASo6VkXjx4q/xHp0cP7CvkBwLNOfYSpyP8pZefkIOxJFOp7FDxeLRAIUN+jGu4++rCRLBmZWcjN0cw5zqsTT1G3loc8TSAQoG4tD9wPe/RB+8jMzERObg6MDDURbzbCwx/BU0kb8VDFNf/w4QPUql1HIa1O3foq839qZbFdY7zqVRZjLglRI0/En7qkkBYXdAEmjTw1cvzs7Gw8CX+EmoU+9+R9hqmr8j6g/L7RQOV9hujf7oPnQDQ2NoaOjg709fVhYWFR5P3Zs2ejffv28m1TU1PUqlXwpdPHxwcBAQE4ePAgxo4dK0/v0qULxowZAwD47bff8Pvvv+P06dNwdXVFVFQUnJ2d0axZM2hpacHWVvXcbZUqVQIAVKxYUWl8APDmzRusWbMGW7duRefOnQEAGzZsQFBQEDZt2oRffvlFnnfu3Llo2bIlgLzO0a5duyIjIwO6uroqY5g4caJ81N4PP/yAfv364eTJk2jatCkAwMvLS6FDbMaMGVi6dCl69eoFIG/E4YMHD7Bu3Tp89913Kv+mNm3aKBx3/fr1EIlEOHv2LLp166YyvnzGxsYwNDREuXLlipwrZ2dnLFq0SCHtxx9/lP/bzs4Oc+bMwahRo+SjJRctWoR69eopjJ6sXr3gS0hx9SbfsmXL0LZtW3h7ewMAXFxc8ODBAyxevBiDBw+W5yuuvrwrMzMTmZmZRdLe99h7YcnJyZBKpRCZiBTSRSIRoqPVP2fdP5WSFA8AMDRWHAlXwbii/L33kUqlOOC7EHYutWFp7fzJYyws9W1MFYwrKqQbGJkhNSlOWZEipFIpjuycDxvnOjCv6vLJY3xXRZO8EUJiieKj/omSLJia6Kgs5+cfDX39cvBbXRdSqQwCgRY2+EUi6OyH/Z3/hDg1DblSGSoa6iukVzQywNPXCUrL3IyIRsClO9gz6f0/nnxqZfG6S5EUc81JPvyaO+i7AHYudWCh5msOACTivE5rY5GpQrqxyBQSifJ6kZwsgVSaq7TM85gopWU+heTkpLd1QvHRXpHIBDEq6oREnAiRqGh+sVj9j1OWtTqclJKCXKkUpu/MS2wqMsKz5y8+aB9/bv8LZiYmCp2Q6pSSnASpNLfI/7GxyATPo5XXRYk4EcZK6oREA3VCkpyad45FRgrpJiJDRL54+UH7WL3DH2amxgqdkOqSlJyMXKkUJiLFOmEiMkZUjOofngpbu30nzExNFDoh1aW4NuK5yjZCrKSNEGmkjQDKYrvGeNWtLMZcEkJzM2S+VvxMlPk6HtrGhhDoCiHNUD19yqeQf98oeh8wLfa+ISrymUcz9w2iz9EnmwOxXr16CtupqamYOHEiqlWrBpFIhAoVKiA0NLTICMSaNWvK/62lpQULCwvExsYCyHvUNiQkBK6urhg/fjxOqHjs50NFREQgOztb3qEHANra2mjQoAFCQxVHtRSOy9LSEgDkcalSuIy5uTkAwMPDQyEtfx9v3rxBREQEvLy8UKFCBflrzpw5iIiIKPY4r1+/xvDhw+Hs7AxjY2MYGRkhNTW1yLn9J+rWrVskLTg4GG3btkWVKlVgaGiIgQMHIiEhAWlpeXN05Y9A/BihoaEK/y8A0LRpUzx+/Bi5ubnytOLqy7vmz58PY2Njhdeates+Ks7P1c0LhzBlSD35Kzf34+chDdgyB6+iH+PbcUs+QYSKbv8vED4j68pfubnZH73PQ76zERvzGH1GL31/5n+gfctKOL67ifxVvtw/az7bNKuE9i0rY/ayMHj9fAvzVjxC3x5V0al15U8c8T/3JiMTU7cHYka/zjCpoP/+Av9BNy8GYurQuvLXJ7nmtvrgVcxjDBj76a85ALhw+ji++6qd/JWrofmK6d/P1z8QJy9cxrxJP0Coo/oHFPrntu8/iuCL17Bg4hgIdUpnepSS2LH3AE6d/x/mTJ7AOkFERPQvUaJVmItjYKD4eMLEiRMRFBSEJUuWwMnJCXp6evjqq6+KLMzx7jw/WlpakEqlAIA6derg6dOnOHr0KIKDg9GnTx+0a9cOe/fu/VRhq1Q4rvyFPvLjKkmZd9Py95E/h+CGDRvQsKHiKlnlypUr9jjfffcdEhISsGLFCtja2kIoFKJx48afZNGTd/8fIyMj0a1bN4wePRpz586FqakpLly4AC8vL2RlZUFfXx96enoffdwPVVx9edfkyZPx888/K6S9iCnZyA8jIyMIBAJIxBKFdIlEAhPT0lsg5V3udVvjZ6eCzuqcnLwOuZSkeBiZVJKnpyYlwMpW9Spu+fZtmYMHt85izPRtEFVUPXL0n3Kr3QZVHQs6g3NysuTxGYoKOtLeJMfDwub9Iy0O+fog7PZZDJvsC2PTTx8vAFy4mogHYQVzjWpr53Ugmoh0kCAu6AA1Feng8dPUIuXzjR5sjx3+0Th5Pm/E4ZNnaTCvJMS3X1nj2Onif6T4p0wq6KOcQAsJKYoLcyQkv4GZUYUi+aPjJXiRkITx6/6Wp0nfrmZfZ/wCHPAeCetK6qv/ZeG6c6/TBjZK6vA/veYCts5B6K2zGOO9XS3XHADUbdgMTq4Fo8Oys/NiTpIkwsS0YORkkiQRtvbKR0AaGYkgEJRDkkTxl/ckSSJEJqZKy3wKRkbGb+uE4iTnEokYJqbKjysyMS0y6bxEIoaJGuPMVxbqcGHGhoYoJxAgMUlxcYxESTIqvmchup37D2PHvkNYPus3ONnZqDFKRYZGxhAIyhX5P06SiFXWRZGJaZGJ8iXF5P+UREYV8s6xRHHBFLEkBRVFxU9ZsOPgCWzffwyrvH+Cs21VdYYpZ2xkhHICQZEFU8SSJJi+M7L2XbsDArFz3wEsnTUVjnaqnx76lIprI0QqrjmRiYmSNkKikTYCKIvtGuNVt7IYc0lkvo6H0FzxSQ2huRmyk1LUPvoQKLhvFL0PqP4Mk3d+3/3Mo5n7Rln1X54f8L+gRENodHR0FEaDFefixYsYPHgwevbsCQ8PD1hYWCAyMrLEARoZGeGbb77Bhg0b8Ndff8Hf37/IfIX5sQEoNj5HR0f5/H75srOzce3aNbi7q166XR3Mzc1hZWWFJ0+ewMnJSeGVv3iKqr/p4sWLGD9+PLp06SJfdCQ+/sMekSupGzduQCqVYunSpWjUqBFcXFzw4oXi40w1a9bEyZOqFwn4kHpTrVo1hf8XIO/vdHFxeW+HqipCoRBGRkYKr5I8vgzkdVg6Ozkh5HaIPE0qlSIkJATV3N7fKaApunoGMLOwlb/MqzjCUGSGx/evyPNkpKUiKuIObJ1Vz2cnk8mwb8sc3Lt+EqOmbkbFyur5oiLUM0BFc1v5q7KVEyoYm+HJg8sF8aanIibiDqwdi4/3kK8PHtwIxtBft8Ckkvq+WKWn5+L5qwz5KzI6DQmJWahbUyTPo69XDtVcDHE/TPV8pLo6Asje6fOWSmUQqHFBcu3y5VDN2gJXwiIVjnnl0TPUtK9SJL+9eUXsnTIMf03ykr9aeTijvrMt/prkBQsToyJlPmm82tpwcnJWet25uan/0b0PUfSac4KhyAzh9wvVYfk156lyPzKZDAFb5+De9WCMnLoZpmq65gBAT98AFlZV5a+qNvYQmVTEvZAb8jxpaW8QHvYALm41lO6jvLY27J1cce/2dXmaVCrFvds3VJb5FLS1teHo5II7t28pHPdOyC24uim/f7u6ueNOiOICYyG3bqjM/ymVlXtHPm3t8nBxtMONQgugSKVS3Lh7H9VdnVSW2xFwCNv+PoAl03+Bm5ODJkKVy68TdwvV37w6cRMubsofo3Zxq447t28opN25dR2uKvJ/Strly8PVwQbX7hXMgSmVSnHtXig8XFSfO98Dx7DZ/xCWT/kB1Rzt1B5nvrw6YY8bdwrmNpVKpbh55x6qu6qeJmTnvoPYvmcfFs2YDDdnR02ECiD/vuGC27cLrvn8NsJNxTXv5uaOOyG3FNJCbt1Qmf9TK4vtGuNVr7IYc0lILoegYptGCmlmbZtAfDlEI8fX1taGg5L7xt2QmyrvAy5u1XH3tuL5vX3rmsr7DNG/XYk6EO3s7HDlyhVERkYiPj6+2BF5zs7O2LdvH0JCQnD79m3079//vSP43rVs2TLs2rULDx8+xKNHj/D333/DwsICIiW/hleuXBl6eno4duwYXr9+jaR3fkUH8kbXjR49Gr/88guOHTuGBw8eYPjw4UhLS4OXl1eJYvsUZs2ahfnz52PlypV49OgR7t69iy1btmDZsmUAVP9Nzs7O8PX1RWhoKK5cuYIBAwaobRSgk5MTsrOzsWrVKjx58gS+vr7yxVXyTZ48GdeuXcOYMWNw584dPHz4EGvWrJF3an5IvZkwYQJOnjwJHx8fPHr0CNu2bcMff/yBiRMnquXvKolePXvi6LHjCAoORlRUFFatXo2MzAx0eDvn5+IlS7F5y1Z5/uzsbERERCAiIgI5OTmIT0hAREREkY5XddLS0kLzTgNxMmAd7t84hZdRj7BrzWQYiSqjRr2Cx83Xzh2KC8d3yLf3bfHBzYuHMGDsIgj19JEsiUOyJA7ZWRlqj7dxh0E4E7gWobdO4VX0I/ivnwRDk8qoVqedPN+WhUNwObgg3kO+s3H7f4H4etRi6OgaIEUShxQNxJtvT+BzfNfHGk0bmMLBVh/TfnRBQmImzl8u6NBfPtsDvbpYyrf/dy0RA7+2RuO6JrCoLETzRhXxzZdVce6y8jnnPpWBbRpg3/9CcPDyHTx5FY85fx1DemY2ejTKG0U3dXsgVhw4AwAQapeHs1UlhZehni4MdHXgbFUJ2uX/Wad+SfTs2QvHjx1FcHAQoqKisHr1KmRkZqB9+w4AgKVLFmPrls3y/O9edwkJ8Rq97vKuuUE4ub/gmtu9dhKMRJVRvW7BNbdu3hBcPFFQhwO2+uDmxUD0/34xhLoGGrvm8mPu/GUfBPy1DdevnEdUZAT+XOYDE1Mz1GvcXJ7PZ8p4HAssGPnftcc3OHU8EGdPHsHz6Ehs+nMJMjMy0LJdV7XG+2XPr3Di2GGcCj6O6KhnWLt6OTIyM9Cufd7cw78vWYDtWzbK83f/shdu3riG/fv2ICY6Crv8tiHi8SN07d5DrXHmK2v3jr5fdEZg0BkcPXUekdHPsWTdVqRnZKJr2xYAAJ8Va7HW9y95fr99h7Bxpz8mjx0Oy8pmSBBLkCCWIC1dM+0vAHTv2QfBxw/jdPAxxERFYv3qZcjMSEeb9nnzXK9cOhd+W9fL83f94iuE3LiKg/v+Qkz0M/y1YwsiwsPQuVtPjcTbr1t7HDx5HofP/A9PY15i0cYdyMjMQtdWeVO4zPpjM/7cWbAI4Pb9x7D+r4OYOvo7WFauiARJEhIkSUjL0Mw57vNlVxw+cQrHTp1FZPRzLFu7CekZmejcLm+O8Lm/r8b67bvk+Xf6H8DmHXvw27hRsKhcSeN14suevXHi2BGcDD6B6KhnWLN6BTIyM9C2fScAeW3ENiVtRMC+vxETHYWdftsQ/vgRunb/UiPx5sVctto1xsuYCytnoA+jWm4wqpX3w5i+fVUY1XKDrnXe517XOT+j1paF8vzP1u+Gvr013Ob/AgNXB9iO6g/Lrzvj6Yqtao81X9594xDOBB9FTFQkNqxeisyMdLRu3wVA3n1jx9aCKa+6fPEVQm5cwcF9u/E8+hn+2rEZT8LD0LlbL43FTPQ5KdEjzBMnTsR3330Hd3d3pKen4+nTpyrzLlu2DEOHDkWTJk1gZmaG3377DcnJySrzK2NoaIhFixbh8ePHKFeuHOrXr48jR45AICja71m+fHmsXLkSs2fPxvTp09G8eXOcOXOmSL4FCxZAKpVi4MCBSElJQb169XD8+HGYmGj+kaJhw4ZBX18fixcvxi+//AIDAwN4eHjIFy1R9Tdt2rQJI0aMQJ06dWBtbY158+apraOtVq1aWLZsGRYuXIjJkyejRYsWmD9/PgYNGiTP4+LighMnTmDKlClo0KAB9PT00LBhQ/Tr1w/Ah9WbOnXqYM+ePZg+fTp8fHxgaWmJ2bNnKyygUlpatmyBpOQk+Pr6QSwWw8HBAXNmz5bXmdi4OGgVGj6WkJiI78eNl2/7+++Dv/8+eHh4YPHCBRqLu3V3L2RlpmPvxplIT0uBvUsdDJ+0Dto6BaMwE15H402KRL59KTjvy+Ean8EK+/pm5BzUb6neL1jNuwxDdmY6Dm6ZgYy0ZNi41MGgCesV4k2MjUJaSsFjB1dP7QYAbF7wncK+enrNQ53m6v9CuHNfDPR0y+GXMc6oYFAed0OTMHHWfWRlFwzdt7LQhbFRwaP3v2+IwLD+tvh5lBNMjLURn5iFA8dfYutf6luAAgA61XWHODUNfx4+j/iUN3CtUhl/ft8HFY3ypi14lZgMgZYah0GWUIuWLZGUnAQ/X1/5dTd79hz5dRcXF6tw3SUmJmD8uO/l2/v8/bHP3x8eHh5YsHCxRmJu1e3tNbdpBjLSUmDnUgfDfluv5JorqMOXgvPq8No5inW4z4i5ar/mAOCL3gOQmZGODasWIe1NKlzda2LS7KXQKRTz61fPkZJc8KNckxbtkJwkwd9+GyERJ8LWwRmTZi9V++M8zVu2RnJyEnb6boVYLIa9gyNmzF4gP258XCwEhepENffqmPDrVPht3wzfrZthVaUKJnvPhq2dvapDfFJl7d7RtlkjSJJTsHG3PxLFSXCyt8HS6b/A9O3jta/jEhTaiP3HTiI7JwfTFq1U2M+Qb3rCq69mvlg1bdEGSUkS7PbbDIk4EfYOTpg2e7FCndDSKvjM6OZeAz/+4o1dvpuwY9sGWFapil+nzYWNnWZGT7ZvUh+S5BRs2HMQCZJkONtVxe9TxqPi24VVXsUnyqfAAYB9QWeRnZODKcsU52/2+qobhvf5Qu3xtmneBJLkZGze+TcSxRI42dti8YxJMH37Q35sfLzCNXfgWBCyc3IwfeHvCvsZ3Lc3hvT7Wu3xNm/ZGkmF2ggHB0fMnD3/nftGQX3IayOmYMf2LfI2Yor3LI21Efkxl6V2jfEy5sKM69ZA45O+8m33JVMAANHb9+GO12QILStBz7rgR/T0yBhc+2Ik3JdOht24QciIeYW7I6chPuiC2mPN17RFWyQXum/YOThh6uwlhc7va4V7nZu7B374ZTp2+27EzlK4bxB9brRkMhkfUqf/jKcR4aUdQondk9iVdgglkp71ydZm0ohVCy6+P9NnJGhs8YssfY5iHFqWdggl8kCsuXncPgVrY/H7M31m9ASaG6X2KQhRtuKtkFm2Vod8rVO2rjkAqPImrLRDKJFMoXqnnvjUkrTN3p/pMyPD5/MjHNE/EeH2cYtiappN6LnSDqFEPJzMSzsEjegx5lFph6AR+/9UPZ3Hv9knW0SFiIiIiIiIiIj+mzg+7d+tbA0VIiIiIiIiIiIiIo1iByIRERERERERERGpxA5EIiIiIiIiIiIiUolzIBIRERERERER0UeRSqWlHQKpEUcgEhERERERERERkUrsQCQiIiIiIiIiIiKV2IFIREREREREREREKrEDkYiIiIiIiIiIiFTiIipERERERERERPRRZFJZaYdAasQRiERERERERERERKQSOxCJiIiIiIiIiIhIJXYgEhERERERERERkUqcA5GIiIiIiIiIiD6KTCYt7RBIjTgCkYiIiIiIiIiIiFRiByIREREREREREVEpSkxMxIABA2BkZASRSAQvLy+kpqaqzB8ZGQktLS2lr7///lueT9n7u3fvLnF8fISZiIiIiIiIiIioFA0YMAAvX75EUFAQsrOzMWTIEIwYMQI7d+5Umt/a2hovX75USFu/fj0WL16Mzp07K6Rv2bIFnTp1km+LRKISx8cORCIiIiIiIiIiolISGhqKY8eO4dq1a6hXrx4AYNWqVejSpQuWLFkCKyurImXKlSsHCwsLhbSAgAD06dMHFSpUUEgXiURF8pYUH2EmIiIiIiIiIqKPIpPK/hOvzMxMJCcnK7wyMzM/6txdunQJIpFI3nkIAO3atYNAIMCVK1c+aB83btxASEgIvLy8irz3/fffw8zMDA0aNMDmzZshk8lKHCM7EImIiIiIiIiIiD7A/PnzYWxsrPCaP3/+R+3z1atXqFy5skJa+fLlYWpqilevXn3QPjZt2oRq1aqhSZMmCumzZ8/Gnj17EBQUhN69e2PMmDFYtWpViWPkI8xEREREREREREQfYPLkyfj5558V0oRCodK8kyZNwsKFC4vdX2ho6EfHlJ6ejp07d8Lb27vIe4XTateujTdv3mDx4sUYP358iY7BDkQiIiIiIiIiIqIPIBQKVXYYvmvChAkYPHhwsXkcHBxgYWGB2NhYhfScnBwkJiZ+0NyFe/fuRVpaGgYNGvTevA0bNoSPjw8yMzM/+O8A2IFI/zGWYadKO4QSS3PpXtohlMjRO+alHUKJHJrxcXNVaFzMm9KO4F9v0awLpR1CiYyd3KK0QygxC6OM0g6hROqlBpV2CCUi/V/ZuteV+/KX0g6hxO6Wr/f+TJ8R2/IxpR1CicRnmpR2CCWWIytbM0PJZFqlHQJ9ZmxCz5V2CCUSVa1sff7xyA4r7RColFSqVAmVKlV6b77GjRtDIpHgxo0bqFu3LgDg1KlTkEqlaNiw4XvLb9q0CV988cUHHSskJAQmJiYl6jwE2IFIREREREREREQfSSYt+cIclKdatWro1KkThg8fjrVr1yI7Oxtjx45F37595SswP3/+HG3btsX27dvRoEEDednw8HCcO3cOR44cKbLfwMBAvH79Go0aNYKuri6CgoIwb948TJw4scQxsgORiIiIiIiIiIioFO3YsQNjx45F27ZtIRAI0Lt3b6xcuVL+fnZ2NsLCwpCWlqZQbvPmzahatSo6dOhQZJ/a2tpYvXo1fvrpJ8hkMjg5OWHZsmUYPnx4ieNjByIREREREREREVEpMjU1xc6dO1W+b2dnB5ms6CjPefPmYd68eUrLdOrUCZ06dfok8ZWtyTqIiIiIiIiIiIhIozgCkYiIiIiIiIiIPopUJi3tEEiNOAKRiIiIiIiIiIiIVGIHIhEREREREREREanEDkQiIiIiIiIiIiJSiR2IREREREREREREpBIXUSEiIiIiIiIioo8ik8pKOwRSI45AJCIiIiIiIiIiIpXYgUhEREREREREREQqsQORiIiIiIiIiIiIVOIciERERERERERE9FFkUmlph0BqxBGIREREREREREREpBI7EImIiIiIiIiIiEgldiASERERERERERGRSuxAJCIiIiIiIiIiIpW4iAoREREREREREX0UmVRW2iGQGnEEIhEREREREREREanEDsRS1KpVK/z444+lcuyZM2fC09OzVI5NRERERERERERlBx9hplKzdetW/Pjjj5BIJKUdynvtvnAL205dR3zKG7hYVcKkXm3gYWv53nJHbz7EJN/DaF3DEcu9eqg/0MLHPhSA/f67IREnws7eCcNGjYezazWV+f93/gx2+W1C7OtXsLSqioFDRqJu/UYai1cmk+FG8Co8vPY3stJTYG5bG816zICxmd0HlQ85swHXji9DjSYD0bj7FPUGC+DvE2fhFxiMhKRkONtUwcTBfVDdyU5p3v0nL+Lw+St4EvMCAOBmb4Mx33yhMr+67L54G9vO3kR8ShpcLM0wqUdLeNhYvLfc0ZBHmLTjGFpXd8Dywd00EGmeQ4EH4e+/F2KxGPb2Dhg1egxcXV2V5n32LBJ+vr4ID3+M2NhYDB8xEj169NRYrPm8BtihewcLGBqUx93QZCz58zFiXqarzC8QAEP72aFD68qoKNJBfGIWjpx8hW1/RWkkXplMhtP7V+HG2b+RkZYMG+c66DZwBipa2Kksc+7QOoTeCEL8qyfQ1taFtVNttP96AswsHTQSb+DuNTgfvA/paSlwdPVE/xFTYG5lq7LMo/s3cOLANkQ9CUWSOA6jf10Gz4Zt1B4rAOwJvojtR88iISkFztaW+PXbHqjhaKM076nrd7E58BSiY+ORk5MLGwszfNupJbo2rauRWAFAu1YzCOu1gZaBIaRxL5B+2h/SV8XURaEedJt2QXmnmtDSNYA0JRGZZwKQ8zRUYzEfCdyPAP+/3t7rHDF89Di4FHOvu3j+DHb6bpHf6wYNHY56Gr7XHdy9FueDApCWlgInt1oYMGIKzK2U1wsgrw4fP7AdzyJCkSSOx5jflqJ2w9YaiffgocP42z8AiWIxHOzt8f2oEXBzdVGaN/JZFLb77cDj8Ai8jo3FqOFe6NXjS43EWZhMJsP+XWtxLjgAaW9S4eRWC4NGTi72HIfdv4lj+7cj8u05HjtpCepo6Bzn1Yk1OB8UkNeuyevE+9q17XgW8QBJ4niM/m2ZxupEWWuHy2LMZS3eo4f24eDb7xy29o7wGvUDnF3dVeb/3/nT2O23CXGvX8HSqgq+HTIKdeo31kisps3qwWGCF4zr1ICuVWVc7z0Grw+eLL5MiwZwXzIJFdydkRH9EuHz1yBme4BG4iX63HAEIpV5ubm5kEqlatv/sVsPsWT/WYzs2Bi7JwyEq1UljF7nj4SUtGLLPU9MwrKDZ1HHoYraYlPlwrlT2LLhT/TpPxhLVm6Anb0jZnv/AolErDT/wwf3sGzRbLTt0BVLV25Eg8bNsHDONDyLfKKxmG+f24j7//NDsx4z8eWYv6Cto4+jm4cjJzvzvWXjou8i9OpfMLVQ3rn0qQVduoHlvvswrHcXbJ83Cc62VTF+wR9ITEpRmv9G6CN0bFIPa6b9gE2zJsK8ognGzf8DsYkSjcQLAMdCHmFJ4HmMbN8Qu3/sC1crM4zeeAAJqe+rx8lYdug86thbaSjSPOfOnsWGDRvQv/+3WLnqD9g7OMDbe6rKHxwyMzNhYWmBwUOGwsTERKOx5hvQ2xpfdauCJX8+xoiJt5CekYtlsz2go61VTBkb9Ohihd/XhmPAmGtYs/UJBvSyxlfdNdNuXDiyEVeCfNF90EwM994DbR09+C4bhuxirrtnYdfQoG1/DJ/2FwZN3Izc3BxsXzoMWZnF16VP4fj+rTh1ZCcGjJyKSfN9IdTVw0qfMcjOUh1vVmY6qtq5oN/wyWqPr7ATV0KwbFcgRnzZHjtm/QgXayuMXbIRicmpSvMbGehjaPc22Oo9Frvn/Izuzetj1sY9+N/dMI3EW96lNnRb9kDm5WN447cEuXHPYdBrFLT0KigvICgHg96joWVkivRDW5G6dR4ygv6CNCVJI/ECwIWzp7F5wxr07T8Iy1atg52DI2Z5/1bsvW7pwjlo16Ezlq1aj4aNm2KBz3Q8i3yqsZiPBWzDycO78O2oKZiyYBt0hHpY7vN9sXU4MzMDVe1c0H/4JI3FCQBnzp3Hug2b8G3/vvhz5e9wsLfDFO8ZEBfXDltYYOjgQTAtpXYYAI4GbEPw4d0YNHIKpi3cBqFQD0tnjy3+HGekw9rOBd+O+E2DkeY5HrAVp97WickLtkMo1MOK99aJ9Ld1QrPtGlC22uF8ZS3mshTvxXMnsW3DanzdfzAWrdwIO3snzPGeiCSV7fBdLH/7nWPxyo2o37g5Fs2ZiigNfecoZ6CP5DthuDd+1gfl17OrivoH1yHhzBVcqPclnq7aBo91c2DWvpmaIy27ZDLpf+L1X8UOxFKWk5ODsWPHwtjYGGZmZvD29oZMVjDxqK+vL+rVqwdDQ0NYWFigf//+iI2Nlb9/5swZaGlp4eTJk6hXrx709fXRpEkThIUpfuFYsGABzM3NYWhoCC8vL2RkZLw3tvv376Nbt24wMjKCoaEhmjdvjoiICPn7GzduRLVq1aCrqws3Nzf8+eef8vciIyOhpaWFffv2oXXr1tDX10etWrVw6dIledxDhgxBUlIStLS0oKWlhZkzZwLI+wA6ceJEVKlSBQYGBmjYsCHOnDkj3/fWrVshEolw8OBBuLu7QygUIipKfaN1fM/cQK/GHujRsAYcLSpi2tftoaujjf1X7qoskyuVYorvEYzu1ARVK4rUFpsqgQF/o32nrmjbvjOsbewwcuzPEOrq4tSJI0rzHzroj9p1G6BH776oamOL/gO9YO/ojKOHNPPrmkwmw72L21G79SjYubdFRUtXtOqzAGkpsXj2ILjYstmZb3Dqr1/QotdsCPWMNBLvzsMn0aNNE3Rv1RgOVS0xyasvdHV0EHjmktL8PmOH4KsOLeBiZw27KhaYOmIAZDIZrt3TTMcAAPieu4VeDWugR313OJpXxLRebaCrXR77rz5QWSZXKsWUnccxukMjVDU11lisABAQsA+dOnVC+w4dYGNji7Fjx0FXKMSJE8eV5ndxcYWX13C0bNkK2traGo0139dfVMH2Pc9w4UoCIiLfYM7vD1HRVIjmjcxUlqlRzQgXLsfj0vVEvIrNxJn/xeNqiBjVnA3VHq9MJsPloO1o0X0U3Oq0hYW1K3oNX4gUcSwe3lR93Q2csBG1m/VC5SrOsLBxQ0+v+UhKeIEXkffVHu/JQzvQ5avh8GzQGlXtXDBknA8k4jiEXD2tslyNOs3Qo/9Y1NbgaBcA8Dt2Dj1bNsQXLerDoYo5pgzuBV0dbRw4d1Vp/nrVHNGmngfsrcxhbW6G/h2aw8naEiGPNNO5JazbCtn3LiH7/lVIE18jI/hvyHKyoF2jodL82jUaQktXH+kHNyH3xVPIkhORGxMBafwLjcQLAAcC/kaHTl3QtkPevW702J8gFApx8sRRpfkDD+xDnboN0POrvrC2scWAQUPh4OiMI4H7NRJvXh3eia5fDYNng1aoaueCoeNnQ5IYh1tXz6gs51GnKXr2/x51Gmm2DvsHHEDnTh3QsX072NrY4IexYyDUFeL4CeXtg6uLM0Z4DUHrli1KrR2WyWQIOrQT3b/2Qu2GrWBt54xhP8yCJDEON6+cUVmuZt2m6DVgDOpq+BzLZDIEH9qJroXbtfE+b+uE6nbNo04z9Oj/PWqXQrxlqR0Gyl7MZS3ewIA9aNepG9q07wJrGzuMGDvh7XeOw0rzHzm4F551G+DL3v1Q1cYO/QYOg72jC44e2qeReOOOn8OjGcvx+kDx3y/y2Y7oi/SnMQj9dSFSHz7Bsz934JX/cdj/MFi9gRJ9ptiBWMq2bduG8uXL4+rVq1ixYgWWLVuGjRs3yt/Pzs6Gj48Pbt++jf379yMyMhKDBw8usp+pU6di6dKluH79OsqXL4+hQ4fK39uzZw9mzpyJefPm4fr167C0tFTo7FPm+fPnaNGiBYRCIU6dOoUbN25g6NChyMnJAQDs2LED06dPx9y5cxEaGop58+bB29sb27ZtKxLXxIkTERISAhcXF/Tr1w85OTlo0qQJli9fDiMjI7x8+RIvX77ExIkTAQBjx47FpUuXsHv3bty5cwdff/01OnXqhMePH8v3m5aWhoULF2Ljxo24f/8+KleuXOJz/yGyc3IRGvMajVwKHnsRCLTQyNkGd569VFlu3fFLMDHUR69GHmqJqzjZ2dmICA9DTc+Cx94EAgFqetZF2EPlnUWPHt5XyA8Ates0UJn/U0sRxyA9JR5VnAoeX9DRNUQl65p4HXW72LIXD/jAxq0lqjg1UXeYAIDsnBw8fBqN+jXc5GkCgQD1a7jh7uMP+/U0IzMLOTm5MKqgr64wFWTn5CL0eSwaOVvL0/LqsXXx9TjoKkwq6KFXg+qaCFMuOzsb4eGP4elZW54mEAjg6VkbDx9q7tHIkrAy14WZqRDXQgp+cX+TlosHj5JRw011x/a90GTUrWUCays9AICTnQFqVjPG5RuJao9ZHBeD1KQ4OFQvuHZ09Q1RxbEmosNDPng/Gel5I2/1DNTbyRz/+jmSJfGoVrOgQ0vPwBD2zh54ElZ8O6Fp2Tk5eBj5HA2qO8vTBAIBGlR3xt3wZ+8tL5PJcPX+Yzx7GYs6rup/NByCchCYV0XOs0eFo0DOs0coZ2mntEh5xxrIeRkJ3TZfocJIHxgM+g06DdoBWqpH3H5Kefe6R0XudbWKudeFPXyAmrXrKKTVrlsfYQ/V2/mdL/71cyRJ4lGtVkEd1jcwhINzDTwJu6ORGD5UdnY2HoeHo3ah+bIFAgFqe9ZC6MOHpRfYe8S9fo4kcQLclZzjiM/sHAOF2rV34rX/DOsEULba4XxlLeayFG92djaehD9CTc968jSBQAAPz7oq21Vl3zk86zTAIw21wyUlauSJ+FOKAwTigi7ApJFn6QREVMo4B2Ips7a2xu+//w4tLS24urri7t27+P333zF8+HAAUOgIdHBwwMqVK1G/fn2kpqaiQoWCx4rmzp2Lli1bAgAmTZqErl27IiMjA7q6uli+fDm8vLzg5eUFAJgzZw6Cg4OLHYW4evVqGBsbY/fu3fJfkV1cCua8mTFjBpYuXYpevXoBAOzt7fHgwQOsW7cO3333nTzfxIkT0bVrVwDArFmzUL16dYSHh8PNzQ3GxsbQ0tKChUXBHGxRUVHYsmULoqKiYGVlJd/HsWPHsGXLFsybNw9A3g3rzz//RK1atVT+DZmZmcjMVBzqL8vOhrAEv4qL36QjVypDRUMDhfSKhvp4Gqv8C/7NJzEIuHIPeyYO/ODjfEopyUmQSqUQiUwV0kUiEzyPVj5SUyJOLJLfWGQCiVj9nRgAkJ4SDwDQq1BRIV2vghnSU+JUlou4fRjxLx6gx/d/qzW+wiTJqciVSmFqrDhCzNTYEM9evPqgffyxcz/MTIzRoFAnpDrJ6/E7HZYVK+jjaazyR0xuPn2BgGv3seen/poIUUFycnJeHTYRKaSLRCJER0drPJ4PYWqiAwAQS7IV0sWSLPl7yvjtjYKBfjnsWFMfUqkMAoEW1vs+RdDZWJVlPpXUpLxrq4KR4nVXwcgMqUnxH7QPqVSKY7vmwca5DsyrKp8X7VNJluTFZCRSjNfI2BRJkgS1HrukJClvkCuVoqKx4uO/FY0rIPKl6v/blLR0dP5xDrJyclBOIMCkQT3RqIZ6zysAaOkZQEtQDrI0xWkYZGkpKGdqrrSMwLgiBNbOyH54A2kB6yAQVYJu268AQTlkXVY+UvhTkt/r3nlU1lhkgphi73VF84vFytvBTy2/nhoZK95vDUUVkST+sGtOU/LbYRORSCHdRCRCdPTz0gnqAySrOMdGos+vnQAK2jXDIvFWRLL48423LLTD+cpazGUp3rx2OBfG77SrIpHpZ/udo6SE5mbIfK3YPme+joe2sSEEukJIM94/1RLRvwk7EEtZo0aNoFXo1/rGjRtj6dKlyM3NRbly5XDjxg3MnDkTt2/fhlgsls/1FxUVBXf3gslpa9asKf+3pWXe4h6xsbGwsbFBaGgoRo0apXDcxo0b4/Rp1cPgQ0JC0Lx5c6WPoLx58wYRERHw8vKSd3QCeY9jGxsrjkBRFZebm/KOk7t37yI3N1ehsxLI6wysWLHgRqqjo6Owb2Xmz5+PWbMU57eY2r8bpg3oXmy5j/EmIwtTdxzFjG86wERDo8vKovBbgTi/f6Z8u9N3a0q8j1TJS1w6NB+dh25CeW3hJ4xOvbYdOIGgSzewxvtHCHVK5xGv93mTkYWpu05gxldtYWKgV9rhfJbat6yMX74vaKd+na16SoPitGlWCe1bVsasJaF4GpUGZwcDjB/mhPjELBw79fpThQsAuHMpEIHbZsi3B/y49qP3edhvNmJjHmPolJ0fva93XTl3GDvWzZFvj52y6pMf43NjoCvELp+fkJaRiasPwrFsVyCqVKqIetUcSzu0orS0IEtLRUbQX4BMBmlsDLIqGEOnXmuNdCCWBZfPHoHfurny7XFTV5ZiNP9Ol84ewfa18+TbP05dUYrRvN+Vs0fgV7hd+8zrRFlsh8tazGUtXiL6b2MH4mfszZs36NixIzp27IgdO3agUqVKiIqKQseOHZGVlaWQt3BHX36H5McsLKKnp7rTIDU1bwL4DRs2oGFDxbmRypUr91FxpaamyjtO391X4RGXenp6Ch2vykyePBk///yzQprstG+xZd5lYqCHcgItJKS8UUhPSEmDmZFBkfzRCRK8SEzG+I0FcwdK385pWWfCMhyYPBTWZqISxVBShkbGEAgEkEgUf8mTSMQQmZgqLSMyMS2SP6mY/B/Lxr0NelkXdADn5ubV5/TUBOgbFTyOnp4aj4qWylfTjH9+H+mpCQj4o7c8TSbNxcvI67h/eSeG+tyGQFBOadmPITKqgHICQZEFUxKTUlBRVPwcjH6HgrHt4An8MWUcnG01t7iOvB6/s2BKQmoazAyLdnRHJyThhTgZ47cEytPk9fi3VTjwy0C11mMjI6O8OiyWKKRLJBKYmJbexPyFXbiagAePrsu3dbTzZgQxEWkjQVzQPpuIdBD+RPmiGQAwZogDduyNxsnzeaMBnzx7A4tKuhj4tc0n70B09WyNKg6FrrucvDhTkxNgKCq47lKT42FhrXoV23yHfWfjUcgZDJ3sB2PT96/mXVK16reCvXPBNBA52XnxJksSYGxSSZ6enJQIazv1j9IrCZGhAcoJBEhIUvy/T0hKhZmx6vktBQIBrM3z5sx0ta2Cpy9iseXQKbV3IMrS30AmzYWWvmJsWvqGkL5JVl7mTTJkublAoXmbpYmvIahgDAjKAdJctcYsv9e9M3owSSKGiWlx9zol+dW04Idng5ZwcKkh387OzhuhnJyUCJFpQR1OkSTA2l4zi4B9qPx2+N0FU8QSCUzfGR1emvLOsZJ24p1znCxJhI196bcTtRq0hH2hOpHztk6kFIn386gTZbEdLmsxl7V4C8trh8sVWTBFIkn8bL5zfKzM1/EQmivOZS00N0N2UgpHH6oglcren4nKLHYglrIrV64obF++fBnOzs4oV64cHj58iISEBCxYsADW1nlzl12/fl3ZbopVrVo1XLlyBYMGDVI4TnFq1qyJbdu2ITs7u8goRHNzc1hZWeHJkycYMGBAiePJp6Ojg9xcxS8YtWvXRm5uLmJjY9G8efN/vG8AEAqFEAoVR6ZllHBSb+3y5VCtqjmuPIpCG4+8uaykUhmuPI5C32aeRfLbVzbF3l+/U0hbfeQC3mRm49eerWEhUv/CCNra2nB0csWdkJto2Lj525iluBNyA1269VRaxsWtOu7evonuPb6Wp92+dR2ubu5K838sHaEBdIQFHbAymQx6hmZ4HnEZFa3yOi6yMlIRF30H7g37Kt2HlVNj9P7hgELa2b1TIapkj1oth6ml8xAAtMuXh5u9Na7dC0Or+nmP0EulUly/H4avO7RUWW77wSBs2X8MKyePhbujrVpiU0W7fDlUq1IZV8Kj0aZGXkeEVCrDlfBo9G1SdBoA+8om2DtB8dpefewS3mRm4dcvW6q9Hmtra8PJyRkht0PQuEmTt/FKERISgm7d1TeCuCTS03PxPF2x/YpPzES9WiYIf5r3g4O+Xjm4uxhh/xHVi0roCsvJO2fz5UplEKhhGjmhXgUIC62oK5PJUMG4Ep48uARLm7zrLiM9Fc8j7qB+634q9yOTyXDEzwehN4Mx5LftMKlU9dMHC0BXzwC6eorthJHIDA/vXoW1fd4o9vS0VDx9fBctO36tajelQrt8ebjZVcG1B+FoXTevs0AqleLag3D0affh87XKZDJkv517WK2kuZC+jkF5G2fkROSPptVCeRsXZIWcV1ok9/lTaLvVBaAFIK8OC0wqQZqapPbOQyD/XueCO7dvolGTvNUw8+51N9Glew+lZVzd3HEn5Ca+6PGVPC3k1nW4uqlnnldlddhYZIaHd67C5m3nUHpaKp48voeWnT6zOqytDWcnJ4SE3EbTxo0A5LfDd/BFt66lHF0BPT0D6L17jk0q4oGSc9y601eqdqMxqtq10DtX5B2Gee3a51EnymI7XNZiLmvxFqatrQ0HJxfcDbmBBoW+c9wNuYnO7/nO0a1HH3na7VvX4KKmdvhjSS6HoFLnFgppZm2bQHw5pHQCIipl7EAsZVFRUfj5558xcuRI3Lx5E6tWrcLSpUsBADY2NtDR0cGqVaswatQo3Lt3Dz4+PiU+xg8//IDBgwejXr16aNq0KXbs2IH79+/DwUH1xOxjx47FqlWr0LdvX0yePBnGxsa4fPkyGjRoAFdXV8yaNQvjx4+HsbExOnXqhMzMTFy/fh1isbjIqD9V7OzskJqaipMnT6JWrVrQ19eHi4sLBgwYgEGDBmHp0qWoXbs24uLicPLkSdSsWVM+n6ImDWxVF947j6G6tQVq2FrA7+xNpGdlo0fDvC+FU3ccRWXjCvihW3MItcvD2VLxVypDPV0AKJKuTt17fo1Vy+bDydkVzi7VEHhgLzIzMtCmfWcAwIql81Cxohm+HTwCANDti97wnvQDDuz7C3XrN8KFc6cQER6GUeMmaCReLS0t1Gg6CLdOrYVxRVsYmlbF9aCV0DesDFv3dvJ8hzcOgZ17O1RvMgA6QgOYWij+EqutowddfVGR9E+tf9e2mLVmO6o52KC6kx12Hz2F9MxMdGuZ9yVrxp/bUNlEhO/7fQkA2HbwBNb/fRg+YwfDspIp4iVJAAB9XSH0dXXVGmu+gS1qw/uvIFSvao4a1ubwOx+C9Kwc9Kif10k8ddcJVDY2wA9dmubVYwvFuXcMdfM6499NV5eePXth2bIlcHZ2houLKw4cCEBGZgbat+8AAFi6ZDEqVqyIwUPy5onNzs6Wr8aek5ODhIR4REREQE9PTz6fqrr9ffA5vvvGBtEv0vHydQaGfWuHhMRMnL9cMHfO8jk1ce5SPPYdzutUvHgtAYP62OJ1XCaeRr2Bi0MFfNOjKo4Efdh8mh9DS0sLjdoPwrnAtahobgcTsyo4FbAShiaV4Van4LrbumgwqtVph4btvgWQN/Lw7uVD6Dd+NXT0DJDydi5FXT1DaOuorz5raWmhbbcBOLJ3Aypb2sCschUc2LUaIpNK8GzQWp5v2cwRqN2gDVp3yfvxISM9DXGvCuZiio99juinD2FQwRimlSzVFu+3nVpgxoa/UM2+Kmo4WGPn8fNIz8zCF83rAwCmr9uFSibGGNenCwBgc+ApuNtXRdXKFZGdk4MLtx/i8P9uYPKgXmqLsbDMG2eg16k/cl9HI/dVFHTqtISWtg6y7+f90KnbaQBkqUnIvHAIAJB1+//t3XlUlHXfx/HPDIiAimCKoiGgYGpibqlpaZqVWmrZk5YZKlq55L5ki2uuLS6VSbmAWlnmUtqdZi654L5TablD3aK5ICkS2zx/cDs5DqMQwjVj79c5nqPXNed+3vGMgF9+1+8XK49aD8iz2ZNK27tJZr8y8qj/sNL2biyUXklq9+TTmj5l0v++1lXViq+XKPWvVD30cEtJ0rR3JuqOO0rr+W7Z2620adder78yUF8tXaR69zbUpg3rdPTwr+pdiF/rHnq8k/6zeHb2e7hseX29cKZ8S5VR7foPWl/37qiXVLtBMzW/5j18JvHv/V/Pnvld8cd/UbHiPrqjAN/DTz3ZTm9PmaawsFBVrVJFS79ertTUVD368EOSpLfenao77iil7l2zf3Ca/Xk4uzM9I0Nnz53X0aPH5OnlqQqF9HnYZDLp4cc76Zsv56hsQEWVKVteyz7L/hjXafCg9XVvj+ypOg2b6aHWHSXl8DE+/d9C+RibTCa1eLyTvrW+Jyro64Uf/u89cc3ntVEvqdZ174k/rntPJBz/Rd6F0OtKn4ddsdnVets82UEfTJmoymF3KbRKNf3n6y/1V+oVNXs4+2vbe++O1x13lNZzXV+SJLVu+38aNbyfli/9XHXvvU+bN67VsSO/qGffoQXWeC23Yt4qFvr34ZjeIXfK556qSjt/UakJp3TXuEHyrFBW+7u9Ikk6+fHnCur9nKpOHKqEmCUq3ayhAp5upZ1tXyqUXsDZMEA0WEREhK5cuaL69evLzc1N/fv314svZg91ypQpo5iYGL322mt67733VKdOHb3zzjtq27Ztnv5vdOzYUUePHtWwYcOUmpqqp556Sr169dJ33zneo+iOO+7QunXrNHToUDVt2lRubm6qVauWGjduLEnq0aOHvL299fbbb2vo0KEqVqyYwsPDNWDAgFx3NWrUSD179lTHjh117tw5jRo1SqNHj1Z0dLTGjRunwYMH6/fff1fp0qXVsGFDPf7443n6775VWtauqguXrujDVbE6m5yiuyqU0YcvPWU9WCXxQrLMhXTqZG7d36S5ki8maeEn0Uq6cF4hlUI1Yuxb1scDzv5x2qa5avUaGjh0hD5bMEefzputgAoV9Mob4xQUXAinf/7PPU16KCPtijYtG6W01GSVDaqjlt0+ttnfMPlcvFJTCmez+xt5+L66upD8pz5e/I3OJf2pKkEVNH14H+sjzKfPXrD5+C79fpPSMzI0fNpsm/+dHk+11ov/VzhD8Za1qujC5Sv68LttOvvnZd1Vvow+7NFOd/zvEebEpD+d6n3cpGlTXUy+qE8WLNCFCxdUqVIljR07zvqo4R9/nJHpmmV658+fU7++fax/XrpkiZYuWaLw8HBNmvx2oTR/uiRBnp5uGvZyFRUv5q64ny9q8Kg4paX/vcKwQjkv+fr8vRJ66kdH9MJzwRrcK0x+JYvo7Pk0LV91StGf3/yk3lvh/tY9lJ52RStiRio1JVkVq9RV50GzVOSav3cXzsQr5dLff+92rl8oSYqeHGHzv/VE9wmqfX/BDrsefaKr0lKv6JOoN5Vy+U+FVq2tfiM+VBGPv3vPJibo0p9/9548+pOmjPp7v94vY7J/SHffg23UtW/efyiXW480qKULyZcVtfQ7nbv4p6pULK/3h/TQHf97hDnxfJLNezj1rzRNmr9MZ84nqahHEQUH+GvcS8/qkQa1CqzxWhm/7lWqdzEVbdRKJm8fZf3xu1KWfiRLSvZj2OYSfjarZS2XkpSyNEpFH3xCxSKGyXLpotL2blDazrWF0itJ9zdtpovJSVq4IFoXLlxQSKXKGjV2svVrXfbnCbP19VWr19CgYa/r0/lz9UnMHJWvUEHDR4xVUHBIoTW3fLKL0v66ogVR45Ry+U+FVaul/iM+sHkP/5H4my4lJ1n/fPLoz3pn5IvWPy+KniJJuq9ZG0X2td3r+VZ6sMkDunjxouZ/8pn18/D4saOtn4fP/PGHzXYy586fV69+A6x/Xrx0mRYvXaaa4TX0zqQJKiytnuyiv1KvaN7M8daP8aAR79t8jM8k/qY/r/kYnzj6s94a8fdA4PP/fYwbN3tc3fsV3MdYkh59sqv++uuKPvnfeyK0Wi31HzHjuvdEgt174t2R13xei/7f57VmbdSt79iC7XWhz8Ou2uxKvY2bPKTki0n6/JO5SrpwXsGVQvX62Hdu8G+OcPUfOlKfL5itz+bNUkCFOzXsjfGqWEj/5ihZt4buW/v3llbV33lNkpQwf6kOdH9VRQPKyCvw74HrlRO/aWfbl1T93VcV3DdCqb8lKu6lN3T2+82F0gs4G5PFYuEhdfxrpH77sdEJeXa0inM8splbKw/kfGKns3oheJ3RCXlS9LdfjE7Is9/ubm10Qp50HZDzyYHO6uVXm9z8RU6mnE+q0Ql5Uu/S90Yn5EnWFtf6vPZ7u8JZeXIr/ZHqa3RCngQV/c3ohDz5La3w9gm+VTIs5pu/yIlYLM7zQ0M4hzs8c97z1lnFV3Ot738eS3e97+H/iQf/b6vRCYXih8X3GZ1gCNf6SgcAAAAAAACgUDFABAAAAAAAAOAQA0QAAAAAAAAADjFABAAAAAAAAOAQpzADAAAAAAAgXyxZnNF7O2MFIgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACH2AMRAAAAAAAA+WKxZBmdgALECkQAAAAAAAAADjFABAAAAAAAAOAQA0QAAAAAAAAADjFABAAAAAAAAOAQh6gAAAAAAAAgXyxZFqMTUIBYgQgAAAAAAADAIQaIAAAAAAAAABxigAgAAAAAAADAIfZABAAAAAAAQL5YsrKMTkABYgUiAAAAAAAAAIcYIAIAAAAAAABwiAEiAAAAAAAAAIcYIAIAAAAAAABwzAIgX1JTUy2jRo2ypKamGp2Sa67WTG/Bc7VmeguWq/VaLK7XTG/Bc7VmeguWq/VaLK7XTG/Bc7VmeoHbi8lisViMHmICriw5OVklS5bUxYsX5ePjY3ROrrhaM70Fz9Wa6S1YrtYruV4zvQXP1ZrpLViu1iu5XjO9Bc/VmukFbi88wgwAAAAAAADAIQaIAAAAAAAAABxigAgAAAAAAADAIQaIQD4VLVpUo0aNUtGiRY1OyTVXa6a34LlaM70Fy9V6JddrprfguVozvQXL1Xol12umt+C5WjO9wO2FQ1QAAAAAAAAAOMQKRAAAAAAAAAAOMUAEAAAAAAAA4BADRAAAAAAAAAAOMUAEAAAAAAD/GhaLRfHx8UpNTTU6BXAZHKIC/ENpaWk6c+aMsrKybK5XrFjRoCLg9vPjjz+qRo0aRmcAAADgNpKVlSVPT0/99NNPCgsLMzoHcAnuRgcArubw4cOKjIzUli1bbK5bLBaZTCZlZmYaVJazdevW6eWXX9a2bdvk4+Njc+/ixYtq1KiRoqKi9MADDxhUiMLSvn17xcTEyMfHR+3bt7/ha5cuXVpIVTdWs2ZN3XvvverRo4eeeeYZlShRwuikXMnIyNCECRMUGRmpO++80+gcOJndu3fr4MGDkqTq1aurTp06BhcBAHBrHD58WOvXr89xocXIkSMNqrJnNpsVFhamc+fOMUAEcokBIpBHXbt2lbu7u7755hsFBATIZDIZnXRD06ZN0wsvvGA3PJSkkiVL6qWXXtKUKVMMHyAmJyfn+rU5/bcYYfny5WrVqpWKFCmi5cuX3/C1bdu2LaQqx0qWLGl9v5YsWdLgmtzZsGGDoqOjNXjwYA0cOFBPPfWUevToYfj79Wbc3d319ttvKyIiwuiUf43U1FR5enoanXFDZ86c0TPPPKMffvhBvr6+kqSkpCQ1a9ZMn3/+ucqUKWNs4G1k165d1iFttWrVVK9ePYOLbg8Wi0WLFy92OBxwlh8+XeVqvYCrmzVrlnr16qXSpUurXLlyNv9OMplMTjVAlKRJkyZp6NChmjlzJk+8ALnAI8xAHhUrVky7d+9W1apVjU7JlaCgIK1atUrVqlXL8f6hQ4f0yCOPKD4+vpDLbJnN5psOY51tlafZbFZiYqL8/f1lNjveUtaZmseOHashQ4bI29vb6JQ8uXz5shYtWqSYmBht2rRJoaGh6t69u7p06aJy5coZnZejdu3aqX379urSpYvRKXmydu1arV27Nsd/bM+dO9egqpxlZWVp/PjxioqK0unTp/Xrr7+qUqVKGjFihIKDg9W9e3ejE2107NhRx44d0/z5862fk3/++Wd16dJFoaGhWrhwocGF2UqVKqVff/1VpUuXlp+f3w0/N58/f74Qy27ut99+07PPPqvY2FibIW2jRo30+eefO+WK4KSkJM2ZM8c68Lz77rsVGRnplD/o6d+/vz766CM1a9ZMZcuWtXtvREdHG1SWM1frlVxv6Elv4di5c6fD5ilTphhUZS8oKEi9e/fWK6+8YnRKrvj5+SklJUUZGRny8PCQl5eXzX1n+xoHGI0ViEAeVa9eXWfPnjU6I9dOnz6tIkWKOLzv7u6uP/74oxCLcrZ+/fpcvS4uLq6AS3Lv2m/grv9mzlmNGTNGPXv2dLkBYrFixdStWzd169ZNR44cUXR0tGbMmKERI0aoZcuWN10BaoRWrVpp+PDhiouLU926dVWsWDGb+86wKvV6Y8aM0dixY1WvXj2XWGE9btw4zZs3T2+99ZZeeOEF6/UaNWpo2rRpTjdAXLVqldasWWPzA53q1atrxowZeuSRRwwsszV16lTrdgFTp051+vfBtXr06KH09HQdPHhQd911lyTpl19+Ubdu3dSjRw+tWrXK4EJbu3bt0qOPPiovLy/Vr19fUvYwYPz48Vq9erXTPd6+YMECLV26VK1btzY6JVdcrVeSBgwYcMOhp7Oht+BNmDBBb7zxhu666y67Zmfrv3Dhgp5++mmjM3Jt2rRpRicArsUC4KYuXrxo/bV27VrLfffdZ1m/fr3l7NmzNvcuXrxodKqdSpUqWZYtW+bw/pIlSywhISGFF/QPJCcnWz766CPLvffeazGbzUbn2NiyZYtlxYoVNtfmzZtnCQ4OtpQpU8bywgsvWFJTUw2qs2cymSynT582OiPfLl26ZPnoo48spUqVcrr3xFUmk8nhL2dtLleunGX+/PlGZ+Ra5cqVLWvWrLFYLBZL8eLFLUePHrVYLBbLwYMHLb6+vkam5ah48eKWvXv32l3fs2ePpUSJEoUfdBvy9PS07Nmzx+76rl27LF5eXgYU3dj9999v6dq1qyU9Pd16LT093dKlSxfLAw88YGBZzoKDgy0HDx40OiPXXK3XYrFY/Pz8LP/5z3+Mzsg1eguev7+/JTo62uiMXImMjLTMnDnT6AwABYQViEAu+Pr62vyEz2Kx6KGHHrJ5jcXJHq+9qnXr1tZVWtfvD3blyhWNGjVKjz/+uEF1N7Zx40bNmTNHS5YsUfny5dW+fXvNmDHD6CwbY8eO1YMPPmj9GMbFxal79+7q2rWrqlWrprffflvly5fX6NGjjQ29hrP9tDovNm7cqLlz52rJkiUym83q0KGD060yu8pVVqVeKy0tTY0aNTI6I9d+//13hYaG2l3PyspSenq6AUU31rx5c/Xv318LFy5U+fLlJWX/NwwcONDua4rRcrOthMlkUkZGRiEV5U5gYGCO/7/PzMy0fsydya5duzRr1iy5u//9Lbm7u7uGDRvmlPs2jh49WmPGjNHcuXPtHvVzRq7WK2XvUVypUiWjM3KN3oJnNpvVuHFjozNyJTQ0VCNGjNC2bdsUHh5u9xRUv379DCpz7OjRo4qOjtbRo0c1ffp0+fv7a+XKlapYsaLuvvtuo/MAp8IeiEAubNiwIdevbdq0aQGW5N3p06dVp04dubm56eWXX7Y+0nXo0CHNmDFDmZmZ2rNnj8qWLWtwabbExETFxMRozpw5Sk5OVocOHRQVFaX9+/erevXqRufZCQgI0IoVK6z/0Hv99de1YcMGbd68WZL05ZdfatSoUfr555+NzLQym802h6k44kx7vvz3v/9VTEyMYmJidOTIETVq1Ejdu3dXhw4d7B4LdgaufPL5K6+8ouLFi2vEiBFGp+RK3bp1NXDgQHXu3FklSpTQ/v37ValSJY0dO1bff/+9Nm3aZHSijYSEBLVt21Y//fSTAgMDrddq1Kih5cuXO9X+fF9//bXDe1u3btV7772nrKwspaamFmLVzX399deaMGGCZsyYYf28vGvXLvXt21evvPKKnnjiCWMDr1O2bFktWLDA7hH27777ThERETp9+rRBZTm7cuWKnnzyScXGxio4ONhuOLBnzx6DynLmar2SNG/ePK1atcplhp70Fry33npL//3vf13icduQkBCH90wmk44dO1aINTe3YcMGtWrVSo0bN9bGjRt18OBBVapUSZMmTdKuXbu0ePFioxMBp8IKRCAXrh0KxsfHKzAw0G4AY7FYlJCQUNhpN1W2bFlt2bJFvXr10quvvqqrPzMwmUx69NFHNWPGDKcZHrZp00YbN27UY489pmnTpqlly5Zyc3NTVFSU0WkOXbhwwebjd/Ubkavuvfdep3tfjBkzxik3589Jq1attGbNGpUuXVoRERGKjIy0DsGdlaucfJ6T1NRUffzxx1qzZo1q1qxp949tZ9qoXZJGjhypLl266Pfff1dWVpaWLl2qX375RfPnz9c333xjdJ6dwMBA7dmzR2vWrNGhQ4ckZZ8Q3KJFC4PL7LVr187u2i+//KLhw4drxYoVeu655zR27FgDyuxdf9DL5cuX1aBBA+uqvoyMDLm7uysyMtLpBogdO3ZU9+7d9c4771hX/8bGxmro0KF69tlnDa6z16VLF+3evVudO3d2if3jXK1Xkjp06KCFCxfK39/fJYae9Ba8IUOG6LHHHlPlypVVvXp1u2ZnOvjl+PHjRifkyfDhwzVu3DgNGjTIuvevlP3EwAcffGBgGeCcGCACeRQSEqJTp07J39/f5vr58+cVEhLidI8wS9knon377be6cOGCjhw5IovForCwMPn5+RmdZmPlypXq16+fevXqpbCwMKNzcqVs2bI6fvy4AgMDlZaWpj179mjMmDHW+3/++ecND7ExwjPPPGP3/nVWRYoU0eLFi/X444/Lzc3N6Jxc2b9/vyZPnuzw/iOPPKJ33nmnEIty78CBA6pVq5Yk6ccffzQ25gaOHTumkJAQtWvXTitWrNDYsWNVrFgxjRw5UnXq1NGKFSv08MMPG51pdf2q1Icfftjad/HiRd19991OuypVyl4FPGrUKM2bN0+PPvqo9u3bpxo1ahidZeUKq3Iceeedd2QymRQREaGMjAxZLBZ5eHioV69emjRpktF5dv7zn//ou+++0/333290Sq64Wq/kekNPegtev379tH79ejVr1kx33HGHSzRLslm04Kzi4uL02Wef2V339/d3qUMzgcLCABHIo6t7HV7v0qVLdnsMOhs/Pz/de++9Rmc4tHnzZs2ZM0d169ZVtWrV9Pzzz+uZZ54xOuuGWrdureHDh2vy5Mn66quv5O3tbTMEOHDggCpXrmxgoS1n/iYuJ854uvLNuMrJ5znJ7WnoRgsLC7P+IOeBBx5QqVKlFBcX5zSrqa/nqqtSL168qAkTJuj9999XrVq1tHbtWqdrlLIHAq7Kw8ND06dP18SJE3X06FFJUuXKleXt7W1wWc4CAwNzfB87K1frlVxv6ElvwZs3b56WLFmixx57zOiUXJk/f77efvttHT58WJJUpUoVDR06VM8//7zBZfZ8fX116tQpu0ev9+7dqwoVKhhUBTgvBohALg0aNEhS9gBmxIgRNt/cZ2Zmavv27daVO/hnGjZsqIYNG2ratGn64osvNHfuXA0aNEhZWVn6/vvvFRgYaPN4gTN488031b59ezVt2lTFixfXvHnz5OHhYb0/d+5cu72tjMS2twWvQoUK+vHHH3M83EPKHioHBAQUctWNRUZG3vQ1JpNJc+bMKYSam7v+fbxy5UpdvnzZoJqbc8VVqW+99ZYmT56scuXKaeHChTk+0uxMXO3Ql9z8nZOyv4Y4k3fffVfDhg1TVFSUgoODjc65KVfrlVxv6ElvwStVqpRT/TD6RqZMmaIRI0bo5Zdfth78snnzZvXs2VNnz57VwIEDDS609cwzz+iVV17Rl19+KZPJpKysLMXGxmrIkCGKiIgwOg9wOhyiAuRSs2bNJGXvcXfffffZDIk8PDwUHBysIUOGuMyjt67il19+0Zw5c7RgwQIlJSXp4YcfdspVaRcvXlTx4sXtHrM9f/68ihcvbvN+we2tb9+++uGHH7Rz584cTz6vX7++mjVrpvfee8+gQntms1lBQUGqXbv2DYfMy5YtK8Qqx8xmsxITE62P4l97gIoz8vT0vOFQ+ciRIwoPD9eVK1cKucwxs9ksLy8vtWjR4obbBzjL3ltfffWVwwGiMx764mp/567y8/NTSkqKMjIy5O3tbbfa2pkO4JJcr1fKXiH3/vvvu8zQk96CFx0drVWrVik6OtppVydfFRISojFjxtgN3+bNm6fRo0c73R6JaWlp6tOnj2JiYpSZmSl3d3dlZmaqU6dOiomJcZntc4DCwgARyKNu3bpp+vTpLvfTS1eXmZmpFStWaO7cuU45QASucrWTzyWpT58+WrhwoYKCgtStWzd17txZpUqVMjrLITc3NyUmJqpMmTKSsgeIBw4cuOHpj0aqXLmy3n33XYcHeCxdulRDhgxxqtMpu3btmqstD6Kjowuh5p/J6dCXoKAgo7Mkud7fuavmzZt3w/vO9ji5q/VKrjf0pLfg1a5dW0ePHpXFYnH6g18c/cDs8OHDCg8Pd5of4lwvISFBcXFxunTpkmrXrs2CEMABBogAANxiJ0+eVK9evfTdd9/lePK5Mw66/vrrLy1dulRz587Vli1b9Nhjj6l79+565JFHnG7vTLPZrFatWqlo0aKSpBUrVqh58+YqVqyYzeucZXWcK65KdWXXH/oyceJEpzr05SpX+jsnSenp6XrppZc0YsQIp/wcdj1X673K1Yae9Ba8aw/ny8moUaMKqeTmatSooU6dOum1116zuT5u3Dh98cUXiouLM6gsZ2PHjtWQIUPsVnZeuXJFb7/9tkaOHGlQGeCcGCACedS+ffscr5tMJnl6eio0NFSdOnWyrjoC8O/l7CefO3Ly5EnFxMRo/vz5ysjI0E8//aTixYsbnWXVrVu3XL3OWVbHueKqVFd0/aEvkydPdspDX3Li7H/nripZsqT27dvnMgM5V+t1taEnvQUvIyNDEyZMUGRkpO68806jc25qyZIl6tixo1q0aGHdAzE2NlZr167VokWL9OSTTxpcaMvNzc16KNu1zp07J39/f2VmZhpUBjgnBohAHnXt2lVfffWVfH19VbduXUnZjw4kJSXpkUce0f79+3XixAmtXbvW+oUTAFxJQkKCoqOjFRMTo7S0NB06dMgphxmuxBVXpbqSaw99mTBhgtMf+nI9V/k716VLF9WqVcvpDkJwxNV6JdcbetJb8EqUKKG4uDiX2bNx9+7dmjp1qg4ePChJqlatmgYPHqzatWsbXGbPbDbr9OnT1i1Rrlq3bp06duyoP/74w6AywDkxQATyaPjw4UpOTtYHH3wgs9ksScrKylL//v1VokQJjR8/Xj179tRPP/2kzZs3G1wLALlz7eOUmzdv1uOPP65u3bqpZcuW1s91yD9XXZXq7Fzt0BfJNf/OjRs3Tu+++64eeugh1a1b127bgH79+hlUljNX65Vcb+hJb8Fr166d2rdv75SPV7sqPz8/mUwmXbx4UT4+PjbbRmRmZurSpUvq2bOnZsyYYWAl4HwYIAJ5VKZMGcXGxqpKlSo213/99Vc1atRIZ8+eVVxcnB544AElJSUZEwkAedC7d299/vnnCgwMVGRkpJ577jmVLl3a6Cwg11zt0BdX/Tt3o1VbJpPJqQ4CklyvV3K9oSe9BS8qKkpjxozRc889l2Nz27ZtDSrLlpycbD1cMjk5+YavdZZDKOfNmyeLxaLIyEhNmzZNJUuWtN7z8PBQcHCw7rvvPgMLAefEABHIIz8/P82bN8/ui/Xy5cvVpUsXXbhwQYcPH1b9+vV14cIFgyoBIPfMZrMqVqyo2rVr33AI40yrtwBXxt85OOJqQ096C96NViSbTCbD9+m7dh9Bs9mc4+c0i8XiFK3X27Bhgxo1amR3sjWAnLkbHQC4mueff17du3fXa6+9pnvvvVeStHPnTk2YMEERERGSsr8Y3X333UZmAkCuRUREOOWpr8Dt6nb4O3ftXp6uwFV6jx8/bnRCntBb8LKysoxOuKF169apVKlSkqT169cbXJM3TZs2VVZWln799VedOXPG7mPdpEkTg8oA58QKRCCPMjMzNWnSJH3wwQc6ffq0JKls2bLq27evXnnlFbm5uSk+Pl5ms9klTksDAADIrfnz5+vtt9/W4cOHJUlVqlTR0KFD9fzzzxtcljNX672Wqww9r6IX8fHxCgwMtPuYWiwWJSQkqGLFigaV5Wzbtm3q1KmTTp48qevHIs64YhIwmnPu0Aw4MTc3N73++us6deqUkpKSlJSUpFOnTum1116zbtxesWJFhocAAOC2MmXKFPXq1UutW7fWokWLtGjRIrVs2VI9e/bU1KlTjc6z42q9V82fP1/h4eHy8vKSl5eXatasqQULFhid5RC9BW/Dhg1q06aNQkNDFRoaqrZt22rTpk1GZ9kJCQnJ8eTi8+fPO+XJ1z179lS9evX0448/6vz587pw4YL11/nz543OA5wOKxABAAAA3FRISIjGjBlj3bLlqnnz5mn06NFO93ioq/VK2UPPESNG6OWXX1bjxo0lSZs3b9aMGTM0btw4pzs9mN6C98knn6hbt25q3769tTk2NlbLli1TTEyMOnXqZHDh38xms06fPq0yZcrYXD958qSqV6+uy5cvG1SWs2LFimn//v0KDQ01OgVwCQwQgTw6ffq0hgwZorVr1+rMmTN2y91Z6g4AAG5Hnp6e+vHHH+3+sX348GGFh4crNTXVoLKcuVqv5HpDT3oLXrVq1fTiiy/aDTenTJmiWbNm6eDBgwaV/W3QoEGSpOnTp+uFF16Qt7e39V5mZqa2b98uNzc3xcbGGpWYo+bNm2vYsGFq2bKl0SmAS+AQFSCPunbtqvj4eI0YMUIBAQHsmwIAAP4VQkNDtWjRIr322ms217/44guFhYUZVOWYq/VK0qlTp9SoUSO7640aNdKpU6cMKLoxegvesWPH1KZNG7vrbdu2tXtvG2Xv3r2Ssvc6jIuLk4eHh/Weh4eH7rnnHg0ZMsSoPIf69u2rwYMHKzExUeHh4XanMdesWdOgMsA5MUAE8mjz5s3atGmTatWqZXQKAABAoRkzZow6duyojRs32jxKuXbtWi1atMjgOnuu1iu53tCT3oIXGBiotWvX2q2kXbNmjQIDAw2qsnX19OVu3bpp+vTp8vHxMbgod5566ilJUmRkpPWayWSSxWLhEBUgBwwQgTwKDAy0e2wZAADgdvfUU09p+/btmjp1qr766itJ2Y9X7tixQ7Vr1zY2Lgeu1iu53tCT3oI3ePBg9evXT/v27bOunoyNjVVMTIymT59ucJ2tadOmKSMjw+76+fPn5e7u7nSDRWd8ZB1wZuyBCOTR6tWr9e677+qjjz5ScHCw0TkAAAC4jezevVtTp0617m1XrVo1DR482GmHnvQWvGXLlundd9+1aR46dKjatWtncJmtVq1aqU2bNurdu7fN9aioKC1fvlzffvutQWUAbgUGiEAe+fn5KSUlRRkZGfL29rbbK+P8+fMGlQEAABSsrKwsHTlyRGfOnFFWVpbNvSZNmhhU5Zir9QKurFSpUoqNjVW1atVsrh86dEiNGzfWuXPnDCpzbMGCBYqKitLx48e1detWBQUFadq0aQoJCXG6AS1gNB5hBvJo2rRpRicAAAAUum3btqlTp046efKk3XYuzrhfmKv1XuVqQ096C0daWlqOzRUrVjSoyN5ff/2V4yPM6enpunLligFFNzZz5kyNHDlSAwYM0Pjx462fE3x9fTVt2jQGiMB1WIEIAAAA4KZq1aqlKlWqaMyYMQoICJDJZLK5X7JkSYPKcuZqvZLrDT3pLXiHDx9WZGSktmzZYnPdGQ/6aNasmWrUqKH333/f5nqfPn104MABbdq0yaCynFWvXl0TJkzQE088oRIlSmj//v2qVKmSfvzxRz344IM6e/as0YmAU2EFIvAPHD16VNHR0Tp69KimT58uf39/rVy5UhUrVtTdd99tdB4AAMAtd/jwYS1evNjuNFhn5Wq9ktSzZ0/Vq1dP//nPf3Icejobegte165d5e7urm+++cbpm8eNG6cWLVpo//79euihhyRJa9eu1c6dO7V69WqD6+wdP348x70vixYtqsuXLxtQBDg3BohAHm3YsEGtWrVS48aNtXHjRo0fP17+/v7av3+/5syZo8WLFxudCAAAcMs1aNBAR44ccZmBnKv1Sq439KS34O3bt0+7d+9W1apVjU65qcaNG2vr1q16++23tWjRInl5ealmzZqaM2eOwsLCjM6zExISon379ikoKMjm+qpVq+z2cQTAABHIs+HDh2vcuHEaNGiQSpQoYb3evHlzffDBBwaWAQAAFJy+fftq8ODBSkxMVHh4uN1BcjVr1jSoLGeu1iu53tCT3oJXvXp1l3qUtlatWvr000+NzsiVQYMGqU+fPkpNTZXFYtGOHTu0cOFCTZw4UbNnzzY6D3A67IEI5FHx4sUVFxenkJAQm70yTpw4oapVqyo1NdXoRAAAgFvObDbbXTOZTE65F5vker2StGzZMr3xxhsaOnSoSww96S1469at0xtvvKEJEybk2Ozj42NQ2Y2lpqYqLS3N5poztn766acaPXq0jh49KkkqX768xowZo+7duxtcBjgfBohAHt15551atGiRGjVqZDNAXLZsmYYMGWL94gMAAHA7OXny5A3vX/8YoNFcrVdyvaEnvQXvavP1ex86Y3NKSoqGDRumRYsW6dy5c3b3nan1eikpKbp06ZL8/f2NTgGcFo8wA3n0zDPP6JVXXtGXX34pk8mkrKwsxcbGasiQIYqIiDA6DwAAoEA448DtRlytV8o+1MGV0Fvw1q9fb3RCrg0dOlTr16/XzJkz9fzzz2vGjBn6/fff9dFHH2nSpElG59k5fvy4MjIyFBYWJm9vb3l7e0vK3iuzSJEiCg4ONjYQcDKsQATyKC0tTX369FFMTIwyMzPl7u6uzMxMderUSTExMXJzczM6EQAAoED5+Pho3759qlSpktEpueJqvYArqlixoubPn68HH3xQPj4+2rNnj0JDQ7VgwQItXLhQ3377rdGJNpo2barIyEh16dLF5vonn3yi2bNn64cffjAmDHBS9mu4AThksViUmJio9957T8eOHdM333yjTz75RIcOHdKCBQsYHgIAgH8FV1uD4Gq9UvbQ89ixY0Zn5Bq9BS88PFwJCQlGZzh0/vx565Dex8dH58+flyTdf//92rhxo5FpOdq7d68aN25sd71hw4bat29f4QcBTo5HmIE8sFgsCg0N1U8//aSwsDAFBgYanQQAAIDbkKsNPekteCdOnFB6errRGQ5VqlRJx48fV8WKFVW1alUtWrRI9evX14oVK+Tr62t0nh2TyaQ///zT7vrFixeder9GwCisQATywGw2KywsLMdNgQEAAP4tOnfu7JQnqjriar2AK+rWrZv2798vSRo+fLhmzJghT09PDRw4UEOHDjW4zl6TJk00ceJEm2FhZmamJk6cqPvvv9/AMsA5sQIRyKNJkyZp6NChmjlzpmrUqGF0DgAAQIE7e/as5s6dq61btyoxMVGS9MILL6hRo0bq2rWrypQpY3Dhjc2cOdPohDxztaEnvQXvgQcekJeXl9EZDg0cOND6+xYtWujQoUPavXu3QkNDVbNmTQPLcjZ58mQ1adJEd911lx544AFJ0qZNm5ScnKx169YZXAc4Hw5RAfLIz89PKSkpysjIkIeHh90X8at7fQAAANwOdu7cqUcffVTe3t5q0aKFypYtK0k6ffq01q5dq5SUFH333XeqV6+ewaV/u3Llinbv3q1SpUqpevXqNvdSU1O1aNEiRUREGFSXs4MHD2rbtm267777VLVqVR08eFDvvfee/vrrL3Xu3FnNmzc3OtGhy5cva9GiRTpy5IgCAgL07LPP6o477jA6y6pv377q0KGDdUiEWy89PV0tW7ZUVFSUwsLCjM7Jtf/+97/64IMPtH//fnl5ealmzZp6+eWXVapUKaPTAKfDABHIo5iYGJlMJof3rz/FCwAAwJU1bNhQ99xzj6Kiouy+B7JYLOrZs6cOHDigrVu3GlRo69dff9Ujjzyi+Ph4mUwm3X///Vq4cKHKly8vKXvwWb58eafa42zVqlVq166dihcvrpSUFC1btkwRERG65557lJWVpQ0bNmj16tVOM0SsXr26Nm/erFKlSikhIUFNmjRRUlKSwsLCdPToUbm7u2vbtm0KCQkxOlVS9jZEJpNJlStXVvfu3dWlSxeVK1fO6KybSktL01dffWWz8rdcuXJq1KiR2rVrJw8PD4MLbZUpU0ZbtmxxqQEigNxjgAgAAADAIS8vL+3du1dVq1bN8f6hQ4dUu3ZtXblypZDLcvbkk08qPT1dMTExSkpK0oABA/Tzzz/rhx9+UMWKFZ1ygNioUSM1b95c48aN0+eff67evXurV69eGj9+vCTp1Vdf1e7du7V69WqDS7OZzWYlJibK399fnTt31vHjx/Xtt9+qZMmSunTpkp588kmVKVNGn332mdGpkrJ7v//+e61YsUKffvqpLl68qFatWumFF15Q69atZTY739EAR44c0aOPPqr//ve/atCggc3K3+3bt+vOO+/UypUrFRoaanDp3wYOHKiiRYtq0qRJRqcAKAAMEIE8cnNz06lTp+Tv729z/dy5c/L393eqb0YBAADyKyQkRGPGjHH4yO/8+fM1cuRInThxonDDHChbtqzWrFmj8PBwSdmrJHv37q1vv/1W69evV7FixZxugFiyZEnrXnFZWVkqWrSoduzYodq1a0uSfvzxR7Vo0cK6Cs1o1w4QK1eurKioKD388MPW+1u2bNEzzzyj+Ph4Ayv/dm1venq6li1bprlz52rNmjUqW7asunbtqm7dujnVMO7hhx9WsWLFNH/+fLu9GpOTkxUREaErV67ou+++M6jQXt++fTV//nyFhYWpbt26KlasmM39KVOmGFQG4FbgEBUgjxzN3P/66y+ne4wAAAAgv4YMGaIXX3xRu3fv1kMPPWS3B+KsWbP0zjvvGFz5tytXrsjd/e9/5phMJs2cOVMvv/yymjZt6jSr4q539fFws9ksT09PlSxZ0nqvRIkSunjxolFpObram5qaqoCAAJt7FSpU0B9//GFE1k0VKVJEHTp0UIcOHRQfH6+5c+cqJiZGkyZNcqqhcmxsrHbs2JHjQS8+Pj5688031aBBAwPKHPvxxx9Vp04dSdlbCVzrRltAAXANDBCBXHrvvfckZX/xmz17tooXL269l5mZqY0bNzp8tAcAAMBV9enTR6VLl9bUqVP14YcfWocsbm5uqlu3rmJiYtShQweDK/9WtWpV7dq1S9WqVbO5/sEHH0iS2rZta0TWDQUHB+vw4cOqXLmyJGnr1q2qWLGi9X58fLzdkM5oDz30kNzd3ZWcnKxffvlFNWrUsN47efKkUx2i4kjFihU1evRojRo1SmvWrDE6x4avr69OnDhh83G91okTJ+Tr61u4UTk4cOCAatSoIbPZrPXr1xudA6AAMUAEcmnq1KmSslcgRkVFyc3NzXrPw8NDwcHBioqKMioPAACgwHTs2FEdO3ZUenq6zp49K0kqXbq0ihQpYnCZvSeffFILFy7U888/b3fvgw8+UFZWltN9z9arVy+b1W/XD41WrlzpNAeoSNKoUaNs/nztD9YlacWKFU514nFQUJDN9+7XM5lMNo9gO4MePXooIiJCI0aMyHHl77hx49S3b1+DK6XatWtbt3eqVKmSdu7c6RLDYwB5xx6IQB41a9ZMS5culZ+fn9EpAAAAAG5TkydP1vTp05WYmGh9BNhisahcuXIaMGCAhg0bZnChdMcdd+jbb79VgwYNZDabdfr0aZUpU8boLIdq166d68ep9+zZU8A1gGthgAjkU2ZmpuLi4hQUFMRQEQAAAMAtdfz4cesBOuXKlVNISIjBRX978cUXNX/+fAUEBCg+Pl533nmnw9Wex44dK+Q6e2PGjLH+PjU1VR9++KGqV6+u++67T5K0bds2/fTTT+rdu7cmTpxoVCbglBggAnk0YMAAhYeHq3v37srMzFSTJk20detWeXt765tvvtGDDz5odCIAAACA21hCQoJGjRqluXPnGp2iVatW6ciRI+rXr5/Gjh2rEiVK5Pi6/v37F3LZjfXo0UMBAQF68803ba6PGjVKCQkJTvGxBZwJA0QgjypUqKCvv/5a9erV01dffaU+ffpo/fr1WrBggdatW6fY2FijEwEAAADcxvbv3686deo41cnR3bp103vvvedwgOhsSpYsqV27diksLMzm+uHDh1WvXj2nO/kcMBqHqAB5dO7cOZUrV06S9O233+rpp59WlSpVFBkZqenTpxtcBwAAAMDVLV++/Ib3neFx4OtFR0cbnZAnXl5eio2NtRsgxsbGytPT06AqwHkxQATyqGzZsvr5558VEBCgVatWaebMmZKklJSUG57uBgAAAAC58cQTT8hkMulGDwzm9jAQ5GzAgAHq1auX9uzZo/r160uStm/frrlz52rEiBEG1wHOhwEikEfdunVThw4dFBAQIJPJpBYtWkjK/mJTtWpVg+sAAAAAuLqAgAB9+OGHateuXY739+3bp7p16xZy1e1l+PDhqlSpkqZPn65PPvlEklStWjVFR0erQ4cOBtcBzoc9EIF/YPHixUpISNDTTz+tO++8U5I0b948+fr6OvwiDwAAAAC50bZtW9WqVUtjx47N8f7+/ftVu3ZtZWVlFXIZgH8rBogAAAAAADiRTZs26fLly2rZsmWO9y9fvqxdu3apadOmhVx2+0lLS9OZM2fshrEVK1Y0qAhwTgwQAQAAAABAnt3ssJdrtW3btgBL8u7w4cOKjIzUli1bbK5bLBaZTCanOuEacAYMEAEAAAAAQJ6ZzeZcvc4ZB3KNGzeWu7u7hg8fbt3f/lr33HOPQWWAc2KACAAAAAAA/lWKFSum3bt3cxAmkEu5+3EBAAAAAADAbaJ69eo6e/as0RmAy2AFIpALycnJuX6tj49PAZYAAAAAgHO6fPmyNmzYoPj4eKWlpdnc69evn0FVOVu3bp3eeOMNTZgwQeHh4SpSpIjNff5dB9higAjkgtlsttsTwxFn29sDAAAAAAra3r171bp1a6WkpOjy5csqVaqUzp49K29vb/n7++vYsWNGJ9q4un/j9f/O4xAVIGfuRgcArmD9+vXW3584cULDhw9X165ddd9990mStm7dqnnz5mnixIlGJQIAAACAYQYOHKg2bdooKipKJUuW1LZt21SkSBF17txZ/fv3NzrPzrX/xgNwc6xABPLooYceUo8ePfTss8/aXP/ss8/08ccf64cffjAmDAAAAAAM4uvrq+3bt+uuu+6Sr6+vtm7dqmrVqmn79u3q0qWLDh06ZHQigHxgBSKQR1u3blVUVJTd9Xr16qlHjx4GFAEAAACAsYoUKWJ9LNjf31/x8fGqVq2aSpYsqYSEBIPrHEtJSclxz8aaNWsaVAQ4JwaIQB4FBgZq1qxZeuutt2yuz549W4GBgQZVAQAAAIBxateurZ07dyosLExNmzbVyJEjdfbsWS1YsEA1atQwOs/OH3/8oW7dumnlypU53mcPRMAWA0Qgj6ZOnaqnnnpKK1euVIMGDSRJO3bs0OHDh7VkyRKD6wAAAACg8E2YMEF//vmnJGn8+PGKiIhQr169FBYWpjlz5hhcZ2/AgAFKSkrS9u3b9eCDD2rZsmU6ffq0xo0bp3fffdfoPMDpsAci8A8kJCRo5syZ1n08qlWrpp49e7ICEQAAAABcQEBAgL7++mvVr19fPj4+2rVrl6pUqaLly5frrbfe0ubNm41OBJwKKxCBfyAwMFATJkwwOgMAAAAAnELz5s21dOlS+fr62lxPTk7WE088oXXr1hkT5sDly5fl7+8vSfLz89Mff/yhKlWqKDw8XHv27DG4DnA+DBCBXDhw4ECuX8tmuwAAAAD+bX744Qe7g0gkKTU1VZs2bTKg6Mbuuusu/fLLLwoODtY999yjjz76SMHBwYqKilJAQIDReYDTYYAI5EKtWrVkMpl0syf+TSYTm+0CAAAA+Ne4drHFzz//rMTEROufMzMztWrVKlWoUMGItBvq37+/Tp06JUkaNWqUWrZsqU8//VQeHh6KiYkxNg5wQuyBCOTCyZMnc/3aoKCgAiwBAAAAAOdhNptlMpkkKccFF15eXnr//fcVGRlZ2Gl5kpKSokOHDqlixYoqXbq00TmA02GACAAAAAAA/pGTJ0/KYrGoUqVK2rFjh8qUKWO95+HhIX9/f7m5uRlYeHNXxyJXB6EA7JmNDgBc0YIFC9S4cWOVL1/eujpx2rRp+vrrrw0uAwAAAIDCExQUpODgYGVlZalevXoKCgqy/goICHDq4eGcOXNUo0YNeXp6ytPTUzVq1NDs2bONzgKcEgNEII9mzpypQYMGqXXr1kpKSrLueejr66tp06YZGwcAAAAABslpocXUqVOdcqHFyJEj1b9/f7Vp00ZffvmlvvzyS7Vp00YDBw7UyJEjjc4DnA4DRCCP3n//fc2aNUuvv/66zU/T6tWrp7i4OAPLAAAAAMAYjhZa+Pn5OeVCi5kzZ2rWrFmaOHGi2rZtq7Zt22rixIn6+OOP9eGHHxqdBzgdBohAHh0/fly1a9e2u160aFFdvnzZgCIAAAAAMJarLbRIT09XvXr17K7XrVtXGRkZBhQBzo0BIpBHISEh2rdvn931VatWqVq1aoUfBAAAAAAGc7WFFs8//7xmzpxpd/3jjz/Wc889Z0AR4NzcjQ4AXM2gQYPUp08fpaamymKxaMeOHVq4cKEmTpzIhrsAAAAA/pWuLrQICgqyue5MCy0GDRpk/b3JZNLs2bO1evVqNWzYUJK0fft2xcfHKyIiwqhEwGkxQATyqEePHvLy8tIbb7yhlJQUderUSeXLl9f06dP1zDPPGJ0HAAAAAIXOFRZa7N271+bPdevWlSQdPXpUklS6dGmVLl1aP/30U6G3Ac7OZLFYLEZHAK4qJSVFly5dkr+/v9EpAAAAAGCoTz/9VKNHj7YO5MqXL68xY8aoe/fuBpcByC8GiAAAAAAA4JZhoQVw+2GACORCnTp1tHbtWvn5+al27doymUwOX7tnz55CLAMAAAAAAChY7IEI5EK7du1UtGhR6+9vNEAEAAAAgH+bc+fOaeTIkVq/fr3OnDmjrKwsm/vnz583qAzArcAKRAAAAAAAkC+tW7fWkSNH1L17d5UtW9Zu0UWXLl0MKgNwKzBABPKoS5cu6t69u5o0aWJ0CgAAAAA4hRIlSmjz5s265557jE4BUADMRgcArubixYtq0aKFwsLCNGHCBP3+++9GJwEAAACAoapWraorV64YnQGggDBABPLoq6++0u+//65evXrpiy++UHBwsFq1aqXFixcrPT3d6DwAAAAAKHQffvihXn/9dW3YsEHnzp1TcnKyzS8Aro1HmIF82rNnj6KjozV79mwVL15cnTt3Vu/evRUWFmZ0GgAAAAAUisOHD6tTp07as2ePzXWLxSKTyaTMzEyDygDcCpzCDOTDqVOn9P333+v777+Xm5ubWrdurbi4OFWvXl1vvfWWBg4caHQiAAAAABS45557TkWKFNFnn32W4yEqAFwbKxCBPEpPT9fy5csVHR2t1atXq2bNmurRo4c6deokHx8fSdKyZcsUGRmpCxcuGFwLAAAAAAXP29tbe/fu1V133WV0CoACwApEII8CAgKUlZWlZ599Vjt27FCtWrXsXtOsWTP5+voWehsAAAAAGKFevXpKSEhggAjcpliBCOTRggUL9PTTT8vT09PoFAAAAABwCl9++aVGjx6toUOHKjw8XEWKFLG5X7NmTYPKANwKDBABAAAAAEC+mM1mu2smk4lDVIDbBI8wAwAAAACAfDl+/LjRCQAKECsQAQAAAAAAADhkv8YYAAAAAAAAAP6HASIAAAAAAAAAhxggAgAAAAAAAHCIASIAAAAAAAAAhziFGQAAAAAA3BJpaWk6c+aMsrKybK5XrFjRoCIAtwIDRAAAAAAAkC+HDx9WZGSktmzZYnPdYrHIZDIpMzPToDIAtwIDRAAAAAAAkC9du3aVu7u7vvnmGwUEBMhkMhmdBOAWMlksFovREQAAAAAAwHUVK1ZMu3fvVtWqVY1OAVAAOEQFAAAAAADkS/Xq1XX27FmjMwAUEAaIAAAAAAAgXyZPnqxhw4bphx9+0Llz55ScnGzzC4Br4xFmAAAAAACQL2Zz9vqk6/c+5BAV4PbAISoAAAAAACBf1q9fb3QCgALECkQAAAAAAAAADrECEQAAAAAA5FtSUpLmzJmjgwcPSpLuvvtuRUZGqmTJkgaXAcgvViACAAAAAIB82bVrlx599FF5eXmpfv36kqSdO3fqypUrWr16terUqWNwIYD8YIAIAAAAAADy5YEHHlBoaKhmzZold/fshx0zMjLUo0cPHTt2TBs3bjS4EEB+MEAEAAAAAAD54uXlpb1796pq1ao213/++WfVq1dPKSkpBpUBuBXMRgcAAAAAAADX5uPjo/j4eLvrCQkJKlGihAFFAG4lBogAAAAAACBfOnbsqO7du+uLL75QQkKCEhIS9Pnnn6tHjx569tlnjc4DkE+cwgwAAAAAAPLlnXfekclkUkREhDIyMiRJRYoUUa9evTRp0iSD6wDkF3sgAgAAAACAWyIlJUVHjx6VJFWuXFne3t4GFwG4FRggAgAAAAAAAHCIR5gBAAAAAECetW/fXjExMfLx8VH79u1v+NqlS5cWUhWAgsAAEQAAAAAA5FnJkiVlMpkkZZ/CfPX3AG4/PMIMAAAAAAAAwCGz0QEAAAAAAMC1NW/eXElJSXbXk5OT1bx588IPAnBLsQIRAAAAAADki9lsVmJiovz9/W2unzlzRhUqVFB6erpBZQBuBfZABAAAAAAA/8iBAwesv//555+VmJho/XNmZqZWrVqlChUqGJEG4BZiBSIAAAAAAPhHzGaz9fCUnMYLXl5eev/99xUZGVnYaQBuIQaIAAAAAADgHzl58qQsFosqVaqkHTt2qEyZMtZ7Hh4e8vf3l5ubm4GFAG4FBogAAAAAAAAAHGIPRAAAAAAAkGfLly9Xq1atVKRIES1fvvyGr23btm0hVQEoCKxABAAAAAAAeXbtyctms9nh60wmkzIzMwuxDMCtxgARAAAAAAAAgEOOf0QAAAAAAADwDyUlJRmdAOAWYYAIAAAAAADyZfLkyfriiy+sf3766adVqlQpVahQQfv37zewDMCtwAARAAAAAADkS1RUlAIDAyVJ33//vdasWaNVq1apVatWGjp0qMF1APKLU5gBAAAAAEC+JCYmWgeI33zzjTp06KBHHnlEwcHBatCggcF1APKLFYgAAAAAACBf/Pz8lJCQIElatWqVWrRoIUmyWCycwAzcBliBCAAAAAAA8qV9+/bq1KmTwsLCdO7cObVq1UqStHfvXoWGhhpcByC/GCACAAAAAIB8mTp1qoKDg5WQkKC33npLxYsXlySdOnVKvXv3NrgOQH6ZLBaLxegIAAAAAAAAAM6JFYgAAAAAACDfDh8+rPXr1+vMmTPKysqyuTdy5EiDqgDcCqxABAAAAAAA+TJr1iz16tVLpUuXVrly5WQymaz3TCaT9uzZY2AdgPxigAgAAAAAAPIlKChIvXv31iuvvGJ0CoACwAARAAAAAADki4+Pj/bt26dKlSoZnQKgAJiNDgAAAAAAAK7t6aef1urVq43OAFBAOEQFAAAAAADkS2hoqEaMGKFt27YpPDxcRYoUsbnfr18/g8oA3Ao8wgwAAAAAAPIlJCTE4T2TyaRjx44VYg2AW40BIgAAAAAAAACH2AMRAAAAAAAAgEPsgQgAAAAAAPLtt99+0/LlyxUfH6+0tDSbe1OmTDGoCsCtwAARAAAAAADky9q1a9W2bVtVqlRJhw4dUo0aNXTixAlZLBbVqVPH6DwA+cQjzAAAAAAAIF9effVVDRkyRHFxcfL09NSSJUuUkJCgpk2b6umnnzY6D0A+cYgKAAAAAADIlxIlSmjfvn2qXLmy/Pz8tHnzZt19993av3+/2rVrpxMnThidCCAfWIEIAAAAAADypVixYtZ9DwMCAnT06FHrvbNnzxqVBeAWYQ9EAAAAAACQLw0bNtTmzZtVrVo1tW7dWoMHD1ZcXJyWLl2qhg0bGp0HIJ94hBkAAAAAAOTLsWPHdOnSJdWsWVOXL1/W4MGDtWXLFoWFhWnKlCkKCgoyOhFAPjBABAAAAAAA/1hmZqZiY2NVs2ZN+fr6Gp0DoAAwQAQAAAAAAPni6empgwcPKiQkxOgUAAWAQ1QAAAAAAEC+1KhRQ8eOHTM6A0ABYQUiAAAAAADIl1WrVunVV1/Vm2++qbp166pYsWI29318fAwqA3ArMEAEAAAAAAD5Yjb//YCjyWSy/t5ischkMikzM9OILAC3iLvRAQAAAAAAwLWtX7/e6AQABYgBIgAAAAAAyJeQkBAFBgbarD6UslcgJiQkGFQF4FbhEWYAAAAAAJAvbm5uOnXqlPz9/W2unzt3Tv7+/jzCDLg4TmEGAAAAAAD5cnWvw+tdunRJnp6eBhQBuJV4hBkAAAAAAPwjgwYNkpR9cMqIESPk7e1tvZeZmant27erVq1aBtUBuFUYIAIAAAAAgH9k7969krJXIMbFxcnDw8N6z8PDQ/fcc4+GDBliVB6AW4Q9EAEAAAAAQL5069ZN06dPl4+Pj9EpAAoAA0QAAAAAAAAADnGICgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACHGCACAAAAAAAAcIgBIgAAAAAAAACH/h8TXPRSo9iOJAAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } - ] - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "IKE3q36IGyCH" - }, - "execution_count": 25, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "#Basic regression models" - ], - "metadata": { - "id": "plFM37mpjSeu" - } - }, - { - "cell_type": "code", - "source": [ - "# baseline in performance with support vector regression model\n", - "from sklearn.datasets import make_regression\n", - "from sklearn.preprocessing import MinMaxScaler\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.svm import SVR\n", - "from sklearn.metrics import mean_absolute_error\n", - "from sklearn.metrics import r2_score\n", - "from sklearn.ensemble import HistGradientBoostingRegressor\n", - "from sklearn.ensemble import AdaBoostRegressor\n", - "from sklearn.ensemble import GradientBoostingRegressor\n", - "from sklearn.ensemble import RandomForestRegressor\n", - "\n", - "X = df.drop('yield strength', axis=1)\n", - "\n", - "y = df['yield strength']\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)" - ], - "metadata": { - "id": "ZtRcFSUujIPC" - }, - "execution_count": 26, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "X" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 478 - }, - "id": "5LTOKdu4sZC0", - "outputId": "d6ec764c-2257-470d-841e-47a48edf8960" - }, - "execution_count": 27, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " C Al Si Ti V Cr Mn \\\n", - "0 0.000953 0.003180 0.001020 0.018499 0.000112 0.000110 0.000521 \n", - "1 0.008542 0.000845 0.000203 0.000000 0.005151 0.147026 0.000104 \n", - "2 0.000000 0.008123 0.000200 0.006692 0.000110 0.093630 0.000102 \n", - "3 0.000478 0.002772 0.001021 0.017611 0.000113 0.000111 0.000523 \n", - "4 0.000474 0.002740 0.001010 0.018400 0.000112 0.000109 0.000518 \n", - ".. ... ... ... ... ... ... ... \n", - "307 0.017600 0.000620 0.000198 0.000000 0.010500 0.077900 0.001830 \n", - "308 0.000000 0.000629 0.001010 0.001060 0.000111 0.056101 0.000618 \n", - "309 0.017401 0.000628 0.000201 0.000000 0.011601 0.056505 0.001750 \n", - "310 0.019106 0.000623 0.000199 0.000000 0.010103 0.075322 0.001941 \n", - "311 0.012505 0.000619 0.000198 0.000000 0.000765 0.004392 0.002741 \n", - "\n", - " Fe Co Ni Nb Mo 0-norm 2-norm \\\n", - "0 0.619964 0.145992 0.191989 0.000062 0.017599 12 0.665728 \n", - "1 0.623112 0.188034 0.000097 0.000061 0.017903 13 0.667621 \n", - "2 0.625199 0.132042 0.129041 0.000060 0.004802 11 0.658681 \n", - "3 0.634395 0.146091 0.173108 0.000062 0.023715 12 0.674276 \n", - "4 0.635985 0.143997 0.187995 0.000061 0.008600 12 0.678952 \n", - ".. ... ... ... ... ... ... ... \n", - "307 0.822998 0.046300 0.000095 0.000060 0.021900 11 0.828517 \n", - "308 0.823012 0.000096 0.098401 0.000061 0.018900 11 0.830987 \n", - "309 0.825070 0.046804 0.000096 0.005540 0.034403 11 0.829324 \n", - "310 0.858251 0.000190 0.000095 0.000060 0.034110 11 0.862498 \n", - "311 0.860334 0.036914 0.078631 0.000060 0.002841 11 0.864819 \n", - "\n", - " 3-norm 5-norm 7-norm 10-norm transition metal fraction \\\n", - "0 0.628687 0.620407 0.619992 0.619965 0.994847 \n", - "1 0.631442 0.623514 0.623136 0.623112 0.988780 \n", - "2 0.629663 0.625307 0.625202 0.625199 0.991677 \n", - "3 0.641216 0.634669 0.634409 0.634395 0.995729 \n", - "4 0.643829 0.636347 0.636005 0.635985 0.995776 \n", - ".. ... ... ... ... ... \n", - "307 0.823287 0.822999 0.822998 0.822998 0.981582 \n", - "308 0.823571 0.823017 0.823012 0.823012 0.998361 \n", - "309 0.825232 0.825070 0.825070 0.825070 0.981769 \n", - "310 0.858466 0.858252 0.858251 0.858251 0.980072 \n", - "311 0.860576 0.860335 0.860334 0.860334 0.986678 \n", - "\n", - " band center \n", - "0 4.120851 \n", - "1 4.045671 \n", - "2 4.066023 \n", - "3 4.113411 \n", - "4 4.119559 \n", - ".. ... \n", - "307 4.043178 \n", - "308 4.046132 \n", - "309 4.046924 \n", - "310 4.034904 \n", - "311 4.089606 \n", - "\n", - "[312 rows x 20 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CAlSiTiVCrMnFeCoNiNbMo0-norm2-norm3-norm5-norm7-norm10-normtransition metal fractionband center
00.0009530.0031800.0010200.0184990.0001120.0001100.0005210.6199640.1459920.1919890.0000620.017599120.6657280.6286870.6204070.6199920.6199650.9948474.120851
10.0085420.0008450.0002030.0000000.0051510.1470260.0001040.6231120.1880340.0000970.0000610.017903130.6676210.6314420.6235140.6231360.6231120.9887804.045671
20.0000000.0081230.0002000.0066920.0001100.0936300.0001020.6251990.1320420.1290410.0000600.004802110.6586810.6296630.6253070.6252020.6251990.9916774.066023
30.0004780.0027720.0010210.0176110.0001130.0001110.0005230.6343950.1460910.1731080.0000620.023715120.6742760.6412160.6346690.6344090.6343950.9957294.113411
40.0004740.0027400.0010100.0184000.0001120.0001090.0005180.6359850.1439970.1879950.0000610.008600120.6789520.6438290.6363470.6360050.6359850.9957764.119559
...............................................................
3070.0176000.0006200.0001980.0000000.0105000.0779000.0018300.8229980.0463000.0000950.0000600.021900110.8285170.8232870.8229990.8229980.8229980.9815824.043178
3080.0000000.0006290.0010100.0010600.0001110.0561010.0006180.8230120.0000960.0984010.0000610.018900110.8309870.8235710.8230170.8230120.8230120.9983614.046132
3090.0174010.0006280.0002010.0000000.0116010.0565050.0017500.8250700.0468040.0000960.0055400.034403110.8293240.8252320.8250700.8250700.8250700.9817694.046924
3100.0191060.0006230.0001990.0000000.0101030.0753220.0019410.8582510.0001900.0000950.0000600.034110110.8624980.8584660.8582520.8582510.8582510.9800724.034904
3110.0125050.0006190.0001980.0000000.0007650.0043920.0027410.8603340.0369140.0786310.0000600.002841110.8648190.8605760.8603350.8603340.8603340.9866784.089606
\n", - "

312 rows × 20 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "X", - "summary": "{\n \"name\": \"X\",\n \"rows\": 312,\n \"fields\": [\n {\n \"column\": \"C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005088563568682925,\n \"min\": 0.0,\n \"max\": 0.020105653709823198,\n \"num_unique_values\": 286,\n \"samples\": [\n 0.00047699823510653,\n 0.00046767024570975,\n 0.0018905108160224894\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Al\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.007022409097348201,\n \"min\": 0.00020785917540866065,\n \"max\": 0.03761387952154345,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.00496659291725876,\n 0.0008360611996798165,\n 0.00061102260783649\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Si\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011228752706333433,\n \"min\": 0.00019683316421001556,\n \"max\": 0.08997806496916724,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0008036057510185505,\n 0.00020101471427708505,\n 0.02940108784025009\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ti\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.006606511803469801,\n \"min\": 0.0,\n \"max\": 0.029509422358559086,\n \"num_unique_values\": 195,\n \"samples\": [\n 0.0023498634729322222,\n 0.002420134801508444,\n 0.024088386988632776\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"V\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.004991944168276904,\n \"min\": 0.0,\n \"max\": 0.0474201013809754,\n \"num_unique_values\": 309,\n \"samples\": [\n 0.00011094557010330734,\n 0.005310388720454336,\n 0.00010800399614785747\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cr\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.058074181251770926,\n \"min\": 0.00010208857204510633,\n \"max\": 0.1859655777715545,\n \"num_unique_values\": 310,\n \"samples\": [\n 0.04957567817228868,\n 0.1580115664466639,\n 0.13400495818345282\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.003994275428386101,\n \"min\": 9.904104260805677e-05,\n \"max\": 0.03000857645114974,\n \"num_unique_values\": 311,\n \"samples\": [\n 0.0007186474315700719,\n 0.00010300754015193911,\n 0.00010000370013690507\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146692352022514,\n \"min\": 0.6199642900568927,\n \"max\": 0.860333809518093,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735131699655,\n 0.6480474370723937,\n 0.6770250499268474\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Co\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05968062978906907,\n \"min\": 9.027832547518227e-05,\n \"max\": 0.18984015458983536,\n \"num_unique_values\": 311,\n \"samples\": [\n 9.575302356663823e-05,\n 0.1490109075984362,\n 0.12900477317660755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ni\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06121709210362406,\n \"min\": 9.489972479079811e-05,\n \"max\": 0.2028409524092159,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.09803274953381981,\n 9.610703503496455e-05,\n 0.008810325982061338\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Nb\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0009819534237412472,\n \"min\": 0.0,\n \"max\": 0.0152009576603326,\n \"num_unique_values\": 310,\n \"samples\": [\n 6.077018614667645e-05,\n 6.070444356526897e-05,\n 0.00047401753864893\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mo\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010889034334196392,\n \"min\": 0.00011109638722555688,\n \"max\": 0.057567370814222495,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.011292253514089334,\n 0.028802108314328605,\n 0.011300418115470272\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 10,\n \"max\": 13,\n \"num_unique_values\": 4,\n \"samples\": [\n 13,\n 10,\n 12\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"2-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.04427563902277603,\n \"min\": 0.6586807276305723,\n \"max\": 0.8648190235908033,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7815878887528689,\n 0.6841464463613443,\n 0.7029343890609197\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0502036084544961,\n \"min\": 0.6286870284058237,\n \"max\": 0.8605762694650622,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7687571292960343,\n 0.6537736176672051,\n 0.6803406503478145\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"5-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05142045677636951,\n \"min\": 0.6204065864012965,\n \"max\": 0.8603349319303369,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674879845946792,\n 0.6482423499881135,\n 0.6771002024176017\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"7-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.05146484306447001,\n \"min\": 0.6199920325968773,\n \"max\": 0.8603338160979437,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674737095769911,\n 0.6480553263549956,\n 0.6770270831463305\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"10-norm\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.051466897588403095,\n \"min\": 0.619964825439261,\n \"max\": 0.8603338095215936,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.7674735135375647,\n 0.6480475119780384,\n 0.6770250604470499\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"transition metal fraction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.011952777170137955,\n \"min\": 0.8939169623565406,\n \"max\": 0.9987510327998004,\n \"num_unique_values\": 312,\n \"samples\": [\n 0.9921144095150726,\n 0.989442227171029,\n 0.960827550619373\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"band center\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03576132884772068,\n \"min\": 3.9737310841836684,\n \"max\": 4.183584674157245,\n \"num_unique_values\": 312,\n \"samples\": [\n 4.025966262189159,\n 4.028123275178089,\n 4.056867709895318\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 27 - } - ] - }, - { - "cell_type": "code", - "source": [ - "from sklearn.preprocessing import RobustScaler\n", - "from sklearn.ensemble import RandomForestRegressor\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.linear_model import Ridge\n", - "from xgboost import XGBRegressor\n", - "from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n", - "from sklearn.pipeline import Pipeline\n", - "from sklearn.kernel_ridge import KernelRidge\n", - "from lightgbm import LGBMRegressor\n", - "from sklearn.linear_model import BayesianRidge\n", - "\n", - "\n", - "\n", - "models = [RandomForestRegressor(random_state=42),\n", - " LinearRegression(),\n", - " Ridge(random_state=42),\n", - " XGBRegressor(random_state=42),\n", - " HistGradientBoostingRegressor(random_state=42),\n", - " AdaBoostRegressor(random_state=42),\n", - " GradientBoostingRegressor(learning_rate=0.01, n_estimators=1000,\n", - " subsample=1.0, criterion='friedman_mse',\n", - " min_samples_split=2, min_samples_leaf=1,\n", - " min_weight_fraction_leaf=0.0, max_depth=5),\n", - " SVR(),\n", - " KernelRidge(),\n", - "\n", - " BayesianRidge(),\n", - "\n", - "\n", - " ]\n", - "\n", - "model_names = ['Random Forest', 'Linear Regression',\n", - " 'Ridge', 'XGBoost', 'HistGradientBoosting', 'AdaBoost',\n", - " 'GradientBoosting', 'SVR', 'KernelRidge','BayesianRidge']\n", - "\n", - "def model_test(models, model_names, X_train, y_train, X_test, y_test, norm=True):\n", - " #utilizing for-loop to quickly analyze all 5 models\n", - " mae = {}\n", - " rmse = {}\n", - " r2 = {}\n", - " for model, name in zip(models, model_names):\n", - " if norm:\n", - " model = Pipeline([('scaler', RobustScaler()), ('model', model)])\n", - " else:\n", - " model = Pipeline([('model', model)])\n", - " model.fit(X_train, y_train)\n", - " y_pred = model.predict(X_test)\n", - "\n", - " mae[name] = mean_absolute_error(y_test, y_pred)\n", - " rmse[name] = mean_squared_error(y_test, y_pred, squared=False)\n", - " r2[name] = r2_score(y_test, y_pred)\n", - " # print(f'{name} \\n R-Squared: {r2:.5f} \\n MAE: {mae:.5f} \\n RMSE: {rmse:.5f}')\n", - " return mae, rmse, r2\n", - "\n", - "res_noclust = [0]*1\n", - "\n", - "res_noclust[0] = model_test(models, model_names, X_train, y_train, X_test, y_test)\n" - ], - "metadata": { - "id": "XyFo13gbr8Qs" - }, - "execution_count": 28, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "res_noclust[0]" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "sCT9h16AJ5Ub", - "outputId": "37e76ef8-5ac0-41c5-b781-65f50719067d" - }, - "execution_count": 29, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "({'Random Forest': 101.67031746031735,\n", - " 'Linear Regression': 154.33825676714517,\n", - " 'Ridge': 155.62634299184003,\n", - " 'XGBoost': 109.286921812996,\n", - " 'HistGradientBoosting': 110.59885613241298,\n", - " 'AdaBoost': 128.15915510481574,\n", - " 'GradientBoosting': 97.17688026951241,\n", - " 'SVR': 246.6394792314533,\n", - " 'KernelRidge': 171.38895002088935,\n", - " 'BayesianRidge': 238.25470726953395},\n", - " {'Random Forest': 139.2945539573979,\n", - " 'Linear Regression': 212.98635368804023,\n", - " 'Ridge': 220.47967409300014,\n", - " 'XGBoost': 148.68420534170488,\n", - " 'HistGradientBoosting': 159.44170998201767,\n", - " 'AdaBoost': 157.81219978064576,\n", - " 'GradientBoosting': 132.0744346103804,\n", - " 'SVR': 328.2090895489837,\n", - " 'KernelRidge': 240.4757366399335,\n", - " 'BayesianRidge': 307.4891482817299},\n", - " {'Random Forest': 0.8062720190494954,\n", - " 'Linear Regression': 0.5470736001611378,\n", - " 'Ridge': 0.5146431149017716,\n", - " 'XGBoost': 0.7792738692467237,\n", - " 'HistGradientBoosting': 0.746178757864505,\n", - " 'AdaBoost': 0.7513404030172695,\n", - " 'GradientBoosting': 0.8258347134492112,\n", - " 'SVR': -0.0755368308413158,\n", - " 'KernelRidge': 0.4226135260305123,\n", - " 'BayesianRidge': 0.055974631157888366})" - ] - }, - "metadata": {}, - "execution_count": 29 - } - ] - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "-s-mdrCmIYVp" - }, - "execution_count": 29, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from sklearn.model_selection import cross_val_score\n", - "from sklearn.metrics import make_scorer\n", - "from sklearn.model_selection import KFold\n", - "from sklearn.model_selection import cross_validate\n", - "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, explained_variance_score, mean_pinball_loss\n", - "\n", - "def cross_val_test(model, dataX, dataY, model_type='regression', n_cv=10):\n", - "\n", - " # Розбиття для подальшої крос-валідації\n", - " cv = KFold(n_splits=n_cv, shuffle=True)\n", - " # Визначення набору метрик\n", - " if model_type == 'regression':\n", - " scorer = {'r2':make_scorer(r2_score),\n", - " 'mae': make_scorer(mean_absolute_error),\n", - " 'mse': make_scorer(mean_squared_error),\n", - " 'mape': make_scorer(mean_absolute_percentage_error)}\n", - " if model_type == 'classification':\n", - " pass\n", - "\n", - " # Оцінка якості моделі на різних наборах даних\n", - " scores = cross_validate(model, dataX, dataY, scoring=scorer, cv=cv, return_train_score=True)\n", - " return scores" - ], - "metadata": { - "id": "BgPeinX2kK22" - }, - "execution_count": 30, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "model_cv = models[6]\n", - "model_cv" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 80 - }, - "id": "QMPC1r_XjlAu", - "outputId": "9a213abf-5ce5-4164-abb0-e87409a54e0b" - }, - "execution_count": 31, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "GradientBoostingRegressor(learning_rate=0.01, max_depth=5, n_estimators=1000)" - ], - "text/html": [ - "
GradientBoostingRegressor(learning_rate=0.01, max_depth=5, n_estimators=1000)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ] - }, - "metadata": {}, - "execution_count": 31 - } - ] - }, - { - "cell_type": "code", - "source": [ - "scores = cross_val_test(model_cv, X, y)\n", - "\n", - "print(scores['train_r2'])\n", - "print(scores['test_r2'])\n", - "\n", - "print(scores.keys())\n", - "# Порівняння метрик тренування-тест\n", - "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_r2']), np.mean(scores['test_r2'])))\n", - "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_mae']), np.mean(scores['test_mae'])))" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ZhnZA4AXkbvW", - "outputId": "dc912be2-cb26-4b68-9309-f5b3194e1544" - }, - "execution_count": 32, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[0.9974449 0.99745362 0.99783926 0.99687033 0.99778265 0.99757234\n", - " 0.99715941 0.99790314 0.99759218 0.99663247]\n", - "[0.85838002 0.72119344 0.74075046 0.95000567 0.58097475 0.64761935\n", - " 0.80927823 0.8530523 0.85732538 0.93981176]\n", - "dict_keys(['fit_time', 'score_time', 'test_r2', 'train_r2', 'test_mae', 'train_mae', 'test_mse', 'train_mse', 'test_mape', 'train_mape'])\n", - "Train(metric), Test(metric): 0.997, 0.796\n", - "Train(metric), Test(metric): 12.115, 85.602\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "from mlxtend.regressor import StackingRegressor\n", - "from mlxtend.regressor import StackingCVRegressor" - ], - "metadata": { - "id": "Jf_NVjQ_zykt" - }, - "execution_count": 33, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# stregr = StackingRegressor(regressors=[models[6], models[0], models[3],\n", - "# models[4], models[5]],\n", - "# meta_regressor=models[1])\n", - "\n", - "# stregr = StackingRegressor(regressors=[models[6], models[0]],\n", - "# meta_regressor=models[1])\n", - "\n", - "stregr = StackingRegressor(regressors=[models[6], models[0], models[3]],\n", - " meta_regressor=models[2])\n", - "\n", - "\n", - "# Training the stacking classifier\n", - "\n", - "\n", - "scores = cross_val_test(stregr, X, y)\n", - "\n", - "print(scores['train_r2'])\n", - "print(scores['test_r2'])\n", - "\n", - "print(scores.keys())\n", - "# Порівняння метрик тренування-тест\n", - "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_r2']), np.mean(scores['test_r2'])))\n", - "print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_mae']), np.mean(scores['test_mae'])))\n", - "\n", - "\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "szyIeFTy0Ail", - "outputId": "c8e359e9-7e82-4225-fb21-26f49431b92e" - }, - "execution_count": 34, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[0.99999866 0.99999967 0.99999924 0.99999912 0.99999956 0.99999936\n", - " 0.9999989 0.99999958 0.9999997 0.99999941]\n", - "[0.83162383 0.62498054 0.78910623 0.90877724 0.60389899 0.51763964\n", - " 0.88884139 0.67223623 0.44869194 0.79279146]\n", - "dict_keys(['fit_time', 'score_time', 'test_r2', 'train_r2', 'test_mae', 'train_mae', 'test_mse', 'train_mse', 'test_mape', 'train_mape'])\n", - "Train(metric), Test(metric): 1.000, 0.708\n", - "Train(metric), Test(metric): 0.179, 93.489\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "\n", - "\n", - "stregr.fit(X_train, y_train)\n", - "yhat_stregr = stregr.predict(X_test)\n", - "\n", - "score_stregr = r2_score(y_test, yhat_stregr)\n", - "print(score_stregr)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "WBVCaIFR3Dcw", - "outputId": "81bcdf45-cb91-477a-c6fc-b1f85e5063d5" - }, - "execution_count": 35, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "0.7759073405187773\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "#Apply StackNetRegressor" - ], - "metadata": { - "id": "dKzMO5T0ecrs" - } - }, - { - "cell_type": "code", - "source": [ - "\n" - ], - "metadata": { - "id": "xK0eX5QhZl_R" - }, - "execution_count": 35, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# models_sn = [[models[0], models[3], models[4], models[5], models[6]], [models[1]]]\n", - "\n", - "# models_sn = [[models[0], models[5], models[6]], [models[6]]] # 0.85 87\n", - "\n", - "models_sn = [[models[0], models[5], models[6]], [models[6]]] #\n", - "\n", - "stack_net = StackNetRegressor(models_sn, metric=\"r2\", folds=5,\n", - "\trestacking=True, use_retraining=False,\n", - "\trandom_state=42, n_jobs=1, verbose=1)\n", - "\n", - "stack_net.fit(X_train,y_train)\n", - "y_pred = stack_net.predict(X_test)\n", - "\n", - "r2_sn = r2_score(y_test, y_pred)\n", - "print('************************\\n', r2_sn)\n", - "\n", - "mae_sn = mean_absolute_error(y_test, y_pred)\n", - "print('************************\\n', mae_sn)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Rc0b_cNIaYGp", - "outputId": "c7df136a-c0f8-4628-dd49-434399d6c73a" - }, - "execution_count": 36, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "====================== Start of Level 0 ======================\n", - "Input Dimensionality 20 at Level 0 \n", - "3 models included in Level 0 \n", - "Fold 1/5 , model 0 , r2===0.467926 \n", - "Fold 1/5 , model 1 , r2===0.607910 \n", - "Fold 1/5 , model 2 , r2===0.713045 \n", - "=========== end of fold 1 in level 0 ===========\n", - "Fold 2/5 , model 0 , r2===0.735262 \n", - "Fold 2/5 , model 1 , r2===0.696357 \n", - "Fold 2/5 , model 2 , r2===0.782034 \n", - "=========== end of fold 2 in level 0 ===========\n", - "Fold 3/5 , model 0 , r2===0.776923 \n", - "Fold 3/5 , model 1 , r2===0.732796 \n", - "Fold 3/5 , model 2 , r2===0.827686 \n", - "=========== end of fold 3 in level 0 ===========\n", - "Fold 4/5 , model 0 , r2===0.725732 \n", - "Fold 4/5 , model 1 , r2===0.545276 \n", - "Fold 4/5 , model 2 , r2===0.695651 \n", - "=========== end of fold 4 in level 0 ===========\n", - "Fold 5/5 , model 0 , r2===0.826311 \n", - "Fold 5/5 , model 1 , r2===0.823888 \n", - "Fold 5/5 , model 2 , r2===0.851731 \n", - "=========== end of fold 5 in level 0 ===========\n", - "Output dimensionality of level 0 is 3 \n", - "====================== End of Level 0 ======================\n", - " level 0 lasted 9.772650 seconds \n", - "====================== Start of Level 1 ======================\n", - "Input Dimensionality 23 at Level 1 \n", - "1 models included in Level 1 \n", - "Fold 1/5 , model 0 , r2===0.306274 \n", - "=========== end of fold 1 in level 1 ===========\n", - "Fold 2/5 , model 0 , r2===0.739851 \n", - "=========== end of fold 2 in level 1 ===========\n", - "Fold 3/5 , model 0 , r2===0.752449 \n", - "=========== end of fold 3 in level 1 ===========\n", - "Fold 4/5 , model 0 , r2===0.565166 \n", - "=========== end of fold 4 in level 1 ===========\n", - "Fold 5/5 , model 0 , r2===0.803607 \n", - "=========== end of fold 5 in level 1 ===========\n", - "Output dimensionality of level 1 is 1 \n", - "====================== End of Level 1 ======================\n", - " level 1 lasted 9.668343 seconds \n", - "====================== End of fit ======================\n", - " fit() lasted 19.442715 seconds \n", - "====================== Start of Level 0 ======================\n", - "5 estimators included in Level 0 \n", - "====================== Start of Level 1 ======================\n", - "5 estimators included in Level 1 \n", - "************************\n", - " 0.8562818063968041\n", - "************************\n", - " 88.13604662347294\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# # Training the stacking classifier\n", - "\n", - "\n", - "# scores = cross_val_test(stack_net, X, y, model_type='regression', n_cv=5)\n", - "\n", - "# print(scores['train_r2'])\n", - "# print(scores['test_r2'])\n", - "\n", - "# print(scores.keys())\n", - "# # Порівняння метрик тренування-тест\n", - "# print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_r2']), np.mean(scores['test_r2'])))\n", - "# print('Train(metric), Test(metric): %.3f, %.3f' % (np.mean(scores['train_mae']), np.mean(scores['test_mae'])))\n" - ], - "metadata": { - "id": "f5iEtpDgh64v" - }, - "execution_count": 37, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "#Benchmark Leaderboard" - ], - "metadata": { - "id": "AUMOHPibwSar" - } - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "TJxNdRvDxY40" - }, - "execution_count": 37, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "import sys\n", - "import pickle\n", - "import joblib\n", - "import re\n", - "import json\n", - "\n", - "# sys.path.insert(0,'../..')\n" - ], - "metadata": { - "id": "xTqSOq_Wwgou" - }, - "execution_count": 38, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "def data_preproc(df_steels, compos_name):\n", - " from matminer.featurizers.conversions import StrToComposition\n", - " from matminer.featurizers.composition.element import ElementFraction\n", - " from matminer.featurizers.composition.element import TMetalFraction\n", - " from matminer.featurizers.composition.element import Stoichiometry\n", - "\n", - " from matminer.featurizers.composition.composite import Meredig\n", - " from matminer.featurizers.composition.element import BandCenter\n", - "\n", - " stc = StrToComposition()\n", - " df_steels = stc.featurize_dataframe(df_steels, compos_name, pbar=False)\n", - "\n", - " ef = ElementFraction()\n", - " tm = TMetalFraction()\n", - " st = Stoichiometry()\n", - " meredig = Meredig()\n", - " bc = BandCenter()\n", - "\n", - " df_steels_bc = bc.featurize_dataframe(df_steels, \"composition\")\n", - " df_steels_ef = ef.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - " df_steels_ef = df_steels_ef.loc[:, (df_steels_ef == 0).mean() <= 0.6]\n", - " df_steels_ef\n", - "\n", - " df_steels_tm = tm.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - " df_steels_st = st.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - " df_steels_meredig = meredig.featurize_dataframe(df_steels, \"composition\")\n", - "\n", - " data_steel = df_steels_ef.drop([compos_name, 'composition'], axis=1)\n", - "\n", - " df = pd.concat([data_steel,\n", - " df_steels_st['0-norm'], df_steels_st['2-norm'],\n", - " df_steels_st['3-norm'], df_steels_st['5-norm'],\n", - " df_steels_st['7-norm'], df_steels_st['10-norm'],\n", - " df_steels_tm['transition metal fraction'],\n", - " df_steels_bc['band center']\n", - " ], axis=1)\n", - "\n", - " return df\n" - ], - "metadata": { - "id": "R5f1TfN-Avrp" - }, - "execution_count": 39, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "mb = MatbenchBenchmark(autoload=False, subset=['matbench_steels'])" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0elSHOsPwSp7", - "outputId": "8a834bc1-7d3f-44b2-c621-0c2ebc9cbe90" - }, - "execution_count": 40, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2024-05-28 09:34:09 INFO Initialized benchmark 'matbench_v0.1' with 1 tasks: \n", - "['matbench_steels']\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:matbench:Initialized benchmark 'matbench_v0.1' with 1 tasks: \n", - "['matbench_steels']\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "for task in mb.tasks:\n", - " task.load()\n", - " for fold in task.folds:\n", - "\n", - " # Inputs are either chemical compositions as strings\n", - " # or crystal structures as pymatgen.Structure objects.\n", - " # Outputs are either floats (regression tasks) or bools (classification tasks)\n", - " train_inputs, train_outputs = task.get_train_and_val_data(fold)\n", - "\n", - " df_steels_mb = pd.DataFrame({'compos':list(train_inputs), 'target':list(train_outputs)})\n", - "\n", - " df = data_preproc(df_steels_mb, 'compos')\n", - "\n", - " X_train = df.drop('target', axis=1)\n", - " y_train = df['target']\n", - "\n", - "\n", - " # train and validate your model\n", - " stack_net.fit(X_train,y_train)\n", - "\n", - " # Get testing data\n", - " test_inputs = task.get_test_data(fold, include_target=False)\n", - "\n", - " test_df = pd.DataFrame({'compos':list(test_inputs)})\n", - " X_test = df = data_preproc(test_df, 'compos')\n", - "\n", - " # Predict on the testing data\n", - " # Your output should be a pandas series, numpy array, or python iterable\n", - " # where the array elements are floats or bools\n", - " # predictions = my_model.predict(test_inputs)\n", - " predictions = stack_net.predict(X_test)\n", - "\n", - " predictions = predictions.flatten()\n", - "\n", - " # Record your data!\n", - " task.record(fold, predictions)\n", - "\n", - "\n", - "\n", - "\n", - "# Save your results\n", - "mb.to_file(\"results.json.gz\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000, - "referenced_widgets": [ - "e707dae0983e472884c217f3619056c2", - "dbe04a6f1beb4c50a4f4e2e5bb7e5a73", - "17b1098ac33e4149afa5976f4bad19c6", - "4fdea50d51fe4ccabd7a48c29b199e41", - "dda751be29d94836ae90b445704afe27", - "354f64b91dbf4853842691b25e476a62", - "44c2d0516be340bcaea556ac87bc599b", - "505b40f357254300bfee760af3c60d93", - "984971502b7a465bb9971441cf3b2476", - "01a2f29efe094e56bbd79466d7727c75", - "7585e303b3e04c57a068b6ec6fdbdee7", - "d6278fe9587d429ab9836c4b2c6d960c", - "073e17bd9206478982708489b28fb6bb", - "fba2123e65dc4fe99439ff249008ccae", - "c17778a0a0ce46749364e88c37d8d38c", - "8a0f8f3f63bb4841b22cf4612e2b7bc1", - "bf5a52ee74a64903a79a361b0220ef63", - "584f4de8df6e47b6b89a4daeb23fd4db", - "4ca4023fe57b47acb23ba3e2a36bc9d9", - "97e92b2b7af84ef180a3f548d1b1a0f7", - "1bda0596ca8f4e6cb656feec1685961a", - "46e5e5232e864544993bfb6d794bed1e", - "824872abf99c4c8d880e13f4b01ae388", - "188946237a1b4c0b8ec8c8b6958eee64", - "bee47414427f47908518f625aed66208", - "5cb484f7b4884a3aa710aa33a80080e5", - "aa1f632c10434d5690fbd4c6c4f7c41e", - "24bd3531758d4dd5847723199fc55ff5", - "e6b2e61b33be4f959bf2d059f3b4e5bc", - "75d863aa0c294621b4d0a13deea74f8d", - "455efa3d02aa4b62a0aa8809f81b56f7", - "d932cf10c947443498bb111f40665d04", - "5a85a081043947e5908b024aa3456bb5", - "9044d17fe2304db1b446bdb9e4c1d2e1", - "db4ffd7076124a3e8ffca08648aa9815", - "dc1da5f0999e43a88dbecdb475f87641", - "3676d407cbf04fa79f4d520e91d753cb", - "579a5616c5a44ef1b1ef5c09571311e2", - "5677e329f7254e029859200bfe466d30", - "ef32a5b1ff0d43469530d7782b163d7c", - "17fc6799a03a43b798a6cac1acbc140f", - "7f82a1b4161c4990aca025bad291c86a", - "d06a303cff374d7694251c9eaecc67c2", - "be911bc3bfe8490ba4908f34a4059235", - "0cf54304b2b7463eab6674de9dd97665", - "7dddc3fedf9a4113aa87169d7f66b86c", - "685a219753934b978803034adbdd873f", - "fd83196f378444f183935519e92e9e3d", - "3ccf2e74bbde4906be2de031ecd4933e", - "bd032c2a9fe84f9fa771033dd084b772", - "b7264fb92ed14e80a71b2f488bb9d631", - "2d5d3817586c409198bc9c9a2b063c67", - "e22aea8e26a24df896886e58d53e3772", - "b9e6fa757e394dcc802af6d107fe99dc", - "efa0bd43587145d9a46b032afdd49590", - "7172ab9b6b2046f29cda82e3f64b5db8", - "79dba4e2359243779e88265c93588f17", - "e3282ff1eea34807b2c52ff2f8fd5868", - "01f345751f2d44f099ceeccb32beb520", - "c362540cc60f4e38ae12a998a6c594f6", - "3c341159adf04d79945b139d7d76181a", - "5d2ca9d8a84c4e0fae020fe662ec39d9", - "809b017795c4411a89dca8c1706ce74c", - "2e583c94269f4a17bbc92ec97fac2a93", - "2d2eb3e84b434069ada5bf403125bae5", - "8638a53172e44ecd9c4629439551f27e", - "e7aab8277cce479d8bd185795dc0f574", - "0ff90d9882ee484193f82788130c7eb8", - "dbaf99a3ed434248adbb6a316a359144", - "6b944afd778c4031a9cda186d8e3ed6f", - "d7ea0d72cd31452b9d914b3e9b4d2434", - "bedeba79eb554ae88c9c45c912180430", - "708beefd7c1647788383805b8673b1d9", - "f55893fb71344d4ba53fdb93ceff8bdf", - "a014723380444ebcb3db5ce6f370ac9c", - "94e605943de046d5ae6f547c8d08ad84", - "e608368689894077baafbc7a8416c516", - "fbe900499bfc4522af062a0a9f06bff2", - "b3072733afe64b918ed193abda76fb64", - "56854aecf472435f897ab0a16d8c713a", - "e8680686712344faa08b43f630f0c571", - "df50c566eef441e4adbb1aa8e5715fb9", - "f964fa12090d4cb6b61fa7a3707b6303", - "4d4444e464f5448296406b75faae0af2", - "fc41426ebabb49ebbc8d3d593d4dc4b7", - "730643cb808a416da0bf85a2174315a2", - "91a4e965e09043429c472f1c1b2544d1", - "7551cc9e82774741ae279e5731106196", - "e5d5fc04f95c4edc98163f3f0e72bdce", - "2e5431ca12d94fc5baafa3f093493cb8", - "fbcda81318cf44ae923007843adb3a52", - "90b5f12cbb77411ea1761d0153007419", - "1b5b7d027995455fbbd84a1d8779390b", - "09f7d5a120c9403bb6c073a1e16f5fee", - "2159f19a003e4c569fa6563240b29b92", - "43b5e507eefe4e5c83df90fee5da5785", - "88c3812543a648c58d7261f1e47a5c02", - "51c87d9f8cf1402f879993246db7fc6f", - "8b763394132746c589f289de1625e857", - "647c96f35cfc45b8b88dab29d68a15b9", - "d0f5002680414f2e9bb12a2a341c09ed", - "93fe09cae99e42be8dc600746872e930", - "f3d440d81acd4ed6bcbe4ae8e9d20a46", - "e0ba62b0609d45c98c611dd3f6ac0c48", - "09e8f6be83f340df971bcfc67e86db82", - "4ffba8d950b6486988ba11410797ba69", - "fef012a5235c4250b78d7a0f63ba5ee1", - "8b81fdbd1b8944c7ab3e421d58399406", - "e18ce6f7cc8c446a9bae03091ce6788b", - "188c241a929e4d3a8d6e58b3010ab02e", - "24453e598d3446be8fa829d38055a70e", - "7041780bec084852aa34f49263167d93", - "45c88efa94d64fc8a0eb1fd4f7160c7b", - "f944eadc68454244b7f4b1fef44e4299", - "a1e159d9bf584d1aad56d9c43f3f5b50", - "f524acfd68254e649b99558f321ed040", - "fab749f0edd046ae885541cb465013bc", - "b9699e073da949a7965617a80a25149e", - "507902059abc4a90b8a490f7387baf0d", - "fc05af6c372c44039f7c59a582162402", - "dfc0fb39bbe94ab7b72942d04e50b952", - "bb7acfb84bc142bc927bbce3416cec45", - "62e554818f1c4646ac45ebd0c2108efb", - "55560a2f3b694dfa87bb0a8857a94ce5", - "ad353eac3ef140488199a4e7726a12dc", - "70e0bfdcfff84889a793c860fb6f328d", - "cea7e515e317446aa5dad192eae7ed41", - "d4b05ddb56e24026aafa7d5248c24d2f", - "8444006ef6bf4320adc39ac97440ce8d", - "f80482e3ab4a43fca53f9ac3321a6243", - "6bb412aa4f8346519e7723fd6314d1a4", - "d8341890465b497cb71f96a7ffe4d043", - "fc423a69158d459589e0567a28181e2c", - "da8eec0c832b46b39ffcdb1997e1e40d", - "f39da09de39c463f87e58be9d5a517f3", - "fa4a716848784cb5a70cc5bd2872fa7b", - "c82ebb0ce9104778a7356b857a7de452", - "b092c23d0db14a9c9e13c99870bce7f0", - "d47d6f4ff56e4e40a115725bb256d4a8", - "976028b8121f438182df5fa37c9039bc", - "bd70d6d343f449aa877e7ad8971f8c87", - "4d93e01ef3174ec8a1176ca14fc88aa0", - "d33a72aed9de4e59a73eb8ab99053d4b", - "85e39c90568646f482008c94cd10edd5", - "cfa21e02a978401ca7d13bfc5425f41c", - "98c23842b9344e77ba9b7302b0cd8e07", - "0e0d99a58d654faca3c1d5650bbb59e5", - "5cb548699e024098865f1f845c599390", - "317420ddd6924ae981bf343f8605393b", - "90654233a34e421db7b14843c255f73b", - "17a2e1cd658942739443acc901ed6b7c", - "a68c401de87441ad80f2b03c3ce9e97f", - "c1fb5b3a2f2b42bd8b55f344b98763dd", - "485ddd452c6f4e2ab7097658d71e1c9b", - "2e290dc9f9a34e698921b48e4ce9850f", - "ade6b5a98b484a019e21c0254010384b", - "98fce663b24f41c9b796fec6b7709858", - "8e3b1e1edfea4f399362dbfc615a9286", - "74bf20854178461981226999415d7d3a", - "2d542398998b41c7b2674c95bd73dc5c", - "2d643bba6142492bb33600af49b25448", - "c1e9aa6027ef42f3ad2b7cf4e6ee2124", - "9d293ea64a0347128c10a3bc4882c260", - "c11b28f365ba4c1998edbd73974d56d6", - "2c02aed04f4e449ea297f4a29e2c60a1", - "72cab45dec0043219bca378fc6f77951", - "977f04c1f88945fb970a7c4f86e352de", - "3a253192de794ac5b066fd7434479250", - "4e151775960d47ebae61e2edc44e8f4c", - "7d30d87f6e444a70b3197a930a106276", - "995349cc743349c3981b342ea7e9a940", - "7923951a251446ba899968a0dfd11020", - "26adaea66b3946268a0204cc942a4646", - "55e7648e3ff84302bf48cd83c3817e4d", - "bc81aa8ed90241c08adafa02384b0611", - "228c85602d684c439042e7996959fa78", - "3e1331961e1546d69e749891c3cbf4d2", - "5dc2991459234c2e971df0415e4f61eb", - "877db61fe33b4201ae9f16a64b629662", - "0a374eaa6f3642618da31e77dd267005", - "785cbc92871142eb847382a9eaa65f2c", - "647cb8d249c846cfa9a49e77fe0c2a15", - "8a9b2e8ff06d4591a3b25726225ab6ea", - "0beec138768f45e0a016d3f1a4da52e3", - "dcf6f5483ae54ee2b65899e32031d63e", - "9638e3e217404b4586a82b933bf490a3", - "a56043f87c8846628fb616bec5467bf2", - "7712988e84ea4bf6b6272c6460ac27f3", - "75630f4281fa472dbbb67e4492acb154", - "de14337a7fce47fc8c1cf9d911afd6e3", - "b168eb9f2e904357ba3f0257caf66bef", - "02bf57f94be84decb76be0f62e166302", - "60c05e0376af464998e302e216c7e4bd", - "348a9a0a7ef9492dab3006e85070f06d", - "458f04a15bb844809e372706568d4cd6", - "406f829933534afaa6e4465aa1f25863", - "af01a82ce17946ad95f946a24ea14c0d", - "fe8654a6ce8a4e4e913af9093862791e", - "808ae27e9feb4bd9b92969f57e46efba", - "126c44c4afc944d385fd4964d5c05dbd", - "356c5df530ce40e48f289d885c658163", - "57d988db560243e8b9e6f1274e41a791", - "57786ecb75914e6a86e6ed706800b577", - "fc32bf359dcf41d7adf894b39ea541ec", - "27114c2425824b778bbf601fd2d1a75b", - "32b40d8b1c7f44b995f46eae7dd15dd2", - "f2bb683b2b26427b85064dd2164760bc", - "bd9758a063444163b63ca208e3357917", - "097307b328db4df4b126b1389665e151", - "ecec751bb40a4e2c83e82137d102577d", - "2d6b0515da8d42ba9941da50111e449e", - "8294bbc804e445ac9f2a04200a4cdef7", - "23e58b02d85f41ba969045f5fe3c2581", - "9ae2c7ca72794e3eba7a138370b0aba9", - "1c37f35e5a7f4446814491fc9012b73d", - "af106c3c4d914622822aacf20cd1f3c1", - "6f7286d03b2d47ae99fe4b9b2c395867", - "b1a1b5470e4a440485fd9e3905671745", - "580297aa5153425fac1ef68ff552a749", - "1123851a5ea14d1f812d53b565dfc884", - "bf8b8518d9cb485abcd1a55907f086c9", - "b05aabe5754b4afc98e77c66669a6b99", - "b64dbb653f4d4d83936f05555f6bc562", - "986e918ba21948c699e0f21d86dd3ca7", - "804b42800abe4f3fb1ef5dda2f648366", - "bc72ceba06354b878e21bca990b289d5", - "0ce12db9d67942b6977522b5b4611ed9", - "2eb2cadfaffe41488131654c594ff4fb", - "0fbf67d41d414ad69ed936c984fc7576", - "a861661f54b44f62aeba4c059d1285dd", - "8507dc476d3b4e189603e0bf97e5893b", - "63f54bd83d714653ae4bc2b921b960fd", - "5e47a26f42d1451b8a925b3b36d53c7c", - "74ae64147cd346c6ad17eb399f49d565", - "496cfe01c9974b3a969f21eeb342dc16", - "ccf523f87fd14c46b4244c5c3ba56721", - "d921c887b3964f629fc78c12b33da953", - "db04943b05ca417390f0a449c556057c", - "87e22c1085ef47438cfaaa9f00004959", - "91316150e05b4960b7afeb7f01cbcfb5", - "0648081fc23540868dd6bc625cbdfdc8", - "ffede04c61ee4052a1c21007252982b1", - "7e3879013e974497b294afc6cde0f620", - "671a9cbe51f6448a9d0914a12d9237e5", - "70b6aa725ca74143bae44385d585029d", - "e26b62babe344000a1b551418f08fcd1", - "bf2eb3aa4f9044b2a544903b442e8def", - "5ba77b14dff540169c12ff2f313cd258", - "2924d8627f4547559b5b14cf4b372f1b", - "857829c412e44f0a83490307cd2cf4af", - "4883d328c83c42e48c6daebeaa57f7a3", - "08b5694d8bd44c3cad93b96adea8731d", - "1b359c6b61444bb7ab360e7a109f8e43", - "4a1db01c360b419e8046e6a869339c12", - "802067ff1f56468490f728f23cdebe25", - "7edad1ddd4124b02b2738595f838eb54", - "99b872dcde4f42e7b92d0d15eb9cc222", - "6bf9d25d91464643a0afaa19a40374e3", - "35355b557780444198c5eb0e6bd8278d", - "f4024bdd7ffa416bbdadb9dc777966d5", - "93b67699003248feaeccd9a716e3c651", - "0d437b1d262e4291b2fb4cb893dfc0fb", - "2a4fa31589ff4ed28a27cbe1e9f96449", - "6dfe8c2cb911493e8d921cc10812639f", - "e0b0810f63be4c5eb3da40f93099aa39", - "06d02d6db04946d981e8e81f941f2155", - "7ed57abb99c947ada98e22fd836a5ab3", - "681c563c0f334c97b89ebecbbb53d3da", - "48ac9ce3a98043849360d300295c6c5e", - "75dcab789eb04e0abf610927cb5410a0", - "b57cbbaa611040b58f1be3b288991059", - "c1e5c97f300e4a249765e7d7d0beda06", - "865901b6788840eaae531c6285edb377", - "f8ddf22b430c4c5fbe08c0b6d6336a95", - "9787bf48a2d84c319a5d9a51bdc6e8a6", - "01342c98b836440087b7171222bfff44", - "2c572750adbe4ad7bf8fcaa934dc4899", - "3e8ca8ca434649cfafeb419253752e12", - "ee38087e22494c07b81d2995a90d8f9d", - "73da39ac17e94cbca1ef62ec440e6f99", - "47e4aaa901cc47d98b132676e85f28b6", - "a52ae6fd91fe4c8dbf7a4c1e7394bffd", - "bd2649ad267d4d848b03da525c34e55a", - "2b3ba477f54c4a35b6744fb48b9a7224", - "c12e0c33ad7148edaedf59646f687c37", - "57fd08a7f04a4927a40d15aea3b57979", - "2bcc4580444e411f9d5ec9b7a6eaa017", - "7ead4ae40c89445ba4e6b42559459e80", - "10bda803324b4ff59001022993dd4995", - "460151765c4b43598a25c29e7b7a8ff9", - "e13be1874cff45cf9ad6dd5b7c901938", - "daf8fc4c471c415fae5c6868b242ac3e", - "3b3bc62c28d747e885483f63526559bc", - "63577d16b6c240d6ab4ccf4668689229", - "5eb8b2bff66643c696919fca64a8dad4", - "d3c8958c7678411aaddbd5e23dea7158", - "55e7bfa638344d8d8fe56542620a4e8d", - "02ca33c6e6eb4918a72b123c1e50ce8c", - "a31c047fc4064169acb28495f1454ab6", - "76cbe12f3c3344529118c33106f395d6", - "16aacbe4ec2c4066b3b574fb649c8146", - "c34ec7cc40b140f191244cc50f5dbd91", - "c92b22d2dd49498c8f812804ba6d0356", - "ac8c79e21e644c95998ad9854437b3aa", - "0fca205ddc88443c8441094ec9df6fe7", - "f186bea72465493b8bdf4fe3316dad4c", - "d26dacffac704bf8874cc610893759e4", - "ee948696553e41ecae9934d6a87a6d47", - "134642f7fa8c4ab8ac4a1493b7ddc249", - "d1b6aaca2df243db9df4fe4e90853d3f", - "65d07a2f540e4b458449ab5ac9f62cf1", - "dbb82d06dae24ba3bb90c925425f212a", - "f4de59b645bd42528ce2340daf6b3525", - "a5bc895c69db4a7dad6d9234b0bcd87a", - "32d4905560994711b96a6880696f39bd", - "22e9f6abf58f49d1aedd53f4ddbc69f9", - "10506082314e42ec8e2e15123e1eda0a", - "51a8c48f1b124fb9a9b7f2d712b64c8b", - "d15e5aa88f7348408d672d4bd12a43a2", - "2af8ed86fa2046bda01248f13ff752fe", - "745df04d2c9e4b2d92f27cd55cb3e0b2", - "88c7072706c94ccca24e85df919eab02", - "357c593ee9f34b478d0f0ebb2eb43722", - "4b6cb2bb298b43a5a1d9ea1310cdc3e6", - "d58c0f1e3a8a4493a507f1bf00b4894c", - "a09ec430d206462a8a9044563e2767ba", - "7aa94c5f2daa4340a51cbbdc8c359492", - "866516db647740e7a95b9b746558d65f", - "1434fafc579c4de684af8e2b93dcd4bc", - "7bf0dac2a4af4a39b9f43e9de4cdb462", - "d35c44c8f5d94266a0e60e66131b95d9", - "e658c33dbe47457e8e014069b0fd3c9b", - "4a9b298e3e714a7986b08db2023bb279", - "879c6baf21d44dadad939cc0a58a067f", - "c7e309d14ce34967b32b98b8c741ccf3", - "c4678832a7ee4a7b969c04dca7fb8e3c", - "8a634a829b374e0b81c13c99eefc0ad1", - "04179d76f90143149dbb0cdd7b5b0f70", - "69f6c1c17543404481c11fc05a4df1c2", - "bef11446d3d842f4aa724672f3eb2059", - "e48318bdab1d4daeba34e00fc0448639", - "fce43fce5cc64816a67a033e631e1f1e", - "83b452bcc99b4c22ab1f0759134fdaab", - "a7fdf761e0b24c0991c341715c14166b", - "abda21509e0046749e7fa018e74c21d2", - "1aba789a1d5f45148c2c051a7534cc98", - "10bcd0729fa5457d9adfb73afc8fea1e", - "e78d929f03da492495d7fcfa177a1c8a", - "3b3447072fa743a8a31958d5987658b8", - "730ba0a5bef547cb9a79c2885a883cf2", - "710dc35482614556b1dba9c21ba5a36f", - "b5321d3a0f154d39bb25b534c2354355", - "d185b15a832d458783a8f0652661b487", - "49e41a9e0e5148ec9ac21c63d5af4a6b", - "fd305f1f4d974cbeb82a0f271f2ff005", - "62956c63d2054b9bb29b0fe799517077", - "506ae819c06149c6aef9d3d2fb6788c0", - "cd4c275cb1c84c04860a0e606ef7aff4", - "7fac80b160974b3ba0ed8564042d862a", - "97b1c9f2bee74a5185bbfcfe106e72e1", - "20ad6a419227466abb5f176bf55482b8", - "867e9cc8f2864ad4942bb44e40d34fd0", - "c7ca8f2b44414e9a9083a4e331bb9173", - "74aac947e8864eb1bfea8b80c5fb7515", - "26bd0e2f5a634ab58f385ec74190542d", - "a553618cbbf04d3abb521583473422a1", - "bd861ec7e61b4164bd1066da1add61f4", - "bdd4053c88974e5c8ed47e728bec764f", - "21dbbd97ed8242f4b3b12d8e0601b890", - "8ce0e7724df64b80aa2091a06a740701", - "a7ff337d700944b98d1beef02e98e014", - "79d0ba7b6fd144d2aa1656fc4a74e8e5", - "aadcf2dd4aea4d45b1d70d96eca4b918", - "f402fefd9a754f319f8e6432fb6a6a8f", - "dd19572d40854af582183cd0cbda49d4", - "37c4350a9ec34d4ea6f8ed75e279f5f4", - "86a10f2f25bc4d8f968986fa5e29ee7b", - "85cff4af28da4629bd5ca0d301a3dc7d", - "ba288ac64e284d538840611992a90b0e", - "e764598a67d846aa9fe1f11b186676fc", - "f023e1bbc83f4f8f9251636780b3524f", - "01946306cff940fb94a03cf8d8e9f8a2", - "5e8515a0f1814536a5293dc04d97df01", - "fd469d22bce74f0aa121577674e3c159", - "ea1cacae44b943e0b9bc471e013b49a5", - "307c30e3319d4fbab21261fb87f10638", - "9104c8b7449e4764b834770746d271c2", - "3d169305146f439688a81ed927471931", - "3b2f72d92758421091f180194490b441", - "9bf6d8b2ef114b2290ebaf6a7d93384c", - "69870b23ac6642c58689c3656a58e026", - "1a482c0b17394020800121ec03a83132", - "837a3849dc9d4331a84e7946410e5484", - "45fce127fea840fbada04df41eaf9426", - "f1c99994c75540b986421e69a38f3ff0", - "6166255504c749f8a3ab09ae81131137", - "0c48656a24d24e958a280098d5435ada", - "5f97ec0ed84b4b229f9eda372b90ffe5", - "2de47eba2c9f412199c2b212bb39a8be", - "b2702055098a4cff85519b1fcdb39872", - "8f2765bcb8594c31bc79301de876d61d", - "866bb913380a4d469e11af043ae6fdd1", - "e256f0e1e4564e6c8d68d798f7caf4f3", - "f6cc849c44aa43d2a6de8005e0400254", - "3682d8cb12bd479399ad6a74745d711c", - "0a0b6b7a07194576b735703253a9f08f", - "ce63e022ce244737b853a0339641f44e", - "7ea6f1c497f643168918f6b7f9ce79c0", - "6711bb4f14fb4a959a9ef5577f8099af", - "d25bc3f4c3b6449caf7ba32fe8645a77", - "c4e61e69ce1f48dfbbde85a78588f968", - "9d636801b90f425fa9c2e1269f3cf606", - "58071cb435064e1f98c90b828a236fa8", - "57ebae26eb144742b0db082068d1624b", - "950c5dd7030248b39433414af8da3ea9", - "dcec676639ad4f22b3f116a03e99e415", - "c95ed7861c44453dbe2badfe211b6d67", - "72d2fff683e94a86aefb98c46c85abe8", - "697a2e72542348378d8b72496b8527ef", - "8190fa8a15d34c689193fa8e031d08dd", - "8538fe7d93b54c4590db797cf7045636", - "c203f9dd2d034a56a9c150ce7290d969", - "00f4ae63235342f8a38a8ad3aa523111", - "328d1dd21b494e96ab7a87a182cd44b9", - "70e996b1e5cc488e9252bb1c4da0a7ff", - "438ef74390c6409ab8addfcf031aef4e", - "d3efd5514b7341d282907fbbe7c7bbe6", - "c88a184f21774621ab9fbb27b8a890da", - "f02bab9888bc48dabbe79e51584164a8", - "335d63914bef4280af5373c5175b8830", - "a122b1462274402f8e07f628f87f4939", - "7f3bccb5e3614c0c8a4f47aa256969d3", - "8326ee29b3434a488830123bb6df3dd7", - "190e76cff2c74e9787be39eb7116829f", - "3266906c4d3645f696a18a471e9629ee", - "54f5a6f6542d45eba3c22df3681e6366", - "131259eff44040a385c01dd97e908c68", - "e7621e8983ba46e38610c0e320fdf3e3", - "fadd727d81af48beaecb927010496e90", - "1e859e90d95f498cb2777ec5440194bf", - "2d83d96f346d4b13aa662a21646c6281", - "566a6f4e1757441c91e2fbdda20f3efc", - "ed8e0de8b6b14dc198e091eb731c3a8a", - "206d8f77201a4efa87d29942f74fb59f", - "7ad74b6fdf8b45d5a46b37f200ac47ed", - "2c05716b4662435a90d3fa78eb37ccdd", - "398054c1fcde45b0a3d894fd1c1c6a67", - "51862f48c0ee4f9a98edc242f2e0b671", - "66534aa95e3644f6bd7fc14cd6ae6745", - "260a1daeaff64491941b0565d4812207", - "093f5131de9a425aa4cd3b7b45a4e3cc", - "46182337bdae4082b323b923f94a78a1", - "4139f2f4ceb7488c96bcaf7f8afcb890", - "a1899db227b34e9aa4339a4f09404179", - "8646a84a3348486b89315991dad6e7e2", - "9ed8ee9e61294ee48b917f090466ba37", - "a2044edb872a4bf9b43973555c7ad16a", - "84b4eebfbb40484ab562f6a4d4c12133", - "359a266265f843dea8dd233f500a56fa", - "1a3a5df13dc74ecc9e91ed4616b9b987", - "089b37dfc975455c9daa64ec50134bc9", - "be9bcaa7e638416885bbca203b48a030", - "6e7b625db09844848632a37dfdeae6d3", - "195dc212cf3c46e3a706d599a3ede713", - "8c4f06378bd3481a819c1bd79ab15f49", - "cd6499459c0045818a8f9c14b041c602", - "9586be012a3b44f2989eafc8ec986abf", - "f0b05928eeb14d50b718316f2cdfd1d9", - "fd4dfea3c54a4f99a0f5b55145db30c4", - "f60c24764f2443299f2d724715bbd64c", - "21aacfad733246af9f5fa121d547c8a9", - "c7925198bcee4e34ad00d0531fc10a82", - "15015d1fe1ad41b9a3288a95e42536c0", - "3f0cbf90e2c54a3a844a4d120a3fee5a", - "2319c679073b4ea784f759ff45594fd1", - "bd36e7d35c284afea77406c50fa0f971", - "652625335d1249e3a1f313379c9a28a1", - "16ae468861fb4af78cb18bbddeb1bb5a", - "51c08398da9749a58ec9fc0f47f9edb6", - "5f8ee12a7dd54685bc353f431d6eff6c", - "bf381af745d249bc9c7369786003bfbe", - "1083eb9024584c0b9e89a17df66fd24d", - "8af8d5dbf5fe4e29a1f08c7bbc635152", - "8826ba68545d4021a940862b0f4f2433", - "86f11e04d22d47bdab3c2915f11e3824", - "41b860d199944123ab5104f4de038749", - "f78a5ff40db34724a6b6f8c97412ff14", - "fd4a9a4ca6084de89daf29328daa8ea5", - "46df5181551748ee8ef87e2793c7f498", - "546995e626a94a61926732739f03f4a7", - "251e1bc40bb54101aad2fe2dbd5a5da1", - "8293e436c24f4016b590bfd92b840931", - "263121b2846e401fad1e89b41465637f", - "038c9cf612ad404bae84e968d67c4999", - "a310ad0d4d4c47ecb78c19473999a9db", - "c59b452c7c70457d90cab50eb3bfb9e7", - "f5350c516c2441cf959bbfe737f3cec2", - "f663ca0e559a404daef610f853568a52", - "3ac41b09938449f9b6564fc9841c2e8c", - "f6ab565122ff426093097c0b2a1a6cb5", - "1421264f1bc540dcbbcd17d51fbb02c6", - "5eae4f451ccf4495a9c22ba55682423f", - "e8e029e42c28496d9cc2c1a35cb03110", - "05108f324ed944bb842665cb9f7e5959", - "8437b2dd678b49f58238a4aae604baea", - "2a81973d5a1b4c8d88ab375cdfb5e95c", - "93a5fd9c0fda425fac53f5c74c2e04c5", - "b0e93c8c1c6e48d1ae1d54ad3a675015", - "6645d32f3bc24fb29cc9d680b28a0a05", - "b88faa411d9245ef9cf6c47bf7e7ffc4", - "f9ffc0297e1a4328a6517402001c5e4f", - "cb076ffcff3c4642b840731566214470", - "7c4f127d07ba49be8e7afc942935e8c1", - "78f5d5d8904c4a1ba18ba41ec541c556", - "b8674907c59b4af5b347c93d66977236", - "94bf3929e70c4bd9bd53bac1f9c0f65e", - "bfd910843a6b44a9ab9291d0d74f488c", - "53cb593b9e7b45ee8f7eff8908f2d0ab", - "33fef66e0a1f4b85b7e3d9f197d0ced9", - "ef2afff3eb9841e684546244e92e35bb", - "b490851acfae4a37bd9418e6fcfcb2ba", - "b16ea94a6e95476588ecf08b73a2150d", - "e8d28cb6075c4efe838740c6ba810a61", - "e4e6214afbe742f6ba30287bc90b7704", - "4aea5d7541c0455f815136ac3674d5e9", - "75d9a229afa54fd0840758490e73fc8c", - "218dc4565e63487d914e2d9c38b4d43f", - "a30ae8a9b4054811807d0ea0920f3120", - "82a52acd41034e48b6e37c2f79931b5f", - "22a1cc72a4fd401bbe2f02a1b5488401", - "fac6e36be05048c4bc559233b21ddc3c", - "8a53133379274c04970a59cf0cf557d6", - "337099bd22c5463586a9b8c4a38e1c9b", - "9b3a9fe11d8b46678e33231d25ee641a", - "50738fc09b11451fb7c02feb3e03495d", - "fa4be32395ab4eeba7fddaa5fdf76fd6", - "3c9c616de7054dc1a15edf1f823d85b4", - "a7ca0f0d40974f2a88f2ac074cfa8632", - "a3f432d74847438a9ef7fa9948ba1d12", - "eb82b6ad57df4b7a95c03dfce5865a2e", - "5668dd1f1b5943ea9119f32cb2da4986", - "4bd9030c572c4594a5e344c5982eadd9", - "c85eb2e60ecc4803a798275132856457", - "4b41b23c14754556a02a28c5ed653636", - "fd1668d9e47f4c53882d670975ce061e", - "50b75f18541240d28a4b10f245b594f8", - "192940c1da884c4a96952c0d6e1aae67", - "0e7cea53c882436a86cc94cb6246da96", - "742d302cfc074d399dc0cb243949fd16", - "2af170da050f47e5baa6c2bbafe130ac" - ] - }, - "id": "6dBaWWoG1wvw", - "outputId": "e022cd18-08e9-4494-96d4-c3d91a3483a0" - }, - "execution_count": 41, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2024-05-28 09:34:09 INFO Loading dataset 'matbench_steels'...\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:matbench.task:Loading dataset 'matbench_steels'...\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2024-05-28 09:34:09 INFO Dataset 'matbench_steels loaded.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:matbench.task:Dataset 'matbench_steels loaded.\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "BandCenter: 0%| | 0/249 [00:00b!>EVE^2dcZUBs%&5j+%4TWFD&^l>UvHra>vd=Di z;c7I31MA0_83zdhzk9w@>^t)1jbLdZ7&BCNHH$p_$SVK$%}<}cy#MXvHIO z)5bVvt$EnwnN~|MYWr_r<>MM*pjkJ8GU98Mspk4I#wDh&pB<> z@Sw3jt}Y^W&9!XwF>($59_H)rM`6q6nziIsLkJ9ClI0`wSu4w`wH1u^&ec2*ew}%H zsi~CUrn&Z$N z3XwFdO%}9TFxn5Y){Zi)&equ5+~SkAyZQD*2E(-GuXHNm+IkV0+a$0rVZd>*| zDV^x%nX4Ij*YAvcOO_pTmR@Vor}bdt`%mUB{v;x+bu#tVsBA~3HV*9Z_Z+p=QiG9y znwDgx=8jKij!yDC;kypPvCeA5uJsa(JW3{cV%5@O*BWtoYt%jC>N@i5ElskUt+}-s zd*Ar(qq7#aY_w`Ktb6RN#EWb$NrIfn2P+uum`rnEr0_0trDpL-9+Q>8ZE1}$F)bxH ze4gvZO|#X759*lFm-9@fd05Wc6>)VM(K01*HvYQzDqz=imX)f?koq*(s|tp{Zd{JannxhY{I5 z4SioQ@pokeei4;LAKyZL+uHF~De`=KU#vwXEZ9^J+ZwOHzVjP~GsPZ2N5#=LImJC#AtM zftc(R@UACWTkK?A7Ako0of)XSf^IcR#~q*fl2EUz*I-PN2O6w9Ezv8qk~E_32vEYe zb$^h84&YcMF|{tjNq4R+c68K>`UJj=Xme7|f*7mxZ$QN@5R8j}t#LGDi#kscE}_gP zPbb8Wbb=p4ec?ygHOG&rBj6 zn@JojIV@Dvv*^rp3`*&0Rj@PzE@iI*X^_4O@p_9#@JV zlUg~5UdtoCZhDlc`v4~zdYYmTWRFS2mN22rv!Yr_gaAX$IVWjPri2@~3?&s!ccZL6 z2GD~Sp~8q&>-r?%gv3Ls^GcDJwx3`e;shWhEs2xJ3$=K$=m%9x* z$`DF;=QG2aT6P{}O`ReKXq&8q(OGy2g2~=ePXx{3b**`%z$c(7eAO1)9F2BO?er*? zH=eM2IWB3sQY=J(0!KmJ6)Z5LKZxoCE2mir_!O5tJuX*)PL^uMlo$jXk2rCMg1acZ ziKk$6c6;oJnlP9_fDvi%%qDVoEs_o`>VnK*<5;R-pHW$wW`=EXcVPeT6fX-rM<5-09;YQ^EnABflV<9UcU>7fNm{3cIGYA@EX`S#*q7bywK%y=#+(VcAIM(iS z^r15p9-@C65pi_JR24oSt?b_ka#Ni{^^4y&aZ3G|isgND(| zOsxqGE0NI3l`9Ym1XC?m9dXW9{B7fas|f>|UeYsw#hD0dj0Fu{`CH?3ta*R2vUY)j zQK`dG=971GXxE`ehYcw#E3T<|U2RjsQ`N2W0W(g=+E*30B z;}p#mW6Yyd3F!;fFQrh&c3|$FzJYvQlT`320H#MK5~!)h?g^4gRWRBcoYWs87RZy9 z6xq>7$;1*}h~~sd3IQ64?<^X081P3QLbkZ>b39^pdvhP1l}>rVy#KPA!kV ztj-O{p}~5R6LuzST|Seg0mhox(uqTT7Chin4cby1E(8N2(Z)a^-q3)V2egY+(W{g= zBJ=vQ)q+UT+R1`A+VjCRy9^X|Vg+o#3(?3&O(m(vVnbMt)wm)rt*C`jRy%u3vlao{ z+b0t0*v+c?D~kc1&lyT82cSi*S4%tM1azLWbh1DL>!B%8q|0;MoQEdKY#IM3jUExK zURkd447%AuQpGXanJIMH8Zj(*lVTSJB%Ubfz=4z!0d*nLfg60Mn58nQ8U|@LZ)a4)(& zn>xhmX8^GLnkS{HDIhF+NZoRVHy!QJun}=yl%nq)x4~HiNbY;|ppowlrPZ!VJ~aYR z2cH9_(OMkqkINrlF^xiz6eL*(AoNq?PbjT?d)j7BeY-ujeNvF(nNmuQa)U*q^(9sI zJV;a8xk(U1U^=^^$5eC%N;7{Bc`!8rMu$f@1xUqdZ(>u3a0IT#Q)G(;>DuL?W#T6oL$lG*V)>o zW781c+2;%m{T{pNMZiKu$>r<72HfDQ)QANTsN;G%uTvLZrfUN&!dbntNmIL{8NwY1 zIlocjs3Lu6m_AxO2hD!ZfkFXr6V{{>8yAeuPOfS+K$wxiDbBRU86cX+_Pw!X#ZsBi zGoVGq0U62LselVM^Xj3Zm#Gi16lZ$p-shzuD$GD*rOOwAagw_Tq9_^*8hzhgiT7h5 z%_4ay0s7bZv02PoM9pwfi50gE%*QFVSLB0bM56Vmd90`TMjkHhUb>0e4 za)Ay)y=W%e;>L~hOr{)4R{`VX?}#|gW^_#5#9ccwM;woN2p|$PZ%daL=tASEvp3+R z^r1;jv!xchMWc2d*-?^I-e8GzH~Bg*IxNHuouPR&xibv4UR(LZdw>%Sc4L6A*PKJ2 zM^iVr;*8ilpA=5&h-=%|4|3oxukfh*o zBv8*!d4)5uy7IAjgKtKpdYqwYR^BL;Royy$X#2wuO-|CNbs$Wd!PP&(v-)j3a~d*Y ziVdoy@VwLTWjQ5xp(zTIU8i1SGlGM;puQP(2w##QO; z_(*g1MW>w_M%~@kJM{@_9+YvK0?jmnzsE^K^k5pq(1qz{T)aQ$>sFDTYPBh8IbOs{ zr#=Z$Y1OH*JTyAM$LVAfK}ih215L;D0lr>ubRmVKYjzM-JbU@oxpEUv65OayoQ$N` zk(LhSG{7h2;{CaN-a;alfFbomx<(jm&P#^2kCdiZKb5$ivyAa_GcVDAOTNNpPS&AE0!JfNi*-4UR|RXDLT>P*e)_(tx1GV^!y! z0`1es&#n$NUbW3W8K}CdL<$%R6H>quP3JJVRd7*MU3|&9$j{jLLg6#B#9^8=k)`Gk_Qk?8tly;=V!ie zJgI6{MU-n{!N#492)0V`RU)ASfl>S}W@%ET3fMx}wcX9VoSUX*ny`nc2nvhb=$GCo zURhL?G>uJxW9$Sl@=XVr8Xv|iF+WOSqjbv@T|+7$lxXA^n#MX5j9p_604yFnrt1M- z+EB4H`i#@TdNMI>ddE~(pDo94JDck&Ba}j8iWSET<|AY_;+Xp$3kX^I-Oadqt(Cc} zv#11Ji8k{(vZr$-?Rc9ys6bZd3ASfc}?_{*4o8`!e4ul9o|K6|1oU5}*L@;fM?$!rHgK>`e zRZ@1CUkME`(N!)D&~X3-^&5o7AN}I_@#!r~y<8FP_wW9{8y=ruE}wqYZ%H~K(~*rW z`cYTcl5BpyJpZg;_xE|ex5rDlqb!>EVE^2dcZUBs%%Z^;P5r$vI&^kFFi+8Vr?6b>W zXlcf95M7L!v5~;=yXX5^r$_4Q2v!m}j=D_pkX8Ss$o&51Zy!HD{QBYX&5u94`FMGG z_xS1k&&U4jo4@?<=5OymT%Mox+dt0V{;t1#ygdC|KmYdl^!%^SpY(e=y8h(l^89bb z|Nc7I+vk_Z#}EEz_rv{@_&w48S;fow+q>(OZ$Di=-h{mUEge}Q4;O+TU+x3W$q9LS zeE#*ri?8FS&mSJ%rv112Cw;x|{_4ShO{wrFdCqZ6tD~31-`i*m@^w%n$ZGCKoq5(} zrL0o=ZIEe_Y?YvFZIsbUTPwu$9ka@j(p+WMv}|MxL1Qmz!h4eHf5sUCeaHoSGVGc3Em4pe)}HYcHJh28FR2bFfDn)s+fNa^9+#{Ra} z@-Z79HAd|P@{eQNxCSSx0EbvAR}#?0l% zZ^z`z^IU0;TEjlBosp$dW!BeXRi!oyd$jh7a!UsZM-HvIMh&NyQ}s_HN9O2rmX=2@ zG00PLmSboiduGmXB025NCYz6BW%b!oS>tw(a^8DwqzFk#-ZIFre0w1ItdTX2R@)@g z*|w0i+5A9OJBD@T89SMK9BBGL^+=6eu(Zg(ahq&>xq_JD;K2GUR5m9QrYn1-(fgsK zHijcO9B%d^8GRjdP10)i)B{N5Gyl8k+(?0CD^YK^LEWn@=OdGCT`?mZ$k?aGiIZ$~ zFuLc@%<+~14u+dbOptzskw)=sf&vqq3|cDbLQHc|0+iPR)=94vw%ha88YDsDLfuwL zml))8RaU*IxRkSsE}ZV#2?x)Dw+ny(OPMgNX!+?TK?%Df9-(k=zrUnCQZI0lauW6e z;%5xnYa)jZex_#E1l$8q6t9%jz<^2_u$@DYa~tH9!VCwvow^B1OKN`*^~>c63H5@m zlPJ=kJiq^pbUG!S#1$ZH(ml{4c-7m^ipwwhNm4*?&(6X=d`jIjU;gv<@#*RF6A>KR zQ3i*SD@S7+F`hm?KRPELFmh6gRF;!9`>&tgKR&%&{`KkQzl41H^}`4K>DF)g+xo3; zX{OU7lM28A1PA)|jWUoK0%Rvac*-Tvu5T1&d7y4UdYF#?3SuGKo~^f|KspN&rwl^! zCaaDFWH>~~+J*reQNMXYRWN0-YUQp(T98z}CRiREWE5gr4@#g8U$=AzY61PyTkk=f z^mN^UByD1V>Yd2x4m+S6m7Bmh{@tUbbR4MSod)F21`v(FDamnw)vD}B0AvmlB`nD+ z3VdS&s7f%LWC{a$L6JQN%5{MjWFixWAQxV(9J7k$8`T-Gf=ax`P$?A|t_lx?k-aiY zFAzo+0|5;s2A#|UU!tZ_Z;RrDUPF+R;Y6K5UI_3dT^WO%Re%(DX9D$T$|!TPe_Nv1 z$RbLG(=7qOfzm6jQi*J+6nqJOA$w9{34mSXG!h0<3>@x$0qUYQ69sE*WfT= zKzJ*@Ys8|&Dea)1jzPk9{zBG8b>_?qkRFBlZHJP8pux16`E^&o48l?6sDUeJyDjD-EviIXbh^? zWHM|ohJh0T5JOPA3e+n12D3;LhBeKz!0S;dTXq1w*IQJ3r$$4304kWqVo+;x_iCAG?ya3@b zzyYQz4e1v|Q*Q2d@&O63U^u2A#zK%E9oq!FqlOEjAYz=^DZd67Pa(m!kCrWQK#4K z2@4{njhdsBJq@_w3U*_K1hAmLy8B&7uJ?Bgolq4zY^x>w^n))3H z<^cw*ME$w09SHV^!O*<$Vwi4@EAayG{0BR~;=1Q)9Mu#6EvPr*q9Sy(tZ-8YbBX{n zDtXUb_Kw}gH?tn}waqHw|0goezA582(Q#JzVpL{JNyr-He9Fu567@x)6eK&0 zSYsP5?~%}+l}Z7d5YRLDM>5s{Y#c*%iOK5nwLzj42YT>Q3I<#yYhsJ(EQ3OgucT~B zLb{-1n$s9-8d8MtBgGXJp*uQ~5z&B_C8*XgS#xhZ*!3iRMrM)|vBl>6#5mvy5^W5% zePY*Z14>KzK-o9I0wc15ut;Yof(_u)JJm_@B346?_lB^K*2Rhos*1Cn^rSxAZ0h?^ zzOn1+UX3{f18is?Nvbde6$eWQ8c+gq!2KLMdd_ndWr=Dm2wkCb5QJXfBnV=c4=1hF z*@&$%yY^49sF_Sz66ryGq*D>I-My$2hx`ieIh*qio{#OJitw~xT*ER$VZ;uJmSaEA|p;7Ae zQ^?sN*P3@%zXTA-PCTOL*%p(dJYpjvd%v1ZJR}6DTZ*?wCEw3x9J@4^6wIoq`5>e(2YkF9@Xvm_w?4*`0o!G6U4P=s5@`-|VSY z)Iz*~{$mBXklla*e}JjhVeQl%61GL{!-`Qu7l(lkVS)4n8bu7R<4~k%}_98H+6|Y zw%GbAB5x9W0y9O$bY8W<-T=hfy+&F8AkSPeHg(!f7YVYf zBL?}JknwOkf&!(W8=0WJy!#C^$$S+l?-@hR-NwuJxmYu2Qfm25c{W7(?CVrZWzAc4 zhC@l}Y;mHx=V-CZwl&jNi*H}cvx-NZ>U|@i)%5xkeOA8RX0t0_>V%~v;hkW5Q*sdp z?%)|Q7a()I-AKDM!GCPSSdb7RZ}!+g+O;ARcXSvWz|BdLAjmTpdb$Bbqm!C2*j<;+ zlK>}!u})wZ|5R>K!ueHd)rC`o2X!mk0?MV`iI56bv$YO9xM}?%sCpVmRX`mBCbkr> zN!Rt_mIDC?lIg-J=saiC?RJX#NGy6pnd8k0Kv`~QE{Q>kGc4Qt5G3WH=2=xQwx=j` zol?PL$aze-hqBB;Ftt~^XS#MG%Mn*8wi(M+Rmu^NG!=s%Z*H%>eTYyhxPdAwUbxTK zbYrI^8%UHWJe}oG06>LA2Zv3@L{;hd-R6;i-esJeWJTx>=4*d}5-XrdpKM$>+iMd7 zkhdkBSCld_=dkC`V4{Mm+@i4(Rf}3Y1JO zkJvtPW1&-NqCnubrdYapo{d(57XO1Rm`oRr?o5HSNflS0q*B6k=B;M73rdlzsw-L@ z^D7{7KrJ7&_H?@w`xJh8-Qx9g41o2eHDH=@;`J`*?!Z}8zldl#<-LtkYjcaU;b=NR!Up%XEsXN6m zn>%pSsjk3^sY6<#{`S_d!Cs^8wlC)sn<93iE-J3FjRsuSao5vyKm~3|Z!`(4OZkO? z+<$1Gk@lmCh7O3|@5Mw0AL`|Ca8e!NhBKY5L3E{BS$NpSjIn>_7ENxKpHU?;A*p_E z|7^kxn1jCCH|8$+OaDwNl=-0uT@2SK&>Cj_E6CiU;i}NcHX%DKhxODy{3i;nep{ir z98#(vOw=V;Z$1dL^8rTIy{ukvEv!nol}K*G^4gvsMbY8ajfO5Og-u+X2(#d#COaf@aLG9)!=*Eq-e-P#DPC z>wOxCGRQa3A_^2oIbHISQ1C0RtoEo-oqK0Hipmmh#@K{C@?QHy#8e3i`MDe~CQqA& zc}7uC+qzJn78{ZNX<1#bsrKz4i{i5}zjKqYZW7)S#w|c|@^-vDD8GtQu$ocl`3?4rC}6T2UT#G7evqcaGJ1h}`MJFp(pm(nWLkrMEsaUL~F_?Ya*2RpeoCaWTeA+t{Q@ z)D$4MC_U$w_5vagU_l+uxNg7MVU7dLMF!~s(U>u4T`yC+x?-(L?FPA&>h=ClmCd-6 zQ;EXsG!3Pw2_qT=CSpg=`~@byLmNPa;GE0dt(BXG3~(j&>AD_YS@5xD=bF;7)Ha&6 zqO4<#-=ifxiqlgObx%|5ulN;;!E!@bI;mVRGhR3PJEozh%(_ES@zr<(dOn3o>eMXh z<%T#24OH_dm_ueq4RnfI)gBvKZmvyF*_N(aD^wU2-0O84@TMD`3YJE_fo!Tm~?=?Nhj=sG|*9A}xFVIfZC3lfI zc%}vsgpVuveDkPBh-etS)tmXd8)(eWM<80M4h;6Xk!SFjI6PstVe=WUHwPxW22{DK zvtEv-J7Tt5&T@ULf5yM`!}H_QTUL6x%CkSd`~T4J`22GD_=|o8<@BZ*hWa6`A4>;b z6!Y`t`Dgu{v1N5V0K_)_!~g&Q