forked from GoGoDuck912/Self-Correction-Human-Parsing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
209 lines (182 loc) · 7.64 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : [email protected]
@File : evaluate.py
@Time : 8/4/19 3:36 PM
@Desc :
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import argparse
import numpy as np
import torch
from torch.utils import data
from tqdm import tqdm
from PIL import Image as PILImage
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import networks
from datasets.datasets import LIPDataValSet
from utils.miou import compute_mean_ioU
from utils.transforms import BGR2RGB_transform
from utils.transforms import transform_parsing
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
# Network Structure
parser.add_argument("--arch", type=str, default='resnet101')
# Data Preference
parser.add_argument("--data-dir", type=str, default='./data/LIP')
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--input-size", type=str, default='473,473')
parser.add_argument("--num-classes", type=int, default=20)
parser.add_argument("--ignore-label", type=int, default=255)
parser.add_argument("--random-mirror", action="store_true")
parser.add_argument("--random-scale", action="store_true")
# Evaluation Preference
parser.add_argument("--log-dir", type=str, default='./log')
parser.add_argument("--model-restore", type=str, default='./log/checkpoint.pth.tar')
parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.")
parser.add_argument("--save-results", action="store_true", help="whether to save the results.")
parser.add_argument("--flip", action="store_true", help="random flip during the test.")
parser.add_argument("--multi-scales", type=str, default='1', help="multiple scales during the test")
return parser.parse_args()
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def multi_scale_testing(model, batch_input_im, crop_size=[473, 473], flip=True, multi_scales=[1]):
flipped_idx = (15, 14, 17, 16, 19, 18)
if len(batch_input_im.shape) > 4:
batch_input_im = batch_input_im.squeeze()
if len(batch_input_im.shape) == 3:
batch_input_im = batch_input_im.unsqueeze(0)
interp = torch.nn.Upsample(size=crop_size, mode='bilinear', align_corners=True)
ms_outputs = []
for s in multi_scales:
interp_im = torch.nn.Upsample(scale_factor=s, mode='bilinear', align_corners=True)
scaled_im = interp_im(batch_input_im)
parsing_output = model(scaled_im)
parsing_output = parsing_output[0][-1]
output = parsing_output[0]
if flip:
flipped_output = parsing_output[1]
flipped_output[14:20, :, :] = flipped_output[flipped_idx, :, :]
output += flipped_output.flip(dims=[-1])
output *= 0.5
output = interp(output.unsqueeze(0))
ms_outputs.append(output[0])
ms_fused_parsing_output = torch.stack(ms_outputs)
ms_fused_parsing_output = ms_fused_parsing_output.mean(0)
ms_fused_parsing_output = ms_fused_parsing_output.permute(1, 2, 0) # HWC
parsing = torch.argmax(ms_fused_parsing_output, dim=2)
parsing = parsing.data.cpu().numpy()
ms_fused_parsing_output = ms_fused_parsing_output.data.cpu().numpy()
return parsing, ms_fused_parsing_output
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
multi_scales = [float(i) for i in args.multi_scales.split(',')]
gpus = [int(i) for i in args.gpu.split(',')]
assert len(gpus) == 1
if not args.gpu == 'None':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
cudnn.enabled = True
h, w = map(int, args.input_size.split(','))
input_size = [h, w]
model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=None)
IMAGE_MEAN = model.mean
IMAGE_STD = model.std
INPUT_SPACE = model.input_space
print('image mean: {}'.format(IMAGE_MEAN))
print('image std: {}'.format(IMAGE_STD))
print('input space:{}'.format(INPUT_SPACE))
if INPUT_SPACE == 'BGR':
print('BGR Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
if INPUT_SPACE == 'RGB':
print('RGB Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
BGR2RGB_transform(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
# Data loader
lip_test_dataset = LIPDataValSet(args.data_dir, 'val', crop_size=input_size, transform=transform, flip=args.flip)
num_samples = len(lip_test_dataset)
print('Totoal testing sample numbers: {}'.format(num_samples))
testloader = data.DataLoader(lip_test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True)
# Load model weight
state_dict = torch.load(args.model_restore)['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model.cuda()
model.eval()
sp_results_dir = os.path.join(args.log_dir, 'sp_results')
if not os.path.exists(sp_results_dir):
os.makedirs(sp_results_dir)
palette = get_palette(20)
parsing_preds = []
scales = np.zeros((num_samples, 2), dtype=np.float32)
centers = np.zeros((num_samples, 2), dtype=np.int32)
with torch.no_grad():
for idx, batch in enumerate(tqdm(testloader)):
image, meta = batch
if (len(image.shape) > 4):
image = image.squeeze()
im_name = meta['name'][0]
c = meta['center'].numpy()[0]
s = meta['scale'].numpy()[0]
w = meta['width'].numpy()[0]
h = meta['height'].numpy()[0]
scales[idx, :] = s
centers[idx, :] = c
parsing, logits = multi_scale_testing(model, image.cuda(), crop_size=input_size, flip=args.flip,
multi_scales=multi_scales)
if args.save_results:
parsing_result = transform_parsing(parsing, c, s, w, h, input_size)
parsing_result_path = os.path.join(sp_results_dir, im_name + '.png')
output_im = PILImage.fromarray(np.asarray(parsing_result, dtype=np.uint8))
output_im.putpalette(palette)
output_im.save(parsing_result_path)
parsing_preds.append(parsing)
assert len(parsing_preds) == num_samples
mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size)
print(mIoU)
return
if __name__ == '__main__':
main()