forked from microsoft/CNTK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleMNIST.py
144 lines (112 loc) · 5.29 KB
/
SimpleMNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license. See LICENSE.md file in the project root
# for full license information.
# ==============================================================================
import argparse
import numpy as np
import sys
import os
import cntk as C
from cntk.train import Trainer, minibatch_size_schedule
from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs, INFINITELY_REPEAT
from cntk.device import cpu, try_set_default_device
from cntk.learners import adadelta, learning_parameter_schedule_per_sample
from cntk.ops import relu, element_times, constant
from cntk.layers import Dense, Sequential, For
from cntk.losses import cross_entropy_with_softmax
from cntk.metrics import classification_error
from cntk.train.training_session import *
from cntk.logging import ProgressPrinter, TensorBoardProgressWriter
abs_path = os.path.dirname(os.path.abspath(__file__))
def check_path(path):
if not os.path.exists(path):
readme_file = os.path.normpath(os.path.join(
os.path.dirname(path), "..", "README.md"))
raise RuntimeError(
"File '%s' does not exist. Please follow the instructions at %s to download and prepare it." % (path, readme_file))
def create_reader(path, is_training, input_dim, label_dim):
return MinibatchSource(CTFDeserializer(path, StreamDefs(
features = StreamDef(field='features', shape=input_dim, is_sparse=False),
labels = StreamDef(field='labels', shape=label_dim, is_sparse=False)
)), randomize=is_training, max_sweeps = INFINITELY_REPEAT if is_training else 1)
# Creates and trains a feedforward classification model for MNIST images
def simple_mnist(tensorboard_logdir=None):
input_dim = 784
num_output_classes = 10
num_hidden_layers = 1
hidden_layers_dim = 200
# Input variables denoting the features and label data
feature = C.input_variable(input_dim, np.float32)
label = C.input_variable(num_output_classes, np.float32)
# Instantiate the feedforward classification model
scaled_input = element_times(constant(0.00390625), feature)
z = Sequential([For(range(num_hidden_layers), lambda i: Dense(hidden_layers_dim, activation=relu)),
Dense(num_output_classes)])(scaled_input)
ce = cross_entropy_with_softmax(z, label)
pe = classification_error(z, label)
data_dir = os.path.join(abs_path, "..", "..", "..", "DataSets", "MNIST")
path = os.path.normpath(os.path.join(data_dir, "Train-28x28_cntk_text.txt"))
check_path(path)
reader_train = create_reader(path, True, input_dim, num_output_classes)
input_map = {
feature : reader_train.streams.features,
label : reader_train.streams.labels
}
# Training config
minibatch_size = 64
num_samples_per_sweep = 60000
num_sweeps_to_train_with = 10
# Instantiate progress writers.
#training_progress_output_freq = 100
progress_writers = [ProgressPrinter(
#freq=training_progress_output_freq,
tag='Training',
num_epochs=num_sweeps_to_train_with)]
if tensorboard_logdir is not None:
progress_writers.append(TensorBoardProgressWriter(freq=10, log_dir=tensorboard_logdir, model=z))
# Instantiate the trainer object to drive the model training
lr = learning_parameter_schedule_per_sample(1)
trainer = Trainer(z, (ce, pe), adadelta(z.parameters, lr), progress_writers)
training_session(
trainer=trainer,
mb_source = reader_train,
mb_size = minibatch_size,
model_inputs_to_streams = input_map,
max_samples = num_samples_per_sweep * num_sweeps_to_train_with,
progress_frequency=num_samples_per_sweep
).train()
# Load test data
path = os.path.normpath(os.path.join(data_dir, "Test-28x28_cntk_text.txt"))
check_path(path)
reader_test = create_reader(path, False, input_dim, num_output_classes)
input_map = {
feature : reader_test.streams.features,
label : reader_test.streams.labels
}
# Test data for trained model
C.debugging.start_profiler()
C.debugging.enable_profiler()
C.debugging.set_node_timing(True)
#C.cntk_py.disable_cpueval_optimization() # uncomment this to check CPU eval perf without optimization
test_minibatch_size = 1024
num_samples = 10000
num_minibatches_to_test = num_samples / test_minibatch_size
test_result = 0.0
for i in range(0, int(num_minibatches_to_test)):
mb = reader_test.next_minibatch(test_minibatch_size, input_map=input_map)
eval_error = trainer.test_minibatch(mb)
test_result = test_result + eval_error
C.debugging.stop_profiler()
trainer.print_node_timing()
# Average of evaluation errors of all test minibatches
return test_result / num_minibatches_to_test
if __name__=='__main__':
# Specify the target device to be used for computing, if you do not want to
# use the best available one, e.g.
# try_set_default_device(cpu())
parser = argparse.ArgumentParser()
parser.add_argument('-tensorboard_logdir', '--tensorboard_logdir',
help='Directory where TensorBoard logs should be created', required=False, default=None)
args = vars(parser.parse_args())
error = simple_mnist(args['tensorboard_logdir'])
print("Error: %f" % error)