forked from palday/lme4-convergence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlmm.jl
42 lines (33 loc) · 1.89 KB
/
lmm.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
## ISSUES
## * difficulty using readtable: 32-bit build problem?
## * difficulty finding examples that are (1) reading data from CSV files
## (2) using header names
## * difficulty using MixedModels package: advised that support for stable version (0.2.1) in packages is not great, should upgrade to 0.3.0-prerelease
## * installing 0.3.0-prelease breaks ESS (apparently); while it surprisingly Just Worked with 0.2.1 (open .jl file , M-x julia starts Julia instance), now I get "no such file or directory, julia-basic"
## * installing 0.3.0-prerelease makes readtable Just Work
## * ?readtable gives "readtable (generic function with 3 methods)" -- how do I get more help??? (I'm interested in the analogue of "colClasses")
## https://github.com/JuliaStats/DataFrames.jl/blob/master/doc/sections/03_io.md gives eltypes
readtable (generic function with 3 methods)
## Pkg.add("MixedModels")
## Pkg.add("DataFrames")
using MixedModels, DataFrames
mm0 = read_rda("mm0.RData")["mm0"]; ## produces an 'RList' object
x = readtable("mm0.csv",eltypes=[Float64,UTF8String,UTF8String,Float64,UTF8String])
## error; http://stackoverflow.com/questions/20534563/dataframes-package-functions-using-wrong-types
lmm(mean~ambiguity+(1|subj),x)
## with 0.3-0:
## ERROR: ArgumentError("float64(String): invalid number format")
## in float64 at string.jl:1572
## in map at abstractarray.jl:1265
## in cols at /home/bolker/.julia/v0.3/DataFrames/src/statsmodels/formula.jl:198
## in ModelMatrix at /home/bolker/.julia/v0.3/DataFrames/src/statsmodels/formula.jl:233
## in lmm at /home/bolker/.julia/v0.3/MixedModels/src/lmm.jl:10 (repeats 2 times)
## same even after reading in more explicitly
## ?help gives useful help
## help("readtable") gives "No help information found."
using RDatasets
inst = dataset("lme4","InstEval")
lmm(Y~Studage+Lectage+(1|S)+(1|D),inst)
ds = dataset("lme4","Dyestuff")
lmm(Yield ~ 1|Batch,ds)
quit()