-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathVoiceBot-windows.py
734 lines (612 loc) · 26.3 KB
/
VoiceBot-windows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
"""
This code was developed by Anuj Tambwekar, Madhav Kashyap and Rohit Menon of PES University
Refer to the README for the sources of the Deepspeech, Tacotron and WaveRNN implementations/folders
The answer extraction code references the Hugging face run_squad.py example, modified for our use
"""
import sys
import wave
import os
import audioop
import collections
from timeit import default_timer as timer
import numpy as np
import torch
import wikipedia
import spacy
import sounddevice as sd
import soundfile as sf
from gingerit.gingerit import GingerIt
from playsound import playsound
from pytorch_pretrained_bert.tokenization import BasicTokenizer, BertTokenizer
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering, BertConfig
from deepspeech import Model
from Tacotron_TTS.synthesizer import Synthesizer
from Vocoder_WaveRNN.vocoder_models.fatchord_version import WaveRNN
from Vocoder_WaveRNN import vocoder_hparams as hp
from Vocoder_WaveRNN.vocoder_utils.text import symbols
from Vocoder_WaveRNN.vocoder_models.tacotron import Tacotron
from Vocoder_WaveRNN.vocoder_utils.text import text_to_sequence
spell_check = GingerIt()
def change_samplerate(audio_in, inrate):
# s_read = wave.open(audio_path,'r')
n_frames = audio_in.getnframes()
channels = audio_in.getnchannels()
data = audio_in.readframes(n_frames)
converted = audioop.ratecv(data, 2, channels, inrate, 16000, None)
converted = audioop.tomono(converted[0], 2, 1, 0)
op = np.frombuffer(converted, np.int16)
return 16000, op
BEAM_WIDTH = 500
LM_ALPHA = 0.75
LM_BETA = 1.85
speech_model_path = 'DeepSpeech/Models/output_graph.pb'
alphabet = 'DeepSpeech/Models/alphabet.txt'
lm = 'DeepSpeech/Models/lm.binary'
trie = 'DeepSpeech/Models/trie'
N_FEATURES = 261
N_CONTEXT = 9
model_load_start = timer()
ds = Model(speech_model_path, N_FEATURES, N_CONTEXT, alphabet, BEAM_WIDTH)
model_load_end = timer() - model_load_start
print('Loaded S2T model in {:.3}s.'.format(model_load_end))
model_load_start = timer()
model_path = 'BERT/bert_model.bin'
config_file = 'BERT/bert_config.json'
max_answer_length = 30
max_query_length = 64
doc_stride = 128
max_seq_length = 384
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = BertConfig(config_file)
model = BertForQuestionAnswering(config)
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.to(device)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
model_load_end = timer() - model_load_start
print('Loaded BERT model in {:.3}s.'.format(model_load_end))
print()
tts_choice = int(input("Input 0 for tacotron and 1 for WaveRNN >>> "))
if tts_choice != 1:
tts_choice = 0
if tts_choice == 0:
print("Loading regular tacotron....")
model_load_start = timer()
synthesizer = Synthesizer()
synthesizer.load('Tacotron_TTS\\tacotron_model_data\\model.ckpt')
model_load_end = timer() - model_load_start
print('Loaded T2S model in {:.3}s.'.format(model_load_end))
else:
print("Loading fatchord wavernn implementation...")
model_load_start = timer()
print('\nInitialising WaveRNN Model...\n')
# Instantiate WaveRNN Model
voc_model = WaveRNN(rnn_dims=hp.voc_rnn_dims,
fc_dims=hp.voc_fc_dims,
bits=hp.bits,
pad=hp.voc_pad,
upsample_factors=hp.voc_upsample_factors,
feat_dims=hp.num_mels,
compute_dims=hp.voc_compute_dims,
res_out_dims=hp.voc_res_out_dims,
res_blocks=hp.voc_res_blocks,
hop_length=hp.hop_length,
sample_rate=hp.sample_rate,
mode='MOL')
voc_model.restore('Vocoder_WaveRNN//WaveRNN_weights//voc_weights//latest_weights.pyt')
print('\nInitialising Tacotron_TTS Model...\n')
# Instantiate Tacotron_TTS Model
tts_model = Tacotron(embed_dims=hp.tts_embed_dims,
num_chars=len(symbols.symbols),
encoder_dims=hp.tts_encoder_dims,
decoder_dims=hp.tts_decoder_dims,
n_mels=hp.num_mels,
fft_bins=hp.num_mels,
postnet_dims=hp.tts_postnet_dims,
encoder_K=hp.tts_encoder_K,
lstm_dims=hp.tts_lstm_dims,
postnet_K=hp.tts_postnet_K,
num_highways=hp.tts_num_highways,
dropout=hp.tts_dropout)
tts_model.restore('Vocoder_WaveRNN//WaveRNN_weights//tts_weights//latest_weights.pyt')
model_load_end = timer() - model_load_start
print('Loaded T2S model in {:.3}s.'.format(model_load_end))
def is_whitespace(char):
if char == " " or char == "\t" or char == "\r" or char == "\n" or ord(char) == 0x202F:
return True
return False
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def check_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
class InputFeatures(object):
def __init__(self, doc_span_index, tokens, token_is_max_context, token_to_orig_map,
input_ids, input_mask, segment_ids, doc_tokens):
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_is_max_context = token_is_max_context
self.token_to_orig_map = token_to_orig_map
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.doc_tokens = doc_tokens
def input_to_features(question, context):
"""Loads a data file into a list of `InputBatch`s."""
inputbatch = []
query_tokens = tokenizer.tokenize(question)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length] # reduce question tokens to max input size
doc_tokens = []
prev_is_whitespace = True
for c in context:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
_DocSpan = collections.namedtuple("DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in query_tokens:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = check_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
inputbatch.append(InputFeatures(doc_span_index=doc_span_index,
tokens=tokens,
token_is_max_context=token_is_max_context,
token_to_orig_map=token_to_orig_map,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
doc_tokens=doc_tokens))
return inputbatch
def bert_predict(context, question):
input_features = input_to_features(question, context)
print("Number of batches:", len(input_features))
predicts = []
for f in input_features:
all_input_ids = torch.tensor([f.input_ids], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids], dtype=torch.long)
input_ids = all_input_ids.to(device)
input_mask = all_input_mask.to(device)
segment_ids = all_segment_ids.to(device)
with torch.no_grad():
start_logits, end_logits = model(input_ids, segment_ids, input_mask)
start_logits = start_logits[0].detach().cpu().tolist()
end_logits = end_logits[0].detach().cpu().tolist()
output = predict(f, start_logits, end_logits)
predicts.append(output)
predicts = sorted(
predicts,
key=lambda x: x[1],
reverse=True)
return predicts[0][0]
def get_final_text(pred_text, orig_text, do_lower_case):
"""Project the tokenized prediction back to the original text."""
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (index, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = index
ns_chars.append(c)
ns_text = "".join(ns_chars)
return ns_text, ns_to_s_map
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def predict(features, start_logit, end_logit):
n_best_size = 10
_PrelimPrediction = collections.namedtuple("PrelimPrediction",
["start_index", "end_index", "start_logit",
"end_logit"])
_NbestPrediction = collections.namedtuple("NbestPrediction", ["text", "start_logit", "end_logit"])
prelim_predictions = []
start_indexes = _get_best_indexes(start_logit, n_best_size)
end_indexes = _get_best_indexes(end_logit, n_best_size)
# print(start_indexes)
# print(end_indexes)
for start_index in start_indexes:
for end_index in end_indexes:
# we remove the indexes which are invalid
if start_index >= len(features.tokens):
continue
if end_index >= len(features.tokens):
continue
if start_index not in features.token_to_orig_map:
continue
if end_index not in features.token_to_orig_map:
continue
if not features.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
start_index=start_index,
end_index=end_index,
start_logit=start_logit[start_index],
end_logit=end_logit[end_index]))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
reverse=True)
final_text = "Sorry, I wasn't able to find an answer :("
score = 0
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= 1: # n best size before
break
feature = features
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = feature.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, True)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = ""
seen_predictions[final_text] = True
score = pred.start_logit + pred.end_logit
nbest.append(
_NbestPrediction(
text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit))
return final_text, score
priorities = {"PERSON": 1, "EVENT": 2, "ORG": 3, "PRODUCT": 4, "LOC": 5, "GPE": 6, "NORP": 7, "LANGUAGE": 8,
"DATE": 9, "OTHER": 10}
nlp = spacy.load("en_core_web_md") # Much worse but faster NER with "en_core_web_sm"
LOCALINFO = {"you": 'Data/About_Self',
"yourself": 'Data/About_Self',
"You": 'Data/About_Self',
"Yourself": 'Data/About_Self',
"PESU": 'Data/About_PESU',
"PES University": 'Data/About_PESU'}
DATAKEYS = LOCALINFO.keys()
def spacy_ner(text):
doc = nlp(text)
tagged_text = []
for token in doc:
tagged_text.append((token.text, token.tag_))
prev = ""
ents_label_list = []
for X in doc.ents:
if X.label_ not in priorities.keys():
ents_label_list.append((X.text, "OTHER"))
else:
if prev == "DATE" and X.label_ == "EVENT":
old_ent = ents_label_list.pop()
new_ent = (old_ent[0] + " " + X.text, "EVENT")
ents_label_list.append(new_ent)
else:
ents_label_list.append((X.text, X.label_))
prev = X.label_
ents_label_list = sorted(ents_label_list, key=lambda x: priorities[x[1]])
return ents_label_list, doc #
def reduced_text(wiki_page, doc, topics):
text = wiki_page.content
reduced_passage = ""
doc_roots = []
for chunk in doc.noun_chunks:
doc_roots.append(chunk.root.text)
# for nkey in topics:
# if nkey in doc_roots:
# doc_roots.remove(nkey)
if topics != []:
if topics[0] in doc_roots:
doc_roots.remove(topics[0])
text = text.split('\n')
if "== See also ==" in text:
text = text[:text.index("== See also ==")]
if "== Notes ==" in text:
text = text[:text.index("== Notes ==")]
if "== References ==" in text:
text = text[:text.index("== References ==")]
for line in text:
for root in doc_roots:
if root in line:
sen = line.split(".")
for s in sen:
if root in s:
reduced_passage += s + "."
return wiki_page.summary + reduced_passage
def get_context(question):
for corpuskey in DATAKEYS:
if corpuskey in question:
text_file = open(LOCALINFO[corpuskey], "r")
print("Local file used :", LOCALINFO[corpuskey])
search_passage = text_file.read()
return search_passage
topic_list, doc = spacy_ner(question)
for i in range(len(topic_list)):
topic_list[i] = topic_list[i][0]
if len(topic_list) == 0:
for token in doc:
if 'NN' in token.tag_:
topic_list.append(token.lemma_)
try:
wiki_page = wikipedia.page(topic_list[0])
except wikipedia.exceptions.DisambiguationError as err:
wiki_page = wikipedia.page(err.options[0])
else:
try:
wiki_page = wikipedia.page(topic_list[0])
except wikipedia.exceptions.DisambiguationError as err:
wiki_page = wikipedia.page(err.options[0])
print("Page Used :", wiki_page.title)
return reduced_text(wiki_page, doc, topic_list)
def get_context_via_search(question):
for corpuskey in DATAKEYS:
if corpuskey in question:
text_file = open(LOCALINFO[corpuskey], "r")
print("Local file used :", LOCALINFO[corpuskey])
search_passage = text_file.read()
return search_passage
page_list = wikipedia.search(question)
print("Page used:", page_list[0])
wiki_page = wikipedia.page(page_list[0])
# print(wiki_page.content)
topic_list, doc = spacy_ner(question)
return reduced_text(wiki_page, doc, topic_list)
directory_in_str = "test_audio/"
directory = os.fsencode(directory_in_str)
def generate_answer(question):
try:
context = get_context(question)
# print(context)
return bert_predict(context, question)
except IndexError:
return "Sorry, couldn't find any pages to search from!"
def test_aud_in():
tstart = timer()
audio = "py_rec.wav"
fs = 44100
duration = 5 # seconds
myrecording = sd.rec(duration * fs, samplerate=fs, channels=2, dtype='float32')
print("Recording Audio")
sd.wait()
print("Audio recording complete , Play Audio")
sd.play(myrecording, fs)
sd.wait()
print("Play Audio Complete")
sf.write(audio, myrecording, fs)
fin = wave.open(audio, 'rb')
fs = fin.getframerate()
if fs != 16000:
warn = 'Resampling from {}Hz to 16kHz'
print(warn.format(fs), file=sys.stderr)
fs, audio = change_samplerate(fin, fs)
audio_length = fin.getnframes() * (1 / 16000)
fin.close()
else:
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
audio_length = fin.getnframes() * (1 / 16000)
fin.close()
print('Running inference.', file=sys.stderr)
inference_start = timer()
qasked = ds.stt(audio, fs)
inference_end = timer() - inference_start
print('Inference took %0.3fs for %0.3fs audio file.' % (inference_end, audio_length), file=sys.stderr)
print("Infered:", qasked)
qasked = spell_check.parse(qasked)['result']
print("Question:", qasked)
print("Generating answer!")
gen_start = timer()
ans = generate_answer(qasked)
print("Answer:", ans)
print("Answer generated in {:.3}s.".format(timer() - gen_start))
print("Generating audio out")
if tts_choice == 0:
aud_timer = timer()
aud_out = synthesizer.synthesize(ans)
print('Took {:.3}s for audio synthesis.'.format(timer() - aud_timer))
tot_time = timer() - tstart
aud_out = np.frombuffer(aud_out, dtype='int32')
sd.play(aud_out, 10500)
sd.wait()
print("Time for sample: {:.3}s.".format(tot_time))
save_path = f'Tacotron_TTS/Tacotron_outputs/__input_{ans[:10]}.wav'
sf.write(save_path,aud_out, 10500)
else:
input_sequence = text_to_sequence(ans.strip(), hp.tts_cleaner_names)
aud_timer = timer()
_, m, attention = tts_model.generate(input_sequence)
save_path = f'Vocoder_WaveRNN/WaveRNN_outputs/__input_{ans[:10]}.wav'
m = torch.tensor(m).unsqueeze(0)
m = (m + 4) / 8
batched = 1
op = voc_model.generate(m, save_path, batched, hp.voc_target, hp.voc_overlap, hp.mu_law)
print('Took {:.3}s for audio synthesis.'.format(timer() - aud_timer))
sample_time = timer() - aud_timer
sd.play(op, 22050)
sd.wait()
print("Time for sample: {:.3}s.".format(sample_time))
def test_files():
count = 0
time_for_all_files = 0
for file in os.listdir(directory):
filename = os.fsdecode(file)
if filename.endswith(".wav"):
start_time = timer()
fn2 = directory_in_str + filename
playsound(fn2)
fin = wave.open(fn2, 'rb')
fs = fin.getframerate()
if fs != 16000:
print('Resampling from ({}) to 16kHz.'.format(fs), file=sys.stderr)
fs, audio = change_samplerate(fin, fs)
audio_length = fin.getnframes() * (1 / 16000)
fin.close()
else:
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
audio_length = fin.getnframes() * (1 / 16000)
fin.close()
print('Running inference.', file=sys.stderr)
inference_start = timer()
qasked = ds.stt(audio, fs)
inference_end = timer() - inference_start
print('Inference took %0.3fs for %0.3fs audio file.' % (inference_end, audio_length), file=sys.stderr)
print("Inferred:", qasked)
qasked = spell_check.parse(qasked)['result']
print("Question:", qasked)
gen_start = timer()
ans = generate_answer(qasked)
print("Answer:", ans)
print("Answer generated in {:.3}s.".format(timer() - gen_start))
print("Generating audio out")
if tts_choice == 0:
aud_timer = timer()
aud_out = synthesizer.synthesize(ans)
print('Took {:.3}s for audio synthesis.'.format(timer() - aud_timer))
sample_time = timer() - start_time
aud_out = np.frombuffer(aud_out, dtype='int32')
sd.play(aud_out, 10500)
sd.wait()
save_path = f'Tacotron_TTS/Tacotron_outputs/__input_{ans[:10]}.wav'
sf.write(save_path, aud_out, 10500)
else:
input_sequence = text_to_sequence(ans.strip(), hp.tts_cleaner_names)
aud_timer = timer()
_, m, attention = tts_model.generate(input_sequence)
save_path = f'Vocoder_WaveRNN/WaveRNN_outputs/__input_{ans[:10]}.wav'
m = torch.tensor(m).unsqueeze(0)
m = (m + 4) / 8
batched = 1
op = voc_model.generate(m, save_path, batched, hp.voc_target, hp.voc_overlap, hp.mu_law)
print('Took {:.3}s for audio synthesis.'.format(timer() - aud_timer))
sample_time = timer() - start_time
sd.play(op, 22050)
sd.wait()
print("Time for sample: {:.3}s.\n".format(sample_time))
time_for_all_files += sample_time
count += 1
print("******")
print("Time for all samples :", time_for_all_files, "s")
print("Average time: {:.3}s".format(time_for_all_files / count))
print()
print("############################")
print("0 - test all files in testing folder")
print("1 - use mic input")
print("########################")
print()
while True:
choice = int(input(">>>"))
if choice == 0:
test_files()
elif choice == 1:
test_aud_in()
else:
print("Exiting...")
break