-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathSolution.py
119 lines (100 loc) · 3.71 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from numpy.random import choice
from space import space
from BOX import BOX
from Blok import Blok
class Solution:
DisFromFront=[]
def __init__(self, value ):
self.value = value
self.h_score = None
self.VU=None
self.WCG=None
self.DFF=None
self.Loading_Results=None
def generate_children(self,Childern_No):
children=[]
for _ in xrange(Childern_No):
rep=choice(len(self.value),2,replace=False)
rep.sort()
children.append((Solution(self.value[:rep[0]]+[self.value[rep[1]]]
+self.value[rep[0]+1:rep[1]]
+[self.value[rep[0]]]+self.value[rep[1]+1:]),tuple(rep)))
return children
def Total_Box_Number(self,Data):
self.loading(Data)
TotalNumberBox=sum([a.quantity for a in Blok.AllBloks ])
return int(TotalNumberBox)
def loading(self,Data):
#### loading hurestic ###
space.reset()
BOX.reset()
Blok.reset()
(L,W,H)=Data.contdim
S=space(0,0,0,L,W,H)
BOXS=[]
for j in self.value:
BOXS.append(BOX(Data,j))
while len(space.remainlist)!=0 or BOX.Is_unloaded_BOX():
S=S.merge()
j=0
while(j<Data.ntype and len(space.remainlist)!=0):
currentbox=BOXS[j]
if (currentbox.quantity>0 and currentbox.Can_Load(Data,S)):
BBlok=currentbox.Best_Blok(S)
BBlok.partition(S)
if len(space.remainlist)!=0:
S=space.curentspace()
j=0
else:
break
S=S.merge()
#j+=1
else:
j+=1
S.waste()
if len(space.remainlist)!=0:
S=space.curentspace()
else:
break
def Score_Calc(self, Data, alpha, beta, gamma ) :
(L,W,H)=Data.contdim
self.loading(Data)
results=[]
con_volume=L*W*H
Utilized_volume=0
CGX,CGY,CGZ = 0, 0, 0
Totalweight=0
DisX,Totalpriority=0,0
Blok.blokweights(Data) # assign weights and priorities to Best Blockes
for a in Blok.AllBloks:
results.append((a.boxtype,a.boxori,a.quantity,a.priority,a.pos,a.L,a.W,a.H))
Utilized_volume+=a.volume
#Calculating the weight distrbution
CGX += a.weight*(a.pos[0]+a.L/2)
CGY += a.weight*(a.pos[1]+a.W/2)
CGZ += a.weight*(a.pos[2]+a.H/2)
Totalweight += a.weight
#Calculating the distance from front
DisX+=a.priority*(a.pos[0]+a.L/2)
Totalpriority+=a.priority
CGX=CGX/Totalweight
CGY=CGY/Totalweight
CGZ=CGZ/Totalweight
He=Utilized_volume/(L*W)
Dist=max(abs(CGX-L/2)/(L/2),abs(CGY-W/2)/(W/2),abs(CGZ-He/2)/(He/2))
WCG=(1-Dist)*100
#Calculating the Volume utilisation
VU=(Utilized_volume/con_volume)*100
# Calcualting the distance from front
DisX=DisX/Totalpriority
DFF=((DisX)/L)*100
self.h_score=alpha*VU+beta*WCG+gamma*DFF
self.Loading_Results=results
self.VU=VU
self.DFF=DFF
self.WCG=WCG
Solution.DisFromFront.append(self.DFF)
return (self.h_score,self)
@classmethod
def max_DFF(cls):
return max(cls.DisFromFront)