-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov3_deepsort_no_deep.py
179 lines (142 loc) · 6.87 KB
/
yolov3_deepsort_no_deep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import cv2
import time
import argparse
import torch
import warnings
import numpy as np
from detector import build_detector
from deep_sort import build_tracker
from utils.draw import draw_boxes, draw_ID
from utils.parser import get_config
from utils.log import get_logger
from utils.io import write_results
from pose.pose_estimation import pose_estimate
class VideoTracker(object):
def __init__(self, cfg, args, video_path, video_path_depth):
self.cfg = cfg
self.args = args
self.video_path = video_path
self.video_path_depth = video_path_depth
self.logger = get_logger("root")
use_cuda = args.use_cuda and torch.cuda.is_available()
if not use_cuda:
warnings.warn("Running in cpu mode which maybe very slow!", UserWarning)
if args.display:
cv2.namedWindow("test", cv2.WINDOW_NORMAL)
cv2.resizeWindow("test", args.display_width, args.display_height)
if args.cam != -1:
print("Using webcam " + str(args.cam))
self.vdo = cv2.VideoCapture(args.cam)
else:
self.vdo = cv2.VideoCapture()
self.vdo_depth = cv2.VideoCapture()
self.detector = build_detector(cfg, use_cuda=use_cuda)
self.deepsort = build_tracker(cfg, use_cuda=use_cuda)
self.class_names = self.detector.class_names
def __enter__(self):
if self.args.cam != -1:
ret, frame = self.vdo.read()
assert ret, "Error: Camera error"
self.im_width = frame.shape[0]
self.im_height = frame.shape[1]
else:
assert os.path.isfile(self.video_path), "RGB Path error"
self.vdo.open(self.video_path)
self.im_width = int(self.vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
self.im_height = int(self.vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
assert self.vdo.isOpened()
assert os.path.isfile(self.video_path_depth), "depth Path error"
self.vdo_depth.open(self.video_path_depth)
assert self.vdo_depth.isOpened()
if self.args.save_path:
os.makedirs(self.args.save_path, exist_ok=True)
# path of saved video and results
self.save_video_path = os.path.join(self.args.save_path, "results.avi")
self.save_results_path = os.path.join(self.args.save_path, "results.txt")
# create video writer
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
self.writer = cv2.VideoWriter(self.save_video_path, fourcc, 20, (self.im_width, self.im_height))
# logging
self.logger.info("Save results to {}".format(self.args.save_path))
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
if exc_type:
print(exc_type, exc_value, exc_traceback)
def run(self):
results = []
idx_frame = 0
while self.vdo.grab() and self.vdo_depth.grab():
idx_frame += 1
if idx_frame % self.args.frame_interval:
continue
start = time.time()
_, ori_im = self.vdo.retrieve()
_, ori_im_depth = self.vdo_depth.retrieve()
im = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)
im_depth = cv2.cvtColor(ori_im_depth, cv2.COLOR_BGR2RGB)
# do detection
bbox_xywh, cls_conf, cls_ids = self.detector(im)
# select person class
mask = cls_ids == 0
bbox_xywh = bbox_xywh[mask]
# bbox dilation just in case bbox too small, delete this line if using a better pedestrian detector
bbox_xywh[:, 3:] *= 1.2
cls_conf = cls_conf[mask]
# do tracking
outputs = self.deepsort.update(bbox_xywh, cls_conf, im)
# draw boxes for visualization
if len(outputs) > 0:
bbox_tlwh = []
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -1]
im_t = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)
for bb_xyxy in bbox_xyxy:
bbox_tlwh.append(self.deepsort._xyxy_to_tlwh(bb_xyxy))
x1,y1,x2,y2 = [int(i) for i in bb_xyxy]
im_person = im_t[y1:y2,x1:x2, :]/255
pose, colors, pairs, colors_skeleton = pose_estimate(im_person)
pose += np.array([x1 ,y1])
pose = pose.astype(np.int)
for idx in range(len(colors)):
cv2.circle(ori_im, (pose[idx, 0], pose[idx, 1]), 3, colors[idx], thickness=3, lineType=8,
shift=0)
for idx in range(len(colors_skeleton)):
ori_im = cv2.line(ori_im, (pose[pairs[idx][0], 0], pose[pairs[idx][0], 1]),
(pose[pairs[idx][1], 0], pose[pairs[idx][1], 1]), colors_skeleton[idx], 3)
ori_im = draw_boxes(ori_im, bbox_xyxy, identities)
ori_im = draw_ID(ori_im, im_depth, bbox_xyxy)
results.append((idx_frame - 1, bbox_tlwh, identities))
end = time.time()
if self.args.display:
cv2.imshow("test", ori_im)
cv2.waitKey(1)
if self.args.save_path:
self.writer.write(ori_im)
# save results
write_results(self.save_results_path, results, 'mot')
# logging
self.logger.info("time: {:.03f}s, fps: {:.03f}, detection numbers: {}, tracking numbers: {}" \
.format(end - start, 1 / (end - start), bbox_xywh.shape[0], len(outputs)))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("VIDEO_PATH", type=str) # RGB video path
#parser.add_argument("VIDEO_PATH_Depth", type=str) # Depth video path
parser.add_argument("--config_detection", type=str, default="./configs/yolov3.yaml")
parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml")
# parser.add_argument("--ignore_display", dest="display", action="store_false", default=True)
parser.add_argument("--display", action="store_true")
parser.add_argument("--frame_interval", type=int, default=1)
parser.add_argument("--display_width", type=int, default=800)
parser.add_argument("--display_height", type=int, default=600)
parser.add_argument("--save_path", type=str, default="./output/")
parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True)
parser.add_argument("--camera", action="store", dest="cam", type=int, default="-1")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
cfg = get_config()
cfg.merge_from_file(args.config_detection)
cfg.merge_from_file(args.config_deepsort)
with VideoTracker(cfg, args, video_path=args.VIDEO_PATH) as vdo_trk:
vdo_trk.run()