diff --git a/neuralnetlib/model.py b/neuralnetlib/model.py index 72031b3..b5ec9bd 100644 --- a/neuralnetlib/model.py +++ b/neuralnetlib/model.py @@ -1,14 +1,19 @@ import json import time +import matplotlib import numpy as np from neuralnetlib.activations import ActivationFunction from neuralnetlib.layers import Layer, Input, Activation, Dropout, compatibility_dict from neuralnetlib.losses import LossFunction, CategoricalCrossentropy -from neuralnetlib.metrics import accuracy_score +from neuralnetlib.preprocessing import PCA from neuralnetlib.optimizers import Optimizer from neuralnetlib.utils import shuffle, progress_bar +import matplotlib.pyplot as plt + + +matplotlib.use("TkAgg") class Model: @@ -106,7 +111,7 @@ def train_on_batch(self, x_batch: np.ndarray, y_batch: np.ndarray) -> float: def fit(self, x_train: np.ndarray, y_train: np.ndarray, epochs: int, batch_size: int = None, verbose: bool = True, metrics: list = None, random_state: int = None, validation_data: tuple = None, - callbacks: list = None): + callbacks: list = None, plot_decision_boundary: bool = False): """ Fit the model to the training data. @@ -120,7 +125,9 @@ def fit(self, x_train: np.ndarray, y_train: np.ndarray, epochs: int, batch_size: random_state: Random seed for shuffling the data validation_data: Tuple of validation data and labels callbacks: List of callback objects (e.g., EarlyStopping) + plot_decision_boundary: Whether to plot the decision boundary """ + global update_plot x_train = np.array(x_train) if not isinstance( x_train, np.ndarray) else x_train y_train = np.array(y_train) if not isinstance( @@ -131,6 +138,45 @@ def fit(self, x_train: np.ndarray, y_train: np.ndarray, epochs: int, batch_size: x_test = np.array(x_test) y_test = np.array(y_test) + if plot_decision_boundary: + pca = PCA(n_components=2, random_state=random_state) + x_train_2d = pca.fit_transform(x_train) + + fig, ax = plt.subplots(figsize=(8, 6)) + + x_min, x_max = x_train_2d[:, 0].min() - 1, x_train_2d[:, 0].max() + 1 + y_min, y_max = x_train_2d[:, 1].min() - 1, x_train_2d[:, 1].max() + 1 + xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), + np.arange(y_min, y_max, 0.1)) + + y_train_encoded = np.argmax(y_train, axis=1) if y_train.ndim > 1 else y_train + + def update_plot(epoch): + ax.clear() + + scatter = ax.scatter(x_train_2d[:, 0], x_train_2d[:, 1], c=y_train_encoded, cmap='viridis', alpha=0.7) + + labels = np.unique(y_train_encoded) + handles = [ + plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=scatter.cmap(scatter.norm(label)), + label=f'Class {label}', markersize=8) for label in labels] + ax.legend(handles=handles, title='Classes') + + grid_points = np.c_[xx.ravel(), yy.ravel()] + Z = self.predict(pca.inverse_transform(grid_points)) + if Z.shape[1] > 1: # Multiclass classification + Z = np.argmax(Z, axis=1).reshape(xx.shape) + ax.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.RdYlBu, levels=np.arange(Z.max() + 1)) + else: # Binary classification + Z = (Z > 0.5).astype(int).reshape(xx.shape) + ax.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.RdYlBu, levels=1) + + ax.set_xlabel("PCA Component 1") + ax.set_ylabel("PCA Component 2") + ax.set_title(f"Decision Boundary (Epoch {epoch + 1})") + + fig.canvas.draw() + for i in range(epochs): start_time = time.time() @@ -190,10 +236,10 @@ def fit(self, x_train: np.ndarray, y_train: np.ndarray, epochs: int, batch_size: for metric in metrics: # Change extend to append val_metrics.append(metric(val_predictions, y_test)) - if verbose: - val_metrics_str = ' - '.join( - f'{metric.__name__}: {val_metric:.4f}' for metric, val_metric in zip(metrics, val_metrics)) - print(f' - {val_metrics_str}', end='') + if verbose: + val_metrics_str = ' - '.join( + f'{metric.__name__}: {val_metric:.4f}' for metric, val_metric in zip(metrics, val_metrics)) + print(f' - {val_metrics_str}', end='') if callbacks: metrics_values = {} @@ -218,6 +264,13 @@ def fit(self, x_train: np.ndarray, y_train: np.ndarray, epochs: int, batch_size: if verbose: print() + + if plot_decision_boundary: + update_plot(i) + plt.pause(0.1) # Pause pour laisser le temps de mettre à jour le graphique + + if plot_decision_boundary and 'IPython' in globals(): + plt.show(block=False) if verbose: print() diff --git a/neuralnetlib/preprocessing.py b/neuralnetlib/preprocessing.py index 542dc74..858f90e 100644 --- a/neuralnetlib/preprocessing.py +++ b/neuralnetlib/preprocessing.py @@ -252,3 +252,37 @@ def inverse_transform(self, X): if self.min_ is None or self.scale_ is None: raise ValueError("MinMaxScaler has not been fitted yet.") return (X - self.feature_range[0]) / (self.feature_range[1] - self.feature_range[0]) * self.scale_ + self.min_ + + +class PCA: + def __init__(self, n_components: int, random_state: int = None): + self.n_components = n_components + self.random_state = random_state + self.components = None + self.mean = None + + def fit(self, X: np.ndarray): + self.mean = np.mean(X, axis=0) + X_centered = X - self.mean + + covariance_matrix = np.cov(X_centered, rowvar=False) + + eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix) + + sorted_indices = np.argsort(eigenvalues)[::-1] + eigenvalues = eigenvalues[sorted_indices] + eigenvectors = eigenvectors[:, sorted_indices] + + self.components = eigenvectors[:, :self.n_components] + + def transform(self, X: np.ndarray) -> np.ndarray: + X_centered = X - self.mean + + return np.dot(X_centered, self.components) + + def fit_transform(self, X: np.ndarray) -> np.ndarray: + self.fit(X) + return self.transform(X) + + def inverse_transform(self, X: np.ndarray) -> np.ndarray: + return np.dot(X, self.components.T) + self.mean diff --git a/requirements.txt b/requirements.txt index 296d654..8d9fd04 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1 +1,2 @@ -numpy \ No newline at end of file +numpy +matplotlib # for plotting the decision boundary (yeah, I won't rewrite matplotlib too) \ No newline at end of file diff --git a/setup.py b/setup.py index a79d075..e961945 100644 --- a/setup.py +++ b/setup.py @@ -2,7 +2,7 @@ setup( name='neuralnetlib', - version='2.5.1', + version='2.6.0', author='Marc Pinet', description='A simple convolutional neural network library with only numpy as dependency', long_description=open('README.md', encoding="utf-8").read(),