-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathdata_loader.py
79 lines (63 loc) · 2.65 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from __future__ import division, print_function, absolute_import
import os
import pdb
import pickle
import torch
from torch.utils.data import Dataset
import numpy as np
from tqdm import tqdm
class VQAv2(Dataset):
def __init__(self, root, train, seqlen=14):
"""
root (str): path to data directory
train (bool): training or validation
seqlen (int): maximum words in a question
"""
if train:
prefix = 'train'
else:
prefix = 'val'
print("Loading preprocessed files... ({})".format(prefix))
qas = pickle.load(open(os.path.join(root, prefix + '_qa.pkl'), 'rb'))
idx2word, word2idx = pickle.load(open(os.path.join(root, 'dict_q.pkl'), 'rb'))
idx2ans, ans2idx = pickle.load(open(os.path.join(root, 'dict_ans.pkl'), 'rb'))
vfeats = pickle.load(open(os.path.join(root, prefix + '_vfeats.pkl'), 'rb'))
print("Setting up everything... ({})".format(prefix))
self.vqas = []
for qa in tqdm(qas):
que = np.ones(seqlen, dtype=np.int64) * len(word2idx)
for i, word in enumerate(qa['question_toked']):
if word in word2idx:
que[i] = word2idx[word]
ans = np.zeros(len(idx2ans), dtype=np.float32)
for a, s in qa['answer']:
ans[ans2idx[a]] = s
self.vqas.append({
'v': vfeats[qa['image_id']],
'q': que,
'a': ans,
'q_txt': qa['question'],
'a_txt': qa['answer']
})
def __len__(self):
return len(self.vqas)
def __getitem__(self, idx):
return self.vqas[idx]['v'], self.vqas[idx]['q'], self.vqas[idx]['a'], self.vqas[idx]['q_txt'], self.vqas[idx]['a_txt']
@staticmethod
def get_n_classes(fpath=os.path.join('data', 'dict_ans.pkl')):
idx2ans, _ = pickle.load(open(fpath, 'rb'))
return len(idx2ans)
@staticmethod
def get_vocab_size(fpath=os.path.join('data', 'dict_q.pkl')):
idx2word, _ = pickle.load(open(fpath, 'rb'))
return len(idx2word)
def prepare_data(args):
train_loader = torch.utils.data.DataLoader(
VQAv2(root=args.data_root, train=True),
batch_size=args.batch_size, shuffle=True, num_workers=args.n_workers, pin_memory=args.pin_mem)
val_loader = torch.utils.data.DataLoader(
VQAv2(root=args.data_root, train=False),
batch_size=args.vbatch_size, shuffle=False, num_workers=args.n_workers, pin_memory=args.pin_mem)
vocab_size = VQAv2.get_vocab_size()
num_classes = VQAv2.get_n_classes()
return train_loader, val_loader, vocab_size, num_classes