-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib_classifier.py
224 lines (186 loc) · 7.93 KB
/
lib_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
'''
This script includes:
1. ClassifierOfflineTrain
This is for offline training. The input data are the processed features.
2. class ClassifierOnlineTest(object)
This is for online testing. The input data are the raw skeletons.
It uses FeatureGenerator to extract features,
and then use ClassifierOfflineTrain to recognize the action.
Notice, this model is only for recognizing the action of one person.
TODO: Add more comments to this function.
'''
import numpy as np
import sys
import os
import pickle
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from collections import deque
import cv2
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.decomposition import PCA
from keras.models import load_model
if True:
import sys
import os
ROOT = os.path.dirname(os.path.abspath(__file__))+"/../"
sys.path.append(ROOT)
from utils.lib_feature_proc import FeatureGenerator
# -- Settings
NUM_FEATURES_FROM_PCA = 100
# -- Classes
class ClassifierOfflineTrain(object):
''' The classifer for offline training.
The input features to this classifier are already
processed by `class FeatureGenerator`.
'''
def __init__(self):
self._init_all_models()
# self.clf = self._choose_model("Nearest Neighbors")
# self.clf = self._choose_model("Linear SVM")
self.clf = self._choose_model("RBF SVM")
# self.clf = self._choose_model("Gaussian Process")
# self.clf = self._choose_model("Decision Tree")
# self.clf = self._choose_model("Random Forest")
# self.clf = self._choose_model("AdaBoost")
# self.clf = self._choose_model("Neural Net")
def predict(self, X):
''' Predict the class index of the feature X '''
Y_predict = self.clf.predict(self.pca.transform(X))
return Y_predict
def predict_and_evaluate(self, te_X, te_Y):
''' Test model on test set and obtain accuracy '''
te_Y_predict = self.predict(te_X)
N = len(te_Y)
n = sum(te_Y_predict == te_Y)
accu = n / N
return accu, te_Y_predict
def train(self, X, Y):
''' Train model. The result is saved into self.clf '''
n_components = min(NUM_FEATURES_FROM_PCA, X.shape[1])
self.pca = PCA(n_components=n_components, whiten=True)
self.pca.fit(X)
# print("Sum eig values:", np.sum(self.pca.singular_values_))
print("Sum eig values:", np.sum(self.pca.explained_variance_ratio_))
X_new = self.pca.transform(X)
print("After PCA, X.shape = ", X_new.shape)
self.clf.fit(X_new, Y)
def _choose_model(self, name):
self.model_name = name
idx = self.names.index(name)
return self.classifiers[idx]
def _init_all_models(self):
self.names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
"Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
"Naive Bayes", "QDA"]
self.model_name = None
self.classifiers = [
KNeighborsClassifier(5),
SVC(kernel="linear", C=10.0),
SVC(gamma=0.01, C=1.0, verbose=True),
GaussianProcessClassifier(1.0 * RBF(1.0)),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(
max_depth=30, n_estimators=200, max_features="auto"),
MLPClassifier((50, 50, 50)), # Neural Net
AdaBoostClassifier(),
GaussianNB(),
QuadraticDiscriminantAnalysis()]
def _predict_proba(self, X):
''' Predict the probability of feature X belonging to each of the class Y[i] '''
Y_probs = self.clf.predict_proba(self.pca.transform(X))
return Y_probs # np.array with a length of len(classes)
class ClassifierOnlineTest(object):
''' Classifier for online inference.
The input data to this classifier is the raw skeleton data, so they
are processed by `class FeatureGenerator` before sending to the
self.model trained by `class ClassifierOfflineTrain`.
'''
def __init__(self, model_path, action_labels, window_size, human_id=0):
# -- Settings
self.human_id = human_id
# with open(model_path, 'rb') as f:
# if self.model is None:
# print("my Error: failed to load model")
# assert False
self.action_labels = action_labels
self.THRESHOLD_SCORE_FOR_DISP = 0.2
# -- Time serials storage
self.feature_generator = FeatureGenerator(window_size)
self.reset()
def reset(self):
self.feature_generator.reset()
self.scores_hist = deque()
self.scores = None
def predict(self, skeleton, model, model_keras):
''' Predict the class (string) of the input raw skeleton '''
LABEL_UNKNOWN = ""
is_features_good, features = self.feature_generator.add_cur_skeleton(
skeleton)
# is_features_good = 1
if is_features_good:
# convert to 2d array
features = features.reshape(-1, features.shape[0])
if model_keras == True:
features = np.expand_dims(features, axis=2)
curr_scores = model.predict(features)
curr_scores = curr_scores.reshape(curr_scores.shape[1])
else:
curr_scores = model._predict_proba(features)[0]
self.scores = self.smooth_scores(curr_scores)
# if self.scores.max() < self.THRESHOLD_SCORE_FOR_DISP: # If lower than threshold, bad
# prediced_label = LABEL_UNKNOWN
# else:
predicted_idx = self.scores.argmax()
prediced_label = self.action_labels[predicted_idx]
else:
prediced_label = LABEL_UNKNOWN
return prediced_label
def smooth_scores(self, curr_scores):
''' Smooth the current prediction score
by taking the average with previous scores
'''
self.scores_hist.append(curr_scores)
DEQUE_MAX_SIZE = 2
if len(self.scores_hist) > DEQUE_MAX_SIZE:
self.scores_hist.popleft()
if 1: # Use sum
score_sums = np.zeros((len(self.action_labels),))
for score in self.scores_hist:
score_sums += score
score_sums /= len(self.scores_hist)
# print("\nMean score:\n", score_sums)
return score_sums
else: # Use multiply
score_mul = np.ones((len(self.action_labels),))
for score in self.scores_hist:
score_mul *= score
return score_mul
def draw_scores_onto_image(self, img_disp):
if self.scores is None:
return
for i in range(-1, len(self.action_labels)):
FONT_SIZE = 0.7
TXT_X = 20
TXT_Y = 150 + i*30
COLOR_INTENSITY = 255
if i == -1:
s = "P{}:".format(self.human_id)
else:
label = self.action_labels[i]
s = "{:<5}: {:.2f}".format(label, self.scores[i])
COLOR_INTENSITY *= (0.0 + 1.0 * self.scores[i])**0.5
cv2.putText(img_disp, text=s, org=(TXT_X, TXT_Y),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=FONT_SIZE,
color=(0, 0, int(COLOR_INTENSITY)), thickness=2)