-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathA UNIX Hacking Tutorial.txt
2133 lines (1830 loc) · 82.2 KB
/
A UNIX Hacking Tutorial.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ UNIX : A Hacking Tutorial +
+ By: Sir Hackalot +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
----------------------
o Intent of this file:
----------------------
This phile is geared as an UNIX tutorial at first, to let you get more
familiar with the operating system. UNIX is just an operating system, as
is MS-DOS, AppleDOS, AmigaDOS, and others. UNIX happens to be a multi-user-
multi-tasking system, thus bringing a need for security not found on MSDOS,
AppleDOS, etc. This phile will hopefully teach the beginners who do not have
a clue about how to use UNIX a good start, and may hopefully teach old pros
something they didn't know before. This file deals with UNIX SYSTEM V and
its variants. When I talk about unix, its usually about SYSTEM V (rel 3.2).
Where Can I be found? I have no Idea. The Boards today are going Up'n'Down
so fast, 3 days after you read this file, if I put a BBS in it where you could
reach me, it may be down! Just look for me.
I can be reached on DarkWood Castle [If it goes back up], but that board
is hard to get access on, but I decided to mention it anyway.
I *COULD* Have been reached on jolnet, but......
This file may have some bad spelling, etc, or discrepencies since it was
spread out over a long time of writing, because of school, work, Girl friend,
etc. Please, no flames. If you don't like this file, don't keep it.
This is distributed under PHAZE Inc. Here are the members (and ex ones)
The Dark Pawn
The Data Wizard
Sir Hackalot (Me)
Taxi (ummm.. Busted)
Lancia (Busted)
The British Knight (Busted)
The Living Pharoah (Busted)
_____________________________________________________________________________
-------------
o Dedication:
-------------
This phile is dedicated to the members of LOD that were raided in
Atlanta. The members that got busted were very good hackers, especially
The Prophet. Good luck to you guys, and I hope you show up again somewhere.
_____________________________________________________________________________
------------------------
o A little History, etc:
------------------------
UNIX, of course, was invented By AT&T in the 60's somewhere, to be
"a programmer's operating system." While that goal was probably not reached
when they first invented UNIX, it seems that now, UNIX is a programmer's OS.
UNIX, as I have said before, is a multi-tasking/multi-user OS. It is also
written in C, or at least large parts of it are, thus making it a portable
operating system. We know that MSDOS corresponds to IBM/clone machines,
right? Well, this is not the case with UNIX. We do not associate it with
any one computer since it has been adapted for many, and there are many
UNIX variants [that is, UNIX modified by a vendor, or such]. Some AT&T
computers run it, and also some run MSDOS [AT&T 6300]. The SUN workstations
run SunOS, a UNIX variant, and some VAX computers run Ultrix, a VAX version
of UNIX. Remember, no matter what the name of the operating system is [BSD,
UNIX,SunOS,Ultrix,Xenix, etc.], they still have a lot in common, such as the
commands the operating system uses. Some variants may have features others
do not, but they are basically similar in that they have a lot of the same
commands/datafiles. When someone tries to tell you that UNIX goes along with
a certain type of computer, they may be right, but remember, some computers
have more than one Operating system. For instance, one person may tell you
that UNIX is to a VAX as MSDOS is to IBM/clones. That is untrue, and the
only reason I stated that, was because I have seen many messages with info
/comparisons in it like that, which confuse users when they see a VAX running
VMS.
____________________________________________________________________________
-------------------------------
o Identifying a Unix/Logging in
-------------------------------
From now on, I will be referring to all the UNIX variants/etc as
UNIX, so when I say something about UNIX, it generally means all the variants
(Unix System V variants that is: BSD, SunOS, Ultrix, Xenix, etc.), unless
I state a variant in particular.
Okay. Now its time for me to tell you how a unix USUALLY greets you.
First, when you call up a UNIX, or connect to one however you do, you will
usually get this prompt:
login:
Ok. Thats all fine and dandy. That means that this is PROBABLY a Unix,
although there are BBS's that can mimic the login procedure of an OS
(Operating System), thus making some people believe its a Unix. [Hah!].
Some Unixes will tell you what they are or give you a message before a
login: prompt, as such:
Welcome to SHUnix. Please log in.
login:
Or something like that. Public access Unixes [like Public BBSs] will
tell you how to logon if you are a new users. Unfortunatly, this phile is
not about public access Unixes, but I will talk about them briefly later, as
a UUCP/UseNet/Bitnet address for mail.
OK. You've gotten to the login prompt! Now, what you need to do
here is enter in a valid account. An Account usually consists of 8 characters
or less. After you enter in an account, you will probably get a password
prompt of some sort. The prompts may vary, as the source code to the login
program is usually supplied with UNIX, or is readily available for free.
Well, The easiest thing I can say to do to login is basically this:
Get an account, or try the defaults. The defaults are ones that came with
the operating system, in standard form. The list of some of the Defaults
are as follows:
ACCOUNT PASSWORD
------- --------
root root - Rarely open to hackers
sys sys / system / bin
bin sys / bin
mountfsys mountfsys
adm adm
uucp uucp
nuucp anon
anon anon
user user
games games
install install
reboot * See Below
demo demo
umountfsys umountfsys
sync sync
admin admin
guest guest
daemon daemon
The accounts root, mountfsys, umountfsys, install, and sometimes sync are
root level accounts, meaning they have sysop power, or total power. Other
logins are just "user level" logins meaning they only have power over what
files/processes they own. I'll get into that later, in the file permissions
section. The REBOOT login is what as known as a command login, which just
simply doesn't let you into the operating system, but executes a program
assigned to it. It usually does just what it says, reboot the system. It
may not be standard on all UNIX systems, but I have seen it on UNISYS unixes
and also HP/UX systems [Hewlett Packard Unixes]. So far, these accounts have
not been passworded [reboot], which is real stupid, if you ask me.
COMMAND LOGINS:
---------------
There are "command logins", which, like reboot, execute a command then log
you off instead of letting you use the command interpreter. BSD is notorious
for having these, and concequently, so does MIT's computers. Here are some:
rwho - show who is online
finger - same
who - same
These are the most useful, since they will give the account names that are
online, thus showing you several accounts that actually exist.
Errors:
-------
When you get an invalid Account name / invalid password, or both, you will
get some kind of error. Usually it is the "login incorrect" message. When
the computer tells you that, you have done something wrong by either enterring
an invalid account name, or a valid account name, but invalid password. It
does not tell you which mistake you made, for obvious reasons. Also,
when you login incorrectly, the error log on the system gets updated, letting
the sysops(s) know something is amiss.
Another error is "Cannot change to home directory" or "Cannot Change
Directory." This means that no "home directory" which is essentially the
'root' directory for an account, which is the directory you start off in.
On DOS, you start in A:\ or C:\ or whatever, but in UNIX you start in
/homedirectory. [Note: The / is used in directories on UNIX, not a \ ].
Most systems will log you off after this, but some tell you that they will
put you in the root directory [ '/'].
Another error is "No Shell". This means that no "shell" was defined
for that particular account. The "shell" will be explained later. Some
systems will log you off after this message. Others will tell you that they
will use the regular shell, by saying "Using the bourne shell", or "Using sh"
-----------------------------
Accounts In General :
-----------------------------
This section is to hopefully describe to you the user structure
in the UNIX environment.
Ok, think of UNIX having two levels of security: absolute power,
or just a regular user. The ones that have absolute power are those users
at the root level. Ok, now is the time to think in numbers. Unix associates
numbers with account names. each account will have a number. Some will have
the same number. That number is the UID [user-id] of the account. the root
user id is 0. Any account that has a user id of 0 will have root access.
Unix does not deal with account names (logins) but rather the number
associated with them. for instance, If my user-id is 50, and someone else's
is 50, with both have absolute power of each other, but no-one else.
_____________________________________________________________________________
---------------
Shells :
---------------
A shell is an executable program which loads and runs when a user
logs on, and is in the foreground. This "shell" can be any executable prog-
ram, and it is defined in the "passwd" file which is the userfile. Each
login can have a unique "shell". Ok. Now the shell that we usually will work
with is a command interpreter. A command interpreter is simply something
like MSDOS's COMMAND.COM, which processes commands, and sends them to the
kernel [operating system]. A shell can be anything, as I said before,
but the one you want to have is a command interpreter. Here are the
usual shells you will find:
sh - This is the bourne shell. It is your basic Unix "COMMAND.COM". It has
a "script" language, as do most of the command interpreters on Unix sys-
tems.
csh - This is the "C" shell, which will allow you to enter "C" like commands.
ksh - this is the korn shell. Just another command interpreter.
tcsh - this is one, which is used at MIT I believe. Allows command editing.
vsh - visual shell. It is a menu driven deal. Sorta like.. Windows for DOS
rsh - restricted shell OR remote shell. Both Explained later.
There are many others, including "homemade " shells, which are
programs written by the owner of a unix, or for a specific unix, and they
are not standard. Remember, the shell is just the program you get to use
and when it is done executing, you get logged off. A good example of a
homemade shell is on Eskimo North, a public access Unix. The shell
is called "Esh", and it is just something like a one-key-press BBS,
but hey, its still a shell. The Number to eskimo north is 206-387-3637.
[206-For-Ever]. If you call there, send Glitch Lots of mail.
Several companies use Word Processors, databases, and other things
as a user shell, to prevent abuse, and make life easier for unskilled computer
operators. Several Medical Hospitals use this kind of shell in Georgia,
and fortunatly, these second rate programs leave major holes in Unix.
Also, a BBS can be run as a shell. Check out Jolnet [312]-301-2100, they
give you a choice between a command interpreter, or a BBS as a shell.
WHen you have a command interpreter, the prompt is usually a:
$
when you are a root user the prompt is usually a:
#
The variable, PS1, can be set to hold a prompt.
For instance, if PS1 is "HI:", your prompt will be:
HI:
_____________________________________________________________________________
------------------------
SPecial Characters, ETc:
------------------------
Control-D : End of file. When using mail or a text editor, this will end
the message or text file. If you are in the shell and hit control-d you get
logged off.
Control-J: On some systems, this is like the enter key.
@ : Is sometimes a "null"
? : This is a wildcard. This can represent a letter. If you specified
something at the command line like "b?b" Unix would look for bob,bib,bub,
and every other letter/number between a-z, 0-9.
* : this can represent any number of characters. If you specified a "hi*"
it would use "hit", him, hiiii, hiya, and ANYTHING that starts with
hi. "H*l" could by hill, hull, hl, and anything that starts with an
H and ends with an L.
[] - The specifies a range. if i did b[o,u,i]b unix would think: bib,bub,bob
if i did: b[a-d]b unix would think: bab,bbb,bcb,bdb. Get the idea? The
[], ?, and * are usually used with copy, deleting files, and directory
listings.
EVERYTHING in Unix is CASE sensitive. This means "Hill" and "hill" are not
the same thing. This allows for many files to be able to be stored, since
"Hill" "hill" "hIll" "hiLl", etc. can be different files. So, when using
the [] stuff, you have to specify capital letters if any files you are dealing
with has capital letters. Most everything is lower case though.
----------------
Commands to use:
----------------
Now, I will rundown some of the useful commands of Unix. I will act
as if I were typing in the actual command from a prompt.
ls - this is to get a directory. With no arguments, it will just print out
file names in either one column or multi-column output, depending on the
ls program you have access to.
example:
$ ls
hithere
runme
note.text
src
$
the -l switch will give you extended info on the files.
$ ls -l
rwx--x--x sirhack sirh 10990 runme
and so on....
the "rwx--x--x" is the file permission. [Explained Later]
the "sirhack sirh" is the owner of the file/group the file is in.
sirhack = owner, sirh = user-group the file is in [explained later]
the 10990 is the size of the file in bytes.
"runme" is the file name.
The format varies, but you should have the general idea.
cat - this types out a file onto the screen. should be used on text files.
only use it with binary files to make a user mad [explained later]
ex:
$ cat note.txt
This is a sample text file!
$
cd - change directory . You do it like this: cd /dir/dir1/dir2/dirn.
the dir1/etc.... describes the directory name. Say I want to get
to the root directory.
ex:
$ cd /
*ok, I'm there.*
$ ls
bin
sys
etc
temp
work
usr
all of the above are directories, lets say.
$ cd /usr
$ ls
sirhack
datawiz
prophet
src
violence
par
phiber
scythian
$ cd /usr/sirhack
$ ls
hithere
runme
note.text
src
$
ok, now, you do not have to enter the full dir name. if you are in
a directory, and want to get into one that is right there [say "src"], you
can type "cd src" [no "/"]. Instead of typing "cd /usr/sirhack/src" from the
sirhack dir, you can type "cd src"
cp - this copies a file. syntax for it is "cp fromfile tofile"
$ cp runme runme2
$ ls
hithere
runme
note.text
src
runme2
Full pathnames can be included, as to copy it to another directory.
$ cp runme /usr/datwiz/runme
mv - this renames a file. syntax "mv oldname newname"
$ mv runme2 runit
$ ls
hithere
runme
note.text
src
runit
files can be renamed into other directories.
$ mv runit /usr/datwiz/run
$ ls
hithere
runme
note.text
src
$ ls /usr/datwiz
runme
run
pwd - gives current directory
$ pwd
/usr/sirhack
$ cd src
$ pwd
/usr/sirhack/src
$ cd ..
$ pwd
/usr/sirhack
[ the ".." means use the name one directory back. ]
$ cd ../datwiz
[translates to cd /usr/datwiz]
$ pwd
/usr/datwiz
$ cd $home
[goto home dir]
$ pwd
/usr/sirhack
rm - delete a file. syntax "rm filename" or "rm -r directory name"
$ rm note.text
$ ls
hithere
runme
src
$
write - chat with another user. Well, "write" to another user.
syntax: "write username"
$ write scythian
scythian has been notified
Hey Scy! What up??
Message from scythian on tty001 at 17:32
hey!
me: So, hows life?
scy: ok, I guess.
me: gotta go finish this text file.
scy: ok
me: control-D [to exit program]
$
who [w,who,whodo] - print who is online
$ who
login term logontime
scythian + tty001 17:20
phiberO + tty002 15:50
sirhack + tty003 17:21
datawiz - tty004 11:20
glitch - tty666 66:60
$
the "who" commands may vary in the information given. a "+" means
you can "write" to their terminal, a "-" means you cannot.
man - show a manual page entry. syntax "man command name" This is a help
program. If you wanted to know how to use... "who" you'd type
$ man who
WHO(1) xxx......
and it would tell you.
stty - set your terminal characteristics. You WILL have to do "man stty"
since each stty is different, it seems like.
an example would be:
$ stty -parenb
to make the data params N,8,1. A lot of Unixes operate at
e,7,1 by default.
sz,rz - send and recieve via zmodem
rx,sx - send / recieve via xmodem
rb,sb - send via batch ymodem. These 6 programs may or may not be on a unix.
umodem - send/recieve via umodem.
$ sz filename
ready to send...
$ rz filename
please send your file....
...etc..
ed - text editor. Usage "ed filename" to create a file that doesn't
exist, just enter in "ed filename"
some versions of ed will give you a prompt, such as "*" others will not
$ ed newtext
0
* a
This is line 1
This is line 2
[control-z]
* 1 [to see line one]
This is line 1
* a [keep adding]
This is line 3
[control-z]
*0a [add after line 0]
This is THE first line
[control-z]
1,4l
This is THE first line
This is line 1
This is line 2
This is line 3
* w
71
* q
$
The 71 is number of bytes written.
a = append
l = list
# = print line number
w - write
l fname = load fname
s fname = save to fname
w = write to current file
q = quit
mesg - turn write permissions on or off to your terminal (allow chat)
format "mesg y" or "mesg n"
cc - the C compiler. don't worry about this one right now.
chmod - change mode of a file. Change the access in other words.
syntax: "chmod mode filename"
$ chmod a+r newtext
Now everyone can read newtext.
a = all
r = read. This will be explained further in the File System section.
chown - change the owner of a file.
syntax: "chown owner filename"
$ chown scythian newtext
$
chgrp - change the group [explained later] of a file.
syntax: "chgrp group file"
$ chgrp root runme
$
finger - print out basic info on an account. Format: finger username
grep - search for patterns in a file. syntax: "grep pattern file"
$ grep 1 newtext
This is Line 1
$ grep THE newtext
This is THE first line
$ grep "THE line 1" newtext
$
mail - This is a very useful utility. Obviously, you already know what it
is by its name. There are several MAIL utilities, such as ELM, MUSH
and MSH, but the basic "mail" program is called "mail". The usage
is:
"mail username@address" or
"mail username"
or
"mail"
or "mail addr1!addr2!addr3!user"
"mail username@address" - This is used to send mail to someone on
another system, which is usually another UNIX, but some DOS machines and some
VAX machines can recieve Unix Mail. When you use "mail user@address" the
system you are on MUST have a "smart mailer" [known as smail], and must
have what we call system maps. The smart mailer will find the "adress" part
of the command and expand it into the full pathname usually. I could look
like this: mail phiber@optik
then look like this to the computer:
mail sys1!unisys!pacbell!sbell!sc1!att.com!sirhacksys!optik!phiber
Do not worry about it, I was merely explaining the principal of the thing.
Now, if there is no smart mailer online, you'll have to know the FULL path
name of the person you wish to mail to. For Instance, I want to mail to
.. phiber. I'd do this if there were no smart mailer:
$ mail sys!unisys!pacbell!sbell!sc1!att.com!sirhacksys!optik!phiber
Hey Guy. Whats up? Well, gotta go. Nice long message huh?
[control-D]
$
Then, when he got it, there would be about 20 lines of information, with
like a post mark from every system my message went thru, and the "from" line
would look like so:
From optik!sirhacksys!att.com!sc1!sbell!pacbell!unisys!sys!sirhack <Sir Hack>
Now, for local mailing, just type in "mail username" where username
is the login you want to send mail to. Then type in your message. Then
end it with a control-D.
To read YOUR mail, just type in mail. IE:
$ mail
From scythian ............
To sirhack ............
Subject: Well....
Arghhh!
?
The dots represent omitted crap. Each Mail program makes its own headings.
That ? is a prompt. At this prompt I can type:
d - delete
f username - forward to username
w fname - write message to a file named fname
s fname - save message with header into file
q - quit / update mail
x - quit, but don't change a thing
m username - mail to username
r - reply
[enter] - read next message
+ - go forward one message
- : go back one
h - print out message headers that are in your mailbox.
There are others, to see them, you'd usually hit '?'.
--------
If you send mail to someone not on your system, you will have to wait longer
for a reply, since it is just as a letter. A "postman" has to pick it up.
The system might call out, and use UUCP to transfer mail. Usually, uucp
accounts are no good to one, unless you have uucp available to intercept mail.
ps - process. This command allows you to see what you are actually doing
in memory. Everytime you run a program, it gets assigned a Process Id number
(PID), for accounting purposes, and so it can be tracked in memory, as
well as shut down by you, or root. usually, the first thing in a process
list given by "ps" is your shell name. Say I was logged in under sirhack,
using the shell "csh" and running "watch scythian". The watch program would
go into the background, meaning I'd still be able to do things while it was
running:
$ ps
PID TTY NAME
122 001 ksh
123 001 watch
$
That is a shortened PS. That is the default listing [a brief one].
The TTY column represents the "tty" [i/o device] that the process is being
run from. This is only useful really if you are using layers (don't worry)
or more than one person is logged in with the same account name. Now,
"ps -f" would give a full process listing on yourself, so instead of
seeing just plain ole "watch" you'd most likely see "watch scythian"
kill - kill a process. This is used to terminate a program in memory obvio-
ously. You can only kill processes you own [ones you started], unless you
are root, or your EUID is the same as the process you want to kill.
(Will explain euid later). If you kill the shell process, you are logged
off. By the same token, if you kill someone else's shell process, they
are logged off. So, if I said "kill 122" I would be logged off. However,
kill only sends a signal to UNIX telling it to kill off a process. If
you just use the syntax "kill pid" then UNIX kills the process WHEN it feels
like it, which may be never. So, you can specify urgency! Try "kill -num pid"
Kill -9 pid is a definite kill almost instantly. So if I did this:
$ kill 122
$ kill 123
$ ps
PID TTY NAME
122 001 ksh
123 001 watch
$ kill -9 123
[123]: killed
$ kill -9 122
garbage
NO CARRIER
Also, you can do "kill -1 0" to kill your shell process to log yourself off.
This is useful in scripts (explained later).
-------------------
Shell Programmin'
-------------------
Shell Programming is basically making a "script" file for the
standard shell, being sh, ksh, csh, or something on those lines. Its
like an MSDOS batch file, but more complex, and more Flexible.
This can be useful in one aspect of hacking.
First, lets get into variables. Variables obviously can be assigned
values. These values can be string values, or numberic values.
number=1
That would assign 1 to the variable named "number".
string=Hi There
or
string="Hi There"
Both would assign "Hi there" to a variable.
Using a variable is different though. When you wish to use a variable
you must procede it with a dollar ($) sign. These variables can
be used as arguments in programs. When I said that scripts are
like batch files, I meant it. You can enter in any name of a program
in a script file, and it will execute it. Here is a sample script.
counter=1
arg1="-uf"
arg2="scythian"
ps $arg1 $arg2
echo $counter
That script would translate to "ps -uf scythian" then would print
"1" after that was finished. ECHO prints something on the screen
whether it be numeric, or a string constant.
Other Commands / Examples:
read - reads someting into a variable. format : read variable . No dollar
sign is needed here! If I wwanted to get someone's name, I could
put:
echo "What is your name?"
read hisname
echo Hello $hisname
What is your name?
Sir Hackalot
Hello Sir Hackalot
Remember, read can read numeric values also.
trap - This can watch for someone to use the interrupt character. (Ctrl-c)
format: trap "command ; command ; command ; etc.."
Example:
trap "echo 'Noway!! You are not getting rid o me that easy' ; echo
'You gotta see this through!'"
Now, if I hit control-c during the script after this statement was
executed, I'd get:
Noway!! You are not getting rid of me that easy
You gotta see this through!
exit : format :exit [num] This exists the shell [quits] with return
code of num.
-----
CASE
-----
Case execution is like a menu choice deal. The format of the command
or structure is :
case variable in
1) command;
command;;
2) command;
command;
command;;
*) command;;
esac
Each part can have any number of commands. The last command however
must have a ";;". Take this menu:
echo "Please Choose:"
echo "(D)irectory (L)ogoff (S)hell"
read choice
case $choice in
D) echo "Doing Directory...";
ls -al ;;
L) echo Bye;
kill -1 0;;
S) exit;;
*) Echo "Error! Not a command";;
esac
The esac marks the end of a case function. It must be after the
LAST command.
Loops
-----
Ok, loops. There are two loop functins. the for loops, and the
repeat.
repeat looks like this: repeat something somethin1 somethin2
this would repeat a section of your script for each "something".
say i did this:
repeat scythian sirhack prophet
I may see "scythian" then sirhack then prophet on my screen.
The for loop is defined as "for variable in something
do
..
..
done"
an example:
for counter in 1 2 3
do
echo $counter
done
That would print out 1 then 2 then 3.
Using TEST
----------
The format: Test variable option variable
The optios are:
-eq =
-ne <> (not equal)
-gt >
-lt <
-ge >=
-le <=
for strings its: = for equal != for not equal.
If the condition is true, a zero is returned. Watch:
test 3 -eq 3
that would be test 3 = 3, and 0 would be returned.
EXPR
----
This is for numeric functions. You cannot simply type in
echo 4 + 5
and get an answer most of the time. you must say:
expr variable [or number] operator variable2 [or number]
the operators are:
+ add
- subtract
* multiply
/ divide
^ - power (on some systems)
example : expr 4 + 5
var = expr 4 + 5
var would hold 9.
On some systems, expr sometimes prints out a formula. I mean,
22+12 is not the same as 22 + 12. If you said expr 22+12 you
would see:
22+12
If you did expr 22 + 12 you'd see:
34
SYSTEM VARIABLES
----------------
These are variables used by the shell, and are usually set in the
system wide .profile [explained later].
HOME - location of your home directory.
PS1 - The prompt you are given. usually $ . On BSD its usually &
PATH - This is the search path for programs. When you type in a program
to be run, it is not in memory; it must be loaded off disk. Most commands
are not in Memory like MSDOS. If a program is on the search path, it may
be executed no matter where you are. If not, you must be in the directory
where the program is. A path is a set of directories basically, seperated by
":"'s. Here is a typical search path:
:/bin:/etc:/usr/lbin:$HOME:
When you tried to execute a program, Unix would look for it in /bin,
/etc, /usr/lbin, and your home directory, and if its not found, an error is
spewed out. It searches directories in ORDER of the path. SO if you had a
program named "sh" in your home directory, and typed in "sh", EVEN if
you were in your home dir, it would execute the one in /bin. So, you
must set your paths wisely. Public access Unixes do this for you, but systems
you may encounter may have no path set.
TERM - This is your terminal type. UNIX has a library of functions called
"CURSES" which can take advantage of any terminal, provided the escape
codes are found. You must have your term set to something if you run
screen oriented programs. The escape codes/names of terms are found
in a file called TERMCAP. Don't worry about that. just set your term
to ansi or vt100. CURSES will let you know if it cannot manipulate your
terminal emulation.
-------------------
The C compiler
-------------------
This Will be BRIEF. Why? Becuase if you want to learn C, go
buy a book. I don't have time to write another text file on
C, for it would be huge. Basically, most executables are programmed
in C. Source code files on unix are found as filename.c .
To compile one, type in "cc filename.c". Not all C programs
will compile, since they may depend on other files not there, or
are just modules. If you see a think called "makefile" you can
usually type in just "make" at the command prompt, and something
will be compiled, or be attempted to compile. When using make or
CC, it would be wise to use the background operand since
compiling sometimes takes for ever.
IE:
$ cc login.c&
[1234]
$
(The 1234 was the process # it got identified as).
_____________________________________________________________________________
---------------
The FILE SYSTEM
---------------
This is an instrumental part of UNIX. If you do not understand this
section, you'll never get the hang of hacking Unix, since a lot of Pranks
you can play, and things you can do to "raise your access" depend on it.
First, Let's start out by talking about the directory structure. It is
basically a Hiearchy file system, meaning, it starts out at a root directory
and expands, just as MSDOS, and possibly AmigaDos.
Here is a Directory Tree of sorts: (d) means directory
/ (root dir)
|
|--------------------|
bin (d) usr (d)
----^--------------------
| | |
sirhack(d) scythian (d) prophet (d)
|
src (d)
Now, this particular system contains the following directories:
/
/bin
/usr
/usr/sirhack
/usr/sirhack/src
/usr/scythian
/usr/prophet
Hopefully, you understood that part, and you should. Everything spawns from
the root directory.
o File Permissions!
------------------
Now, this is really the biggie. File Permissions. It is not that hard to
understand file permissions, but I will explain them deeply anyway.
OK, now you must think of user groups as well as user names. Everyone
belongs to a group. at the $ prompt, you could type in 'id' to see what
group you are in. Ok, groups are used to allow people access certain things,
instead of just having one person controlling/having access to certain files.
Remember also, that Unix looks at someone's UID to determine access, not
user name.
Ok. File permissions are not really that complicated. Each file has an owner
This OWNER is usually the one who creates the file, either by copying a file
or just by plain editing one. The program CHOWN can be used to give someone
ownership of a file. Remember that the owner of a file must be the one who
runs CHOWN, since he is the only one that can change the permissions of a file
Also, there is a group owner, which is basically the group that you were in
when the file was created. You would use chgrp to change the group a file is
in.
Now, Files can have Execute permissions, read permissions, or write permission.
If you have execute permission, you know that you can just type in the name
of that program at the command line, and it will execute. If you have read
permission on a file, you can obviously read the file, or do anything that
reads the file in, such as copying the file or cat[ing] it (Typing it).
If you do NOT have access to read a file, you can't do anything that requires
reading in the file. This is the same respect with write permission. Now,
all the permissions are arranged into 3 groups. The first is the owner's
permissions. He may have the permissions set for himself to read and execute
the file, but not write to it. This would keep him from deleting it.
The second group is the group permissions. Take an elongated directory
for an example:
$ ls -l runme
r-xrwxr-- sirhack root 10990 March 21 runme
ok. Now, "root" is the groupname this file is in. "sirhack" is the owner.
Now, if the group named 'root' has access to read, write and execute, they
could do just that. Say .. Scythian came across the file, and was in the root
user group. He could read write or execute the file. Now, say datawiz came
across it, but was in the "users" group. The group permissions would not
apply to him, meaning he would have no permissions, so he couldn't touch
the file, right? Sorta. There is a third group of permissions, and this is
the "other" group. This means that the permissions in the "other" group
apply to everyone but the owner, and the users in the same group as the file.
Look at the directory entry above. the r-x-rwxr-- is the permissions line.
The first three characters are the permissions for the owner (r-x). The
"r-x" translates to "Read and execute permissions, but no write permissions"
the second set of three, r-xRWXr-- (the ones in capital letters) are the group
permissions. Those three characters mean "Read, write, and execution allowed"
The 3rd set, r-xrwxR-- is the permissions for everyone else. It means
"Reading allowed, but nothing else". A directory would look something like
this:
$ ls -l
drwxr-xr-x sirhack root 342 March 11 src
A directory has a "d" at the beggining of the permissions line. Now, the
owner of the directory (sirhack) can read from the directory, write in the
directory, and execute programs from the directory. The root group and every-
one else can only read from the directory, and execute off the directory.
So, If I changed the directory to be executable only, this is
what it would look like:
$ chmod go-r
$ ls
drwx--x--x sirhack root 342 March 11 src
Now, if someone went into the directory besides "sirhack", they could only
execute programs in the directory. If they did an "ls" to get a directory
of src, when they were inside src, it would say "cannot read directory".
If there is a file that is readable in the directory, but the directory is
not readable, it is sometimes possible to read the file anyway.
If you do not have execute permissions in a directory, you won't be able to
execute anything in the directory, most of the time.
_____________________________________________________________________________
--------------
Hacking:
--------------
The first step in hacking a UNIX is to get into the operating system