-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathutils.py
104 lines (82 loc) · 3.07 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import tensorflow as tf
from baselines.common.tf_util import display_var_info
from baselines.common.console_util import colorize
REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__)))
def print_trainable_variables():
display_var_info(tf.trainable_variables())
class BaseModelMixin:
"""Abstract object representing an Reader model.
Code borrowed from: https://github.com/devsisters/DQN-tensorflow/blob/master/dqn/base.py
with some modifications.
"""
def __init__(self, model_name, tf_sess_config=None):
self._saver = None
self._writer = None
self._model_name = model_name
self._sess = None
if tf_sess_config is None:
tf_sess_config = {
'allow_soft_placement': True,
'intra_op_parallelism_threads': 8,
'inter_op_parallelism_threads': 4,
}
self.tf_sess_config = tf_sess_config
def get_variable_values(self):
t_vars = tf.trainable_variables()
vals = self.sess.run(t_vars)
return {v.name: value for v, value in zip(t_vars, vals)}
def save_checkpoint(self, step=None):
print(colorize(" [*] Saving checkpoints...", "green"))
ckpt_file = os.path.join(self.checkpoint_dir, self.model_name)
self.saver.save(self.sess, ckpt_file, global_step=step)
def load_checkpoint(self):
print(colorize(" [*] Loading checkpoints...", "green"))
ckpt_path = tf.train.latest_checkpoint(self.checkpoint_dir)
print(self.checkpoint_dir)
print("ckpt_path:", ckpt_path)
if ckpt_path:
# self._saver = tf.train.import_meta_graph(ckpt_path + '.meta')
self.saver.restore(self.sess, ckpt_path)
print(colorize(" [*] Load SUCCESS: %s" % ckpt_path, "green"))
return True
else:
print(colorize(" [!] Load FAILED: %s" % self.checkpoint_dir, "red"))
return False
def _get_dir(self, dir_name):
path = os.path.join(REPO_ROOT, dir_name, self.model_name)
os.makedirs(path, exist_ok=True)
return path
@property
def log_dir(self):
return self._get_dir('logs')
@property
def checkpoint_dir(self):
return self._get_dir('checkpoints')
@property
def model_dir(self):
return self._get_dir('models')
@property
def tb_dir(self):
# tensorboard
return self._get_dir('tb')
@property
def model_name(self):
assert self._model_name, "Not a valid model name."
return self._model_name
@property
def saver(self):
if self._saver is None:
self._saver = tf.train.Saver(max_to_keep=5)
return self._saver
@property
def writer(self):
if self._writer is None:
self._writer = tf.summary.FileWriter(self.tb_dir, self.sess.graph)
return self._writer
@property
def sess(self):
if self._sess is None:
config = tf.ConfigProto(**self.tf_sess_config)
self._sess = tf.Session(config=config)
return self._sess