-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmain.py
153 lines (121 loc) · 4.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from __future__ import division, print_function, absolute_import
import os
import pdb
import time
import random
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from model import Model
from utils import GOATLogger, save_ckpt, compute_score
from data_loader import prepare_data
FLAGS = argparse.ArgumentParser()
FLAGS.add_argument('--mode', choices=['train', 'eval'])
# Hyper-parameters
FLAGS.add_argument('--hid-dim', type=int,
help="Hidden dimension for GRU")
FLAGS.add_argument('--batch-size', type=int,
help="Batch size")
FLAGS.add_argument('--vbatch-size', type=int,
help="Batch size for validation")
FLAGS.add_argument('--epoch', type=int,
help="Epochs to train")
# Paths
FLAGS.add_argument('--data-root', type=str,
help="Location of data")
FLAGS.add_argument('--resume', type=str,
help="Location to resume model")
FLAGS.add_argument('--save', type=str,
help="Location to save model")
FLAGS.add_argument('--wemb-init', type=str,
help="Location to pretrained wemb")
# Others
FLAGS.add_argument('--cpu', action='store_true',
help="Set this to use CPU, default use CUDA")
FLAGS.add_argument('--n-workers', type=int, default=2,
help="How many processes for preprocessing")
FLAGS.add_argument('--pin-mem', type=bool, default=False,
help="DataLoader pin memory or not")
FLAGS.add_argument('--log-freq', type=int, default=100,
help="Logging frequency")
FLAGS.add_argument('--seed', type=int, default=420,
help="Random seed")
def evaluate(val_loader, model, epoch, device, logger):
model.eval()
batches = len(val_loader)
for step, (v, q, a, _, _) in enumerate(tqdm(val_loader, ascii=True)):
v = v.to(device)
q = q.to(device)
a = a.to(device)
logits = model(v, q)
loss = F.binary_cross_entropy_with_logits(logits, a) * a.size(1)
score = compute_score(logits, a)
logger.batch_info_eval(epoch, step, batches, loss.item(), score)
score = logger.batch_info_eval(epoch, -1, batches)
return score
def train(train_loader, model, optim, epoch, device, logger):
model.train()
batches = len(train_loader)
start = time.time()
for step, (v, q, a, _, _) in enumerate(train_loader):
data_time = time.time() - start
v = v.to(device)
q = q.to(device)
a = a.to(device)
logits = model(v, q)
loss = F.binary_cross_entropy_with_logits(logits, a) * a.size(1)
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
batch_time = time.time() - start
score = compute_score(logits, a)
logger.batch_info(epoch, step, batches, data_time, loss.item(), score, batch_time)
start = time.time()
def main():
args, unparsed = FLAGS.parse_known_args()
if len(unparsed) != 0:
raise NameError("Argument {} not recognized".format(unparsed))
logger = GOATLogger(args.mode, args.save, args.log_freq)
random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cpu:
device = torch.device('cpu')
else:
if not torch.cuda.is_available():
raise RuntimeError("GPU unavailable.")
args.devices = torch.cuda.device_count()
args.batch_size *= args.devices
torch.backends.cudnn.benchmark = True
device = torch.device('cuda')
torch.cuda.manual_seed(args.seed)
# Get data
train_loader, val_loader, vocab_size, num_classes = prepare_data(args)
# Set up model
model = Model(vocab_size, args.wemb_init, args.hid_dim, num_classes)
model = nn.DataParallel(model).to(device)
logger.loginfo("Parameters: {:.3f}M".format(sum(p.numel() for p in model.parameters()) / 1e6))
# Set up optimizer
optim = torch.optim.Adamax(model.parameters())
last_epoch = 0
bscore = 0.0
if args.resume:
logger.loginfo("Initialized from ckpt: " + args.resume)
ckpt = torch.load(args.resume, map_location=device)
last_epoch = ckpt['epoch']
model.load_state_dict(ckpt['state_dict'])
optim.load_state_dict(ckpt['optim_state_dict'])
if args.mode == 'eval':
_ = evaluate(val_loader, model, last_epoch, device, logger)
return
# Train
for epoch in range(last_epoch, args.epoch):
train(train_loader, model, optim, epoch, device, logger)
score = evaluate(val_loader, model, epoch, device, logger)
bscore = save_ckpt(score, bscore, epoch, model, optim, args.save, logger)
logger.loginfo("Done")
if __name__ == '__main__':
main()