-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqrs_detector_2ma.r
153 lines (137 loc) · 8.27 KB
/
qrs_detector_2ma.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (C) 2023 Philippe Liège
# GPL GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007
library(data.table)
library(gsignal)
# ============================= the main function ========================================================
ma_detector <- function(signal, srate = 360L, lowcut_f1 = 8L, highcut_f2 = 21L, filter_order = 3L, qrs_win1 = 35,
beat_win2 = 220, srate_ref = 360L, offset = 0.08, offset_win3 = 4L,
slackness_red = FALSE, slackness_win1 = 0.200, slackness_win2 = 0.140,
refractory_period = 0.3) {
# signal: Numeric vector. ECG signal in mV.
# srate: Integer. Sampling rate in Hz
# lowcut_f1 & lowcut_f2: Integers. Bandpass for Butterworth filtering
# filter_order: Integer. Default value for the Butterworth filter is set at 3th order (Elgendi, 2013)
# Default windows width as per Elgendi 2013 (optimized values)
# qrs_win1: W1: Integer (samples). 29 to 43 samples, for a sampling frequency (SF) of 360 Hz. Default = 35.
# beat_win2: W2: Integer (samples). For a sampling frequency (SF) of 360 Hz. Default = 220.
# In Porr & Powell 2019, window2 is multiple of window1 so that a window1 will not overlap two window2
# In contrast, Elgendi, Jonkman & DeBoer 2010 & Elgendi 2013 allow for window1 overlapping two window2
# srate_ref = Integer. Its value (360 Hz) should not be changed.
# 360 Hz is the frequency used in the three papers by Elgendi M.
# Remember that the optimized values for qrs_win1 and beat_win2 are valid for srate_ref = 360 Hz
# offset:Scalar. Threshold offset beta (Gradl & Elgendi 2015)
# offset_win3: Integer (seconds). No optimized value.
# Gradl & Elgendi 2015 used 4s which was the maximum value for real-time calculations (embedded device)
# slackness_red: Logical. slackness reduction as in Gradl & Elgendi 2015
# slackness_win1: Scalar (seconds). Windows T1 for temporal correction (Gradl & Elgendi 2015)
# slackness_win2: Scalar (seconds). Windows T2 for temporal correction (Gradl & Elgendi 2015)
# refractory_period: Scalar (seconds). Defaults to 300 ms (Porr & Powell 2019)
nyquist_freq <- 0.5 * srate
low <- lowcut_f1 / nyquist_freq
high <- highcut_f2 / nyquist_freq
# signal filtering
#
bandpass <- gsignal::butter(n = filter_order, w = c(low, high), type = "pass")
signal_filt <- gsignal::filtfilt(bandpass, c(rep(signal[1],
srate), signal, rep(signal[length(signal)], srate)))
signal_filt <- signal_filt[(srate + 1):(length(signal_filt) -
srate)]
# signal squaring as in Elgendi 2013. Porr & Powell 2019 has been using abs()
signal_squared <- signal_filt^2
# Rolling means
window1 <- trunc(qrs_win1 * srate / srate_ref)
mwa_qrs <- frollmean(signal_squared, window1, align = "center")
# Center alignment as Elgendi 2013 (right alignment in Elgendi, Jonkman & DeBoer 2010 and Porr & Powell 2019)
window2 <- trunc(beat_win2 * srate / srate_ref)
mwa_beat <- frollmean(signal_squared, window2, align = "center")
window3 <- trunc(offset_win3 * srate)
mwa_noise <- frollmean(signal_squared, window3, align = "center")
# If we stop there with running means, the 1st and last beats won't be identified
# Because window2 is much larger than a qrs, too many running mean values are missing
# The function below will substitute NA values with left-aligned and right-aligned
# running means at the left and right margins of the vector of means respectively.
ma_fill <- function(mwa, signl, wind) {
left_ma <- 1:(ceiling(wind / 2) - 1)
right_ma <- (length(mwa) - floor(wind / 2) + 1):length(mwa)
mwa[left_ma] <- frollmean(signl, wind, align = "left")[left_ma]
mwa[right_ma] <- frollmean(signl, wind, align = "right")[right_ma]
mwa
}
mwa_qrs <- ma_fill(mwa = mwa_qrs, signl = signal_squared, wind = window1)
mwa_beat <- ma_fill(mwa = mwa_beat, signl = signal_squared, wind = window2)
mwa_noise <- ma_fill(mwa = mwa_noise, signl = signal_squared, wind = window3)
block <- data.table::fifelse(!is.na(mwa_beat) & mwa_qrs > (mwa_beat + mwa_noise * offset), 1, 0)
# the line above gives 0 if mwa_qrs <= mwa_beat
# folding blocks and "silent" zones to get respective lengths
block.le <- rle(block)
# thresholding: any block smaller than window1 is excluded
block.le$values[block.le$values == 1L & block.le$length < window1] <- 0
# block numbering
block.le$values[block.le$values == 1L] <- with(block.le, cumsum(values[values == 1L]))
# zeroes are no longer needed; silent zones get NA
block.le$values[block.le$values == 0L] <- NA
# unfold cleaned, numbered blocks
block.clean <- rep(block.le$values, block.le$lengths)
# peak height on the squared scale
height <- signal_squared
height[!is.na(block.clean)] <- unlist(tapply(height, block.clean,
function(x) fifelse(x == max(x), max(x), as.numeric(NA))))
height[is.na(block.clean)] <- NA
# peak location
loc <- which(!is.na(height))
# discard premature beats based on refractory period
loc[c(NA, diff(loc)) < refractory_period * srate] <- NA
loc <- loc[!is.na(loc)]
idx <- indx <- seq_along(height)
indx[!indx %in% loc] <- NA
loc <- indx
if (slackness_red) {
srfun <- function(x, sig, t1, t2) {
b1 <- trunc(t1 / 2) # we want t1/2 if t1 even, or its lower even integer if not
b2 <- trunc(t2 / 2)
T1 <- c(-b1, 0, b1)
T2 <- (-b2):b2
aR <- median(sig[x + T1], na.rm = TRUE)
# Gradl & Elgendi 2015 are using which.max(abs()), but this sometimes locate the S peak instead of the R one
# Thus, we prefer using which.max()
# tU <- x - (b2 + 1) + which.max(abs(signal[x + T2] - aR))
tU <- x - (b2 + 1) + which.max(signal[x + T2] - aR)
tU
}
swin1 <- slackness_win1 * srate
swin2 <- slackness_win2 * srate
loc2 <- sapply(loc[!is.na(loc)], srfun, sig = signal, t1 = swin1, t2 = swin2)
loc_sr <- rep(NA, length(loc))
loc_sr[order(loc_sr) %in% loc2] <- loc2
loc_sr <- as.integer(loc_sr)
}
dtb <- data.table(signal, signal_filt, signal_squared, mwa_qrs, mwa_beat, mwa_noise, block, block.clean, idx, loc,
height, loc_sr = if (exists("loc_sr")) loc_sr)
dtb
}
# -----------------------------------------------------------------------------------------------------
ad100 <- fread("100.csv", sep = ",")
# ==================== static diagnostic plot ==========================================================
ad100_qrs <- ma_detector(signal = ad100[, MLII], srate = 360L, lowcut_f1 = 8L, highcut_f2 = 21L, filter_order = 3L,
qrs_win1 = 35L, beat_win2 = 220L, srate_ref = 360L, offset = 0.08, offset_win3 = 10L,
slackness_red = TRUE, slackness_win1 = 0.2, slackness_win2 = 0.14, refractory_period = 0.3)
ad100_qrs0 <- ad100_qrs[648000:650000]
ad100_qrs0[!is.na(block.clean), block.clean := 1]
ad100_qrs0[is.na(block.clean), block.clean := 0]
plot(signal_squared ~ idx, data = ad100_qrs0, type = "l", xlab = "sample (360 Hz)")
lines(mwa_qrs ~ idx, data = ad100_qrs0, type = "l", col = 2)
lines(mwa_beat ~ idx, data = ad100_qrs0, type = "l", col = 3)
lines(I(0.2 * block.clean) ~ idx, data = ad100_qrs0, type = "l", col = 5)
points(signal_squared ~ loc, data = ad100_qrs0, col = "darkred")
points(signal_squared ~ loc_sr, data = ad100_qrs0, col = "#036830", pch = 3)
# -------------------------------------------------------------------------------------------------------
# ==================== dynamic diagnostic plot =========================================================
library(plotly)
plot_ly(ad100_qrs, x = ~idx, y = ~signal, type = "scatter", linetype = 1, mode = "lines", showlegend = FALSE) %>%
layout(xaxis = list(title = "sample (360 Hz)"),
yaxis = list(title = "unfiltered signal (mV)"),
legend = list(orientation = 'h')) %>%
add_markers(x = ~loc[!is.na(loc)], y = ~signal[!is.na(loc)], inherit = FALSE, name = "approximate location") %>%
add_markers(x = ~loc_sr[!is.na(loc_sr)], y = ~signal[!is.na(loc_sr)], inherit = FALSE,
name = "corrected location")
# --------------------------------------------------------------------------------------------------------