forked from palday/lme4-convergence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdivergent_convergence.html
465 lines (372 loc) · 187 KB
/
divergent_convergence.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>Plots</title>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: #990073
}
pre .number {
color: #099;
}
pre .comment {
color: #998;
font-style: italic
}
pre .keyword {
color: #900;
font-weight: bold
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: #d14;
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 13px;
}
body {
max-width: 800px;
margin: auto;
padding: 1em;
line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre, img {
max-width: 100%;
}
pre code {
display: block; padding: 0.5em;
}
code {
font-size: 92%;
border: 1px solid #ccc;
}
code[class] {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<pre><code class="r">library(knitcitations)
library(RCurl)
library(lme4)
library(lme4.0)
lme4ver <- as.character(packageVersion("lme4"))
lme4.0ver <- as.character(packageVersion("lme4.0"))
</code></pre>
<p>The differences in convergence between “old” and “new” <code>lme4</code> is well known and often leads to substantially poorer fits with new lme4 for psycholinguistic datasets (<a href="https://hlplab.wordpress.com/2014/03/17/old-and-new-lme4/">@_hlplab_, 2014</a>). For the data set here, the difference in fits leads to similar estimates but very different standard errors and thus \(t\)-values. </p>
<p>The following was done using lme4 1.1.7 and lme4.0 0.999999.4.</p>
<pre><code class="r">c. <- function(x) scale(x, center=TRUE, scale=FALSE)
cs. <- function(x) scale(x, center=TRUE, scale=TRUE)
reml <- FALSE
modeldata <- read.table("data.tab",header=TRUE,
colClasses=c(mean="numeric",
subj="factor",item="factor",
roi="factor",win="factor",
sdiff="numeric", dist="numeric",
signdist="numeric",ambiguity="factor"))
modeldata <- subset(modeldata, roi == 'Left-Posterior')
modeldata.n400 <- subset(modeldata,win=="N400")
form <- mean ~ ambiguity * c.(sdiff) + (1+c.(sdiff)|item) +
(1+c.(sdiff)|subj)
form.s <- mean ~ ambiguity * cs.(sdiff) + (1+cs.(sdiff)|item) +
(1+cs.(sdiff)|subj)
</code></pre>
<h2>Plots</h2>
<p>(Haven't found a great way to do this, just trying to look
to see whether there is something odd about the data …)</p>
<pre><code class="r">library(ggplot2); theme_set(theme_bw())
mm <- transform(modeldata.n400,sdiff=cs.(sdiff),
subj=reorder(subj,mean),
item=reorder(item,mean))
mm0 <- subset(mm,select=c(mean,sdiff,ambiguity,subj,item))
## save("mm0",file="mm0.RData")
## L <- load("mm0.RData")
ggplot(mm0,aes(mean,subj,colour=sdiff))+geom_point(alpha=0.5)+
facet_grid(ambiguity~.)
</code></pre>
<p><img src="" alt="plot of chunk pix"/> </p>
<h1>lme4</h1>
<pre><code class="r">t.new <- system.time(sdiff.new <- lme4::lmer(form,
data=modeldata.n400, REML=reml))
</code></pre>
<pre><code>## Warning: Model failed to converge with max|grad| = 5.8426 (tol = 0.002, component 1)
## Warning: Model failed to converge: degenerate Hessian with 2 negative eigenvalues
</code></pre>
<pre><code class="r">t.new
</code></pre>
<pre><code>## user system elapsed
## 17.05 0.00 29.15
</code></pre>
<pre><code class="r">print(summary(sdiff.new),correlation=FALSE)
</code></pre>
<pre><code>## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: mean ~ ambiguity * c.(sdiff) + (1 + c.(sdiff) | item) + (1 +
## c.(sdiff) | subj)
## Data: modeldata.n400
##
## AIC BIC logLik deviance df.resid
## 395942 396043 -197960 395920 69577
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.114 -0.619 0.005 0.621 9.321
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## item (Intercept) 5.83e-01 0.763237
## c.(sdiff) 2.28e-08 0.000151 -0.01
## subj (Intercept) 2.19e+00 1.481359
## c.(sdiff) 2.16e+01 4.643984 0.41
## Residual 1.70e+01 4.121273
## Number of obs: 69588, groups: item, 60 subj, 37
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.16e+00 2.64e-01 4.4
## ambiguityunambig 4.97e-01 3.12e-02 15.9
## c.(sdiff) -3.91e-04 7.63e-01 0.0
## ambiguityunambig:c.(sdiff) 3.82e-04 2.47e-05 15.5
</code></pre>
<p>Note we still get convergence warnings, even with lme4 1.1.7; this means they are probably <strong>not</strong> just false positives (so in this case they are a good thing!) Should have gotten scaling warnings too ???</p>
<pre><code class="r">sdiff.new.scaled <- update(sdiff.new,formula=form.s)
</code></pre>
<h1>lme4.0</h1>
<pre><code class="r">t.old <- system.time(sdiff.old <- lme4.0::lmer(form,
data=modeldata.n400, REML=reml))
t.old
</code></pre>
<pre><code>## user system elapsed
## 53.483 0.604 103.935
</code></pre>
<pre><code class="r">summary(sdiff.old)
</code></pre>
<pre><code>## Linear mixed model fit by maximum likelihood
## Formula: form
## Data: modeldata.n400
## AIC BIC logLik deviance REMLdev
## 395191 395291 -197584 395169 395214
## Random effects:
## Groups Name Variance Std.Dev. Corr
## item (Intercept) 1.76e-01 0.420014
## c.(sdiff) 2.27e-08 0.000151 -0.012
## subj (Intercept) 1.23e+00 1.109455
## c.(sdiff) 2.60e-08 0.000161 -0.330
## Residual 1.70e+01 4.123918
## Number of obs: 69588, groups: item, 60; subj, 37
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.16e+00 1.92e-01 6.05
## ambiguityunambig 4.97e-01 3.13e-02 15.90
## c.(sdiff) -3.88e-04 3.96e-05 -9.78
## ambiguityunambig:c.(sdiff) 3.82e-04 2.47e-05 15.45
##
## Correlation of Fixed Effects:
## (Intr) ambgty c.(sd)
## ambigtynmbg -0.082
## c.(sdiff) -0.213 -0.001
## ambgtyn:.() 0.000 0.001 -0.499
</code></pre>
<p>As stated, the important difference in the fixed effects is the
size of the standard error in <code>c.(sdiff)</code> …</p>
<p><img src="" alt="plot of chunk coefplot"/> </p>
<p>Compare theta values? (We can't get confidence intervals without
profiling …)</p>
<h1>lme4 starting from lme4.0 results</h1>
<pre><code class="r">oldtheta <- getME(sdiff.old,"theta")
newtheta <- lme4::getME(sdiff.new,"theta")
sdiff.oldstart <- lme4::lmer(form,
data=modeldata.n400, REML=reml,
start=list(theta=getME(sdiff.old,"theta")))
</code></pre>
<pre><code>## Warning: Model failed to converge with max|grad| = 0.0491256 (tol = 0.002, component 4)
## Warning: Model failed to converge: degenerate Hessian with 1 negative eigenvalues
</code></pre>
<pre><code class="r">sdiff.oldstart.nlminb <- lme4::lmer(form,
data=modeldata.n400, REML=reml,
start=list(theta=getME(sdiff.old,"theta")),
control=lmerControl(optimizer="optimx",
optCtrl=list(method="nlminb")))
</code></pre>
<pre><code>## Warning: Parameters or bounds appear to have different scalings.
## This can cause poor performance in optimization.
## It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.
## Warning: convergence code 1 from optimx
## Warning: Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
</code></pre>
<p>We have an interesting problem here. New <code>lme4</code> calculates the
deviance slightly differently; at \(\hat \theta_{\textrm{old}}\)
it computes a deviance value about 29 units higher than <code>lme4.0</code>.
If we start <code>lme4</code> from that point, we actually get a <strong>worse</strong>
result (the deviance goes up by about 480 units!) — presumably
we get thrown off by the initial displacement of the points from
the starting value …</p>
<pre><code class="r">sdiff.newdev <- update(sdiff.new,devFunOnly=TRUE)
devvec <- c(old=deviance(sdiff.old),new=deviance(sdiff.new),
oldtheta.newdev=sdiff.newdev(oldtheta),
oldstart=deviance(sdiff.oldstart),
oldstart.nlminb=deviance(sdiff.oldstart.nlminb))
print(sort(devvec-min(devvec)),digits=3)
</code></pre>
<pre><code>## old oldstart.nlminb oldtheta.newdev oldstart
## 0.0 16.6 28.8 481.7
## new
## 751.4
</code></pre>
<pre><code class="r">afurl <- paste0("https://raw.githubusercontent.com/lme4/",
"lme4/master/misc/issues/allFit.R")
eval(parse(text=getURL(afurl)))
</code></pre>
<p>I should suppress the warnings here (they'll be preserved in the <code>@optinfo</code> slot anyway), but that will require refreshing the cache, so I'm not going to do it right now …) The second <code>allFit</code> call (starting from the <code>lme4.0</code> fitted values) doesn't work at all, for some structural reason I don't understand (having to do with package loading/unloading I think). All of this is sufficiently lengthy that I should consider putting it in a batch file rather than relying on knitr caching …</p>
<pre><code class="r">detach("package:lme4.0")
t.all <- system.time(sdiff.new.all <- allFit(sdiff.new))
</code></pre>
<pre><code>## bobyqa. : [OK]
## Nelder_Mead. : [OK]
## optimx.nlminb : [OK]
## optimx.L-BFGS-B : [OK]
## nloptWrap.NLOPT_LN_NELDERMEAD : [OK]
## nloptWrap.NLOPT_LN_BOBYQA : [OK]
</code></pre>
<pre><code class="r">sdiff.oldstart.all <- allFit(sdiff.oldstart)
</code></pre>
<pre><code>## bobyqa. : [OK]
## Nelder_Mead. : [OK]
## optimx.nlminb : [OK]
## optimx.L-BFGS-B : [OK]
## nloptWrap.NLOPT_LN_NELDERMEAD : [OK]
## nloptWrap.NLOPT_LN_BOBYQA : [OK]
</code></pre>
<pre><code class="r">library(lme4.0)
</code></pre>
<p>The bottom line is that trying lots of different optimizers doesn't do us any good in this case. Oddly enough, our Nelder-Mead implementation (which we have found to be generally less reliable than BOBYQA for big problems) turns out to do <em>best</em> of all the options (other than <code>lme4.0</code>) in this case …</p>
<pre><code class="r">is.OK <- !sapply(sdiff.new.all,inherits,"error")
all.dev <- c(sapply(sdiff.new.all[is.OK],deviance),lme4.0=deviance(sdiff.old))
print(sort(all.dev-min(all.dev)),digits=4)
</code></pre>
<pre><code>## lme4.0 Nelder_Mead.
## 0.0 397.0
## optimx.nlminb bobyqa.
## 513.1 751.4
## nloptWrap.NLOPT_LN_BOBYQA nloptWrap.NLOPT_LN_NELDERMEAD
## 813.4 910.1
</code></pre>
<p>Now try with scaled data:</p>
<pre><code class="r">detach("package:lme4.0")
t.all <- system.time(sdiff.new.scaled.all <- allFit(sdiff.new.scaled))
</code></pre>
<pre><code>## bobyqa. : [OK]
## Nelder_Mead. : [OK]
## optimx.nlminb : [OK]
## optimx.L-BFGS-B : [OK]
## nloptWrap.NLOPT_LN_NELDERMEAD : [OK]
## nloptWrap.NLOPT_LN_BOBYQA : [OK]
</code></pre>
<pre><code class="r">library(lme4.0)
</code></pre>
<p>The code and data for this example can be found on <a href="https://github.com/palday/lme4-convergence">GitHub</a></p>
</body>
</html>