-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathutils_math.py
231 lines (177 loc) · 7.21 KB
/
utils_math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import pandas as pd
import numpy as np
import math
import inspect
from tqdm import tqdm
from sklearn.linear_model import LogisticRegression
from collections import defaultdict
np.random.seed(42)
STYLE_CONTROL_ELEMENTS = [
"sum_assistant_a_tokens",
"header_count_a",
"list_count_a",
"bold_count_a",
"sum_assistant_b_tokens",
"header_count_b",
"list_count_b",
"bold_count_b",
]
LENGTH_CONTROL_ELEMENTS = [
"sum_assistant_a_tokens",
"sum_assistant_b_tokens",
]
MARKDOWN_CONTROL_ELEMENTS = [
"header_count_a",
"list_count_a",
"bold_count_a",
"header_count_b",
"list_count_b",
"bold_count_b",
]
def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000, baseline_model="gpt-4-0314"):
models = pd.concat([df["model_a"], df["model_b"]]).unique()
models = pd.Series(np.arange(len(models)), index=models)
# duplicate battles
df = pd.concat([df, df], ignore_index=True)
p = len(models.index)
n = df.shape[0]
X = np.zeros([n, p])
X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)
# one A win => two A win
Y = np.zeros(n)
Y[df["winner"] == "model_a"] = 1.0
# one tie => one A win + one B win
# find tie + tie (both bad) index
tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
tie_idx[len(tie_idx)//2:] = False
Y[tie_idx] = 1.0
lr = LogisticRegression(fit_intercept=False, penalty=None, tol=1e-8)
lr.fit(X,Y)
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
# set anchor as gpt-4-0314 = 1000
if baseline_model in models.index:
elo_scores += 1000 - elo_scores[models[baseline_model]]
return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
def get_bootstrap_result(battles, func_compute_elo, num_round, baseline_model="gpt-4-0314"):
rows = []
kwargs = {}
if baseline_model in inspect.signature(func_compute_elo).parameters:
kwargs[baseline_model] = baseline_model
for _ in tqdm(range(num_round), desc="bootstrap"):
rows.append(func_compute_elo(battles.sample(frac=1.0, replace=True), **kwargs))
df = pd.DataFrame(rows)
return df[df.median().sort_values(ascending=False).index]
def preety_print_two_ratings(ratings_1, ratings_2, column_names):
df = pd.DataFrame([
[n, ratings_1[n], ratings_2[n]] for n in ratings_1.keys()
], columns=["Model", column_names[0], column_names[1]]).sort_values(column_names[0], ascending=False).reset_index(drop=True)
df[column_names[0]] = (df[column_names[0]] + 0.5).astype(int)
df[column_names[1]] = (df[column_names[1]] + 0.5).astype(int)
df.index = df.index + 1
return df
def predict_win_rate(elo_ratings, SCALE=400, BASE=10, INIT_RATING=1000):
names = sorted(list(elo_ratings.keys()))
wins = defaultdict(lambda: defaultdict(lambda: 0))
for a in names:
for b in names:
ea = 1 / (1 + BASE ** ((elo_ratings[b] - elo_ratings[a]) / SCALE))
wins[a][b] = ea
wins[b][a] = 1 - ea
data = {
a: [wins[a][b] if a != b else np.NAN for b in names]
for a in names
}
df = pd.DataFrame(data, index=names)
df.index.name = "model_a"
df.columns.name = "model_b"
return df.T
def get_win_rate_column(df, column, baseline="gpt-4-0314"):
to_dict = df[["model", column]].set_index("model").to_dict()[column]
win_rate_table = predict_win_rate(to_dict)
return win_rate_table[baseline].fillna(0.5).apply(lambda x: round(x * 100, 2))
def fit_bt(X, Y, models, SCALE=400, INIT_RATING=1000, baseline_model="gpt-4-0314"):
from sklearn.linear_model import LogisticRegression
p = len(models.index)
lr = LogisticRegression(fit_intercept=False)
lr.fit(X, Y)
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
# calibrate llama-13b to 800 if applicable
assert baseline_model in models.index
elo_scores += 1114 - elo_scores[models[baseline_model]]
return (
pd.Series(elo_scores[:p], index=models.index).sort_values(ascending=False),
lr.coef_[0][p:],
)
def construct_style_matrices(
df,
BASE=10,
apply_ratio=[1, 1, 1, 1],
style_elements=STYLE_CONTROL_ELEMENTS,
add_one=True,
):
models = pd.concat([df["model_a"], df["model_b"]]).unique()
models = pd.Series(np.arange(len(models)), index=models)
# duplicate battles
df = pd.concat([df, df], ignore_index=True)
p = len(models.index)
n = df.shape[0]
assert len(style_elements) % 2 == 0
k = int(len(style_elements) / 2)
X = np.zeros([n, p + k])
X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)
# creates turn each of the specified column in "conv_metadata" into a vector
style_vector = np.array(
[
df.conv_metadata.map(
lambda x: x[element]
if type(x[element]) is int
else sum(x[element].values())
).tolist()
for element in style_elements
]
)
style_diff = (style_vector[:k] - style_vector[k:]).astype(float)
style_sum = (style_vector[:k] + style_vector[k:]).astype(float)
if add_one:
style_sum = style_sum + np.ones(style_diff.shape)
apply_ratio = np.flatnonzero(apply_ratio)
style_diff[apply_ratio] /= style_sum[
apply_ratio
] # Apply ratio where necessary (length, etc)
style_mean = np.mean(style_diff, axis=1)
style_std = np.std(style_diff, axis=1)
X[:, -k:] = ((style_diff - style_mean[:, np.newaxis]) / style_std[:, np.newaxis]).T
# one A win => two A win
Y = np.zeros(n)
Y[df["winner"] == "model_a"] = 1.0
# one tie => one A win + one B win
# find tie + tie (both bad) index
tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
tie_idx[len(tie_idx) // 2 :] = False
Y[tie_idx] = 1.0
return X, Y, models
def get_bootstrap_result_style_control(X, Y, battles, models, func_compute_elo, num_round=1000, baseline_model="gpt-4-0314"):
elos = []
coefs = []
assert X.shape[0] % 2 == 0 and X.shape[0] == Y.shape[0]
k = int(
X.shape[0] / 2
) # Since we duplicate the battles when constructing X and Y, we don't want to sample the duplicates
battles_tie_idx = (battles["winner"] == "tie") | (battles["winner"] == "tie (bothbad)")
for _ in tqdm(range(num_round), desc="bootstrap"):
indices = np.random.choice(list(range(k)), size=(k), replace=True)
index2tie = np.zeros(k, dtype=bool)
index2tie[battles_tie_idx] = True
nontie_indices = indices[~index2tie[indices]]
tie_indices = np.concatenate([indices[index2tie[indices]], indices[index2tie[indices]]+k])
_X = np.concatenate([X[nontie_indices], X[nontie_indices], X[tie_indices]])
_Y = np.concatenate([Y[nontie_indices], Y[nontie_indices], Y[tie_indices]])
assert _X.shape == X.shape and _Y.shape == Y.shape
states = ~_X[:, : len(models)].any(axis=0)
elo, coef = func_compute_elo(_X, _Y, models[~states], baseline_model=baseline_model)
elos.append(elo)
coefs.append(coef)
df = pd.DataFrame(elos)
return df[df.median().sort_values(ascending=False).index], coefs