forked from vosen/ZLUDA
-
Notifications
You must be signed in to change notification settings - Fork 40
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
found **Cannot get amd_mem_obj** error #11
Labels
bug
Something isn't working
Comments
need more details. How can I reproduce? |
Thanks for your reply, I added some system information, hope it helps os version: root@x570-wifi:/home/user# cat /etc/os-release
PRETTY_NAME="Ubuntu 22.04.2 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.2 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy
rocm-smi
package version
torch and other package version requests==2.31.0
torch==2.2.1
accelerate==0.27.0
transformers==4.38.1
datasets==2.17.1
numpy==1.26.4
gitpython==3.1.42 some train code print_in_color("Starting training...", "\033[34m") # Blue for start
tokenizer = AutoTokenizer.from_pretrained(task_args["model_name"])
def tokenize_function(examples):
return tokenizer(
examples["text"], padding="max_length", truncation=True
)
model = AutoModelForSequenceClassification.from_pretrained(
task_args["model_name"], num_labels=task_args["num_labels"]
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"[debug] cuda status: {torch.cuda.is_available()}")
model.to(device)
print("[debug] load model done")
dataset = load_dataset(task_args["dataset_name"])
print("[debug] load dataset")
tokenized_datasets = dataset.map(tokenize_function, batched=True)
small_train_dataset = (
tokenized_datasets["train"].shuffle(seed=task_args["seed"]).select(range(task_args["num_rows"]))
)
small_eval_dataset = (
tokenized_datasets["train"].shuffle(seed=task_args["seed"]).select(range(task_args["num_rows"]))
)
training_args = TrainingArguments(
output_dir="my_model", evaluation_strategy="epoch", save_strategy='epoch',
)
print("[debug] start train")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model("my_model")
the error on
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The text was updated successfully, but these errors were encountered: