-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrisk_curve_evaluate_model.py
125 lines (96 loc) · 4.7 KB
/
risk_curve_evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import click
import tensorflow as tf
import logging
from utils import configure_logging, make_session, prepare_mnist_dataset, create_mnist_model
import numpy as np
import os
configure_logging()
os.makedirs('tmp', exist_ok=True) # for saving model weights
def load_weights(n_units):
weights = np.load(f"tmp/mnist_unit{n_units}_weights.npy").item()
shape_dict = {k: v.shape for k, v in weights.items()}
logging.info(f"Loading weights from old model (n_units={n_units}): {shape_dict}")
return weights
def dump_weights(sess, n_units):
var_list = tf.trainable_variables()
weights_dict = sess.run({v.name: v for v in var_list})
np.save(f"tmp/mnist_unit{n_units}_weights.npy", weights_dict)
def assign_weights(sess, old_weights):
var_list = tf.trainable_variables()
assert sorted(v.name for v in var_list) == sorted(old_weights.keys())
for v in var_list:
w = old_weights[v.name]
v_shape = v.shape.as_list()
w_shape = list(w.shape)
assert len(v_shape) == len(w_shape)
if len(v_shape) == 2:
if v_shape[0] == w_shape[0]:
extra = sess.run(v)[:, w_shape[1]:]
logging.info(f">>> {v.name} assign {w.shape} to {v} (extra: {extra.shape})")
sess.run(tf.assign(v, np.concatenate([w, extra], axis=1)))
elif v_shape[1] == w_shape[1]:
extra = sess.run(v)[w_shape[0]:, :]
logging.info(f">>> {v.name} assign {w.shape} to {v} (extra: {extra.shape})")
sess.run(tf.assign(v, np.concatenate([w, extra], axis=0)))
elif len(v_shape) == 1:
if v_shape == w_shape:
logging.info(f">>> {v.name} assign {w.shape} to {v}")
sess.run(tf.assign(v, w))
else:
extra = sess.run(v)[w_shape[0]:]
logging.info(f">>> {v.name} assign {w.shape} to {v} (extra: {extra.shape})")
sess.run(tf.assign(v, np.concatenate([w, extra], axis=0)))
def report_performance(sess, n_units, old_n_units, max_epochs, loss_type, lr, batch_size,
train_sample_size):
logging.info(
f"Training new model (n_units={n_units}) based on old model (old_n_units={old_n_units}) ...")
dataset, (x_train, y_train), (x_test, y_test) = prepare_mnist_dataset(
batch_size=batch_size, train_sample_size=train_sample_size, seed=0)
iterator = dataset.make_initializable_iterator()
batch_input, batch_label = iterator.get_next()
lr_ph = tf.placeholder(tf.float32, shape=(), name='learning_rate')
loss, accuracy = create_mnist_model(batch_input, batch_label, [n_units], loss_type=loss_type)
train_op = tf.train.AdamOptimizer(lr_ph).minimize(loss)
sess.run(iterator.initializer)
sess.run(tf.global_variables_initializer())
if old_n_units is not None:
old_weights = load_weights(old_n_units)
assign_weights(sess, old_weights)
step = 0
epoch = 0
# for epoch in range(num_epoches):
for epoch in range(max_epochs):
while True:
try:
sess.run(train_op, feed_dict={lr_ph: lr})
step += 1
except tf.errors.OutOfRangeError:
sess.run(iterator.initializer)
break
if epoch % 50 == 0:
lr *= 0.8
# evaluate t the end
eval_loss, eval_acc = sess.run(
[loss, accuracy], feed_dict={batch_input: x_test, batch_label: y_test})
train_loss, train_acc = sess.run([loss, accuracy], feed_dict={
batch_input: x_train, batch_label: y_train, lr_ph: lr})
# dump the parameters into files so that we can reuse the weights in the next round.
dump_weights(sess, n_units)
return epoch, step, train_loss, train_acc, eval_loss, eval_acc
@click.command()
@click.option('--n-units', default=50, type=int, help="num. hidden units in the middle layer.")
@click.option('--old-n-units', default=None, type=int, help="")
@click.option('--loss-type', default='mse', type=str, help="type of loss func.")
@click.option('--max-epochs', default=500, type=int, help="num. training epochs.")
@click.option('--n-train-samples', default=4000, type=int, help="num. training samples")
def main(n_units=1, old_n_units=None, loss_type='mse', max_epochs=500, n_train_samples=4000):
assert old_n_units is None or old_n_units < n_units
logging.info(f"n_units:{n_units} max_epochs:{max_epochs}")
sess = make_session()
lr = 0.001
batch_size = 128
epoch, step, train_loss, train_acc, eval_loss, eval_acc = report_performance(
sess, n_units, old_n_units, max_epochs, loss_type, lr, batch_size, n_train_samples)
print(n_units, epoch, step, train_loss, train_acc, eval_loss, eval_acc)
if __name__ == '__main__':
main()