-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtopo_operators.js
826 lines (716 loc) · 27.2 KB
/
topo_operators.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
// Polyhédronisme
//===================================================================================================
//
// A toy for constructing and manipulating polyhedra and other meshes
//
// Includes implementation of the conway polyhedral operators derived
// from code by mathematician and mathematical sculptor
// George W. Hart http://www.georgehart.com/
//
// Copyright 2019, Anselm Levskaya
// Released under the MIT License
//===================================================================================================
// Polyhedron Flagset Construct
//
// A Flag is an associative triple of a face index and two adjacent vertex vertidxs,
// listed in geometric clockwise order (staring into the normal)
//
// Face_i -> V_i -> V_j
//
// They are a useful abstraction for defining topological transformations of the polyhedral mesh, as
// one can refer to vertices and faces that don't yet exist or haven't been traversed yet in the
// transformation code.
//
// A flag is similar in concept to a directed halfedge in halfedge data structures.
//
const MAX_FACE_SIDEDNESS = 1000; //GLOBAL
class polyflag {
constructor() {
this.flags = new Object(); // flags[face][vertex] = next vertex of flag; symbolic triples
this.vertidxs = new Object(); // [symbolic names] holds vertex index
this.vertices = new Object(); // XYZ coordinates
}
// Add a new vertex named "name" with coordinates "xyz".
newV(vertName, coordinates) {
if (this.vertidxs[vertName] === undefined) {
this.vertidxs[vertName] = 0;
this.vertices[vertName] = coordinates;
}
}
newFlag(faceName, vertName1, vertName2) {
if (this.flags[faceName] === undefined) {
this.flags[faceName] = {};
}
this.flags[faceName][vertName1] = vertName2;
}
topoly() {
let i, v;
const poly = new polyhedron();
let ctr = 0; // first number the vertices
for (i in this.vertidxs) {
v = this.vertidxs[i];
poly.vertices[ctr]=this.vertices[i]; // store in array
this.vertidxs[i] = ctr;
ctr++;
}
ctr = 0;
for (i in this.flags) {
var v0;
const face = this.flags[i];
poly.faces[ctr] = []; // new face
// grab _any_ vertex as starting point
for (let j in face) {
v0 = face[j];
break;
}
// build face out of all the edge relations in the flag assoc array
v = v0; // v moves around face
poly.faces[ctr].push(this.vertidxs[v]); //record index
v = this.flags[i][v]; // goto next vertex
let faceCTR=0;
while (v !== v0) { // loop until back to start
poly.faces[ctr].push(this.vertidxs[v]);
v = this.flags[i][v];
faceCTR++;
// necessary during development to prevent browser hangs on badly formed flagsets
if (faceCTR > MAX_FACE_SIDEDNESS) {
console.log("Bad flag spec, have a neverending face:", i, this.flags[i]);
break;
}
}
ctr++;
}
poly.name = "unknown polyhedron";
return poly;
}
}
//===================================================================================================
// Polyhedron Operators
//===================================================================================================
// for each vertex of new polyhedron:
// call newV(Vname, xyz) with a symbolic name and coordinates
// for each flag of new polyhedron:
// call newFlag(Fname, Vname1, Vname2) with a symbolic name for the new face
// and the symbolic name for two vertices forming an oriented edge
// ORIENTATION -must- be dealt with properly to make a manifold (correct) mesh.
// Specifically, no edge v1->v2 can ever be crossed in the -same direction- by
// two different faces
//
// call topoly() to assemble flags into polyhedron structure by following the orbits
// of the vertex mapping stored in the flagset for each new face
//
// set name as appropriate
// helper func to insure unique names of midpoints
const midName = (v1, v2) => (v1<v2 ? v1+"_"+v2 : v2+"_"+v1)
// Kis(N)
// ------------------------------------------------------------------------------------------
// Kis (abbreviated from triakis) transforms an N-sided face into an N-pyramid rooted at the
// same base vertices.
// only kis n-sided faces, but n==0 means kis all.
//
const kisN = function(poly, n, apexdist){
let i;
if (!n) { n = 0; }
if (apexdist===undefined) { apexdist = 0.1; }
console.log(`Taking kis of ${n===0 ? "" : n}-sided faces of ${poly.name}...`);
const flag = new polyflag();
for (i = 0; i < poly.vertices.length; i++) {
// each old vertex is a new vertex
const p = poly.vertices[i];
flag.newV(`v${i}`, p);
}
const normals = poly.normals();
const centers = poly.centers();
let foundAny = false;
for (i = 0; i < poly.faces.length; i++) {
const f = poly.faces[i];
let v1 = `v${f[f.length-1]}`;
for (let v of f) {
const v2 = `v${v}`;
if ((f.length === n) || (n === 0)) {
foundAny = true;
const apex = `apex${i}`;
const fname = `${i}${v1}`;
// new vertices in centers of n-sided face
flag.newV(apex, add(centers[i], mult(apexdist, normals[i])));
flag.newFlag(fname, v1, v2); // the old edge of original face
flag.newFlag(fname, v2, apex); // up to apex of pyramid
flag.newFlag(fname, apex, v1); // and back down again
} else {
flag.newFlag(`${i}`, v1, v2); // same old flag, if non-n
}
// current becomes previous
v1 = v2;
}
}
if (!foundAny) {
console.log(`No ${n}-fold components were found.`);
}
const newpoly = flag.topoly();
newpoly.name = `k${n === 0 ? "" : n}${poly.name}`;
return newpoly;
};
// Ambo
// ------------------------------------------------------------------------------------------
// The best way to think of the ambo operator is as a topological "tween" between a polyhedron
// and its dual polyhedron. Thus the ambo of a dual polyhedron is the same as the ambo of the
// original. Also called "Rectify".
//
const ambo = function(poly){
console.log(`Taking ambo of ${poly.name}...`);
const flag = new polyflag();
// For each face f in the original poly
for (let i = 0; i < poly.faces.length; i++) {
const f = poly.faces[i];
let [v1, v2] = f.slice(-2);
for (let v3 of f) {
if (v1 < v2) { // vertices are the midpoints of all edges of original poly
flag.newV(midName(v1,v2), midpoint(poly.vertices[v1], poly.vertices[v2]));
}
// two new flags:
// One whose face corresponds to the original f:
flag.newFlag(`orig${i}`, midName(v1,v2), midName(v2,v3));
// Another flag whose face corresponds to (the truncated) v2:
flag.newFlag(`dual${v2}`, midName(v2,v3), midName(v1,v2));
// shift over one
[v1, v2] = [v2, v3];
}
}
const newpoly = flag.topoly();
newpoly.name = `a${poly.name}`;
return newpoly;
};
// Gyro
// ----------------------------------------------------------------------------------------------
// This is the dual operator to "snub", i.e dual*Gyro = Snub. It is a bit easier to implement
// this way.
//
// Snub creates at each vertex a new face, expands and twists it, and adds two new triangles to
// replace each edge.
//
const gyro = function(poly){
let f, i, v;
console.log(`Taking gyro of ${poly.name}...`);
const flag = new polyflag();
for (i = 0; i < poly.vertices.length; i++) {
v = poly.vertices[i];
flag.newV(`v${i}`, unit(v));
} // each old vertex is a new vertex
const centers = poly.centers(); // new vertices in center of each face
for (i = 0; i < poly.faces.length; i++) {
f = poly.faces[i];
flag.newV(`center${i}`, unit(centers[i]));
}
for (i = 0; i < poly.faces.length; i++) {
f = poly.faces[i];
let [v1, v2] = f.slice(-2);
for (let j = 0; j < f.length; j++) {
v = f[j];
const v3 = v;
flag.newV(v1+"~"+v2, oneThird(poly.vertices[v1],poly.vertices[v2])); // new v in face
const fname = i+"f"+v1;
flag.newFlag(fname, `center${i}`, v1+"~"+v2); // five new flags
flag.newFlag(fname, v1+"~"+v2, v2+"~"+v1);
flag.newFlag(fname, v2+"~"+v1, `v${v2}`);
flag.newFlag(fname, `v${v2}`, v2+"~"+v3);
flag.newFlag(fname, v2+"~"+v3, `center${i}`);
[v1, v2] = [v2, v3];
}
} // shift over one
const newpoly = flag.topoly();
newpoly.name = `g${poly.name}`;
return newpoly;
};
// Propellor
// ------------------------------------------------------------------------------------------
// builds a new 'skew face' by making new points along edges, 1/3rd the distance from v1->v2,
// then connecting these into a new inset face. This breaks rotational symmetry about the
// faces, whirling them into gyres
//
const propellor = function(poly) {
let i, v;
console.log(`Taking propellor of ${poly.name}...`);
const flag = new polyflag();
for (i = 0; i < poly.vertices.length; i++) {
v = poly.vertices[i];
flag.newV(`v${i}`, unit(v));
} // each old vertex is a new vertex
for (i = 0; i < poly.faces.length; i++) {
const f = poly.faces[i];
let [v1, v2] = f.slice(-2);
for (v of f) {
const v3 = `${v}`;
flag.newV(v1+"~"+v2, oneThird(poly.vertices[v1], poly.vertices[v2])); // new v in face, 1/3rd along edge
const fname = `${i}f${v2}`;
flag.newFlag(`v${i}`, v1+"~"+v2, v2+"~"+v3); // five new flags
flag.newFlag(fname, v1+"~"+v2, v2+"~"+v1);
flag.newFlag(fname, v2+"~"+v1, `v${v2}`);
flag.newFlag(fname, `v${v2}`, v2+"~"+v3);
flag.newFlag(fname, v2+"~"+v3, v1+"~"+v2);
[v1, v2] = [v2, v3];
}
} // shift over one
const newpoly = flag.topoly();
newpoly.name = `p${poly.name}`;
return newpoly;
};
// Reflection
// ------------------------------------------------------------------------------------------
// geometric reflection through origin
const reflect = function(poly) {
let i;
console.log(`Taking reflection of ${poly.name}...`);
// reflect each point through origin
for (i = 0; i <= poly.vertices.length-1; i++) {
poly.vertices[i] = mult(-1, poly.vertices[i]);
}
// repair clockwise-ness of faces
for (i = 0; i <= poly.faces.length-1; i++) {
poly.faces[i] = poly.faces[i].reverse();
}
poly.name = `r${poly.name}`;
return poly;
};
// Dual
// ------------------------------------------------------------------------------------------------
// The dual of a polyhedron is another mesh wherein:
// - every face in the original becomes a vertex in the dual
// - every vertex in the original becomes a face in the dual
//
// So N_faces, N_vertices = N_dualfaces, N_dualvertices
//
// The new vertex coordinates are convenient to set to the original face centroids.
//
const dual = function(poly) {
let f, i, v1, v2;
console.log(`Taking dual of ${poly.name}...`);
const flag = new polyflag();
const face = []; // make table of face as fn of edge
for (i = 0; i <= poly.vertices.length-1; i++) {
face[i] = {};
} // create empty associative table
for (i = 0; i < poly.faces.length; i++) {
f = poly.faces[i];
v1 = f[f.length-1]; //previous vertex
for (v2 of f) {
// THIS ASSUMES that no 2 faces that share an edge share it in the same orientation!
// which of course never happens for proper manifold meshes, so get your meshes right.
face[v1][`v${v2}`] = `${i}`;
v1=v2;
}
} // current becomes previous
const centers = poly.centers();
for (i = 0; i <= poly.faces.length-1; i++) {
flag.newV(`${i}`,centers[i]);
}
for (i = 0; i < poly.faces.length; i++) {
f = poly.faces[i];
v1 = f[f.length-1]; //previous vertex
for (v2 of f) {
flag.newFlag(v1, face[v2][`v${v1}`], `${i}`);
v1=v2;
}
} // current becomes previous
const dpoly = flag.topoly(); // build topological dual from flags
// match F index ordering to V index ordering on dual
const sortF = [];
for (f of dpoly.faces) {
const k = intersect(poly.faces[f[0]], poly.faces[f[1]], poly.faces[f[2]]);
sortF[k] = f;
}
dpoly.faces = sortF;
if (poly.name[0] !== "d") {
dpoly.name = `d${poly.name}`;
} else {
dpoly.name = poly.name.slice(1);
}
return dpoly;
};
// Chamfer
// ----------------------------------------------------------------------------------------
// A truncation along a polyhedron's edges.
// Chamfering or edge-truncation is similar to expansion, moving faces apart and outward,
// but also maintains the original vertices. Adds a new hexagonal face in place of each
// original edge.
// A polyhedron with e edges will have a chamfered form containing 2e new vertices,
// 3e new edges, and e new hexagonal faces. -- Wikipedia
// See also http://dmccooey.com/polyhedra/Chamfer.html
//
// The dist parameter could control how deeply to chamfer.
// But I'm not sure about implementing that yet.
//
// Q: what is the dual operation of chamfering? I.e.
// if cX = dxdX, and xX = dcdX, what operation is x?
// We could "almost" do this in terms of already-implemented operations:
// cC = t4daC = t4jC, cO = t3daO, cD = t5daD, cI = t3daI
// But it doesn't work for cases like T.
const chamfer = function(poly, dist) {
console.log(`Taking chamfer of ${poly.name}...`);
if (!dist) { dist = 0.5; }
const flag = new polyflag();
const normals = poly.normals();
// For each face f in the original poly
for (let i = 0; i < poly.faces.length; i++) {
const f = poly.faces[i];
let v1 = f[f.length-1];
let v1new = i + "_" + v1;
for (let v2 of f) {
// TODO: figure out what distances will give us a planar hex face.
// Move each old vertex further from the origin.
flag.newV(v2, mult(1.0 + dist, poly.vertices[v2]));
// Add a new vertex, moved parallel to normal.
const v2new = i + "_" + v2;
flag.newV(v2new, add(poly.vertices[v2], mult(dist*1.5, normals[i])));
// Four new flags:
// One whose face corresponds to the original face:
flag.newFlag(`orig${i}`, v1new, v2new);
// And three for the edges of the new hexagon:
const facename = (v1<v2 ? `hex${v1}_${v2}` : `hex${v2}_${v1}`);
flag.newFlag(facename, v2, v2new);
flag.newFlag(facename, v2new, v1new);
flag.newFlag(facename, v1new, v1);
v1 = v2;
v1new = v2new;
}
}
const newpoly = flag.topoly();
newpoly.name = `c${poly.name}`;
return newpoly;
};
// Whirl
// ----------------------------------------------------------------------------------------------
// Gyro followed by truncation of vertices centered on original faces.
// This create 2 new hexagons for every original edge.
// (https://en.wikipedia.org/wiki/Conway_polyhedron_notation#Operations_on_polyhedra)
//
// Possible extension: take a parameter n that means only whirl n-sided faces.
// If we do that, the flags marked #* below will need to have their other sides
// filled in one way or another, depending on whether the adjacent face is
// whirled or not.
const whirl = function(poly, n) {
let i, v;
console.log(`Taking whirl of ${poly.name}...`);
if (!n) { n = 0; }
const flag = new polyflag();
// each old vertex is a new vertex
for (i = 0; i < poly.vertices.length; i++) {
v = poly.vertices[i];
flag.newV(`v${i}`, unit(v));
}
// new vertices around center of each face
const centers = poly.centers();
//for f,i in poly.face
// # Whirl: use "center"+i+"~"+v1
// flag.newV "center"+i+"~"+v1, unit(centers[i])
for (i = 0; i < poly.faces.length; i++) {
const f = poly.faces[i];
let [v1, v2] = f.slice(-2);
for (let j = 0; j < f.length; j++) {
v = f[j];
const v3 = v;
// New vertex along edge
const v1_2 = oneThird(poly.vertices[v1],poly.vertices[v2]);
flag.newV(v1+"~"+v2, v1_2);
// New vertices near center of face
const cv1name = `center${i}~${v1}`;
const cv2name = `center${i}~${v2}`;
flag.newV(cv1name, unit(oneThird(centers[i], v1_2)));
const fname = i+"f"+v1;
// New hexagon for each original edge
flag.newFlag(fname, cv1name, v1+"~"+v2);
flag.newFlag(fname, v1+"~"+v2, v2+"~"+v1); //*
flag.newFlag(fname, v2+"~"+v1, `v${v2}`); //*
flag.newFlag(fname, `v${v2}`, v2+"~"+v3); //*
flag.newFlag(fname, v2+"~"+v3, cv2name);
flag.newFlag(fname, cv2name, cv1name);
// New face in center of each old face
flag.newFlag(`c${i}`, cv1name, cv2name);
[v1, v2] = [v2, v3];
}
} // shift over one
const newpoly = flag.topoly();
newpoly.name = `w${poly.name}`;
return newpoly;
};
// Quinto
// ----------------------------------------------------------------------------------------------
// This creates a pentagon for every point in the original face, as well as one new inset face.
const quinto = function(poly){
console.log(`Taking quinto of ${poly.name}...`);
const flag = new polyflag();
// For each face f in the original poly
for (let i = 0; i < poly.faces.length; i++) {
const f = poly.faces[i];
centroid = calcCentroid(f.map(idx=>poly.vertices[idx]))
// walk over face vertex-triplets
let [v1, v2] = f.slice(-2);
for (let v3 of f) {
// for each face-corner, we make two new points:
midpt = midpoint(poly.vertices[v1], poly.vertices[v2])
innerpt = midpoint(midpt, centroid)
flag.newV(midName(v1,v2), midpt);
flag.newV(`inner_${i}_` + midName(v1,v2), innerpt);
// and add the old corner-vertex
flag.newV(`${v2}`, poly.vertices[v2]);
// pentagon for each vertex in original face
flag.newFlag(`f${i}_${v2}`, `inner_${i}_`+midName(v1, v2), midName(v1, v2));
flag.newFlag(`f${i}_${v2}`, midName(v1, v2), `${v2}`);
flag.newFlag(`f${i}_${v2}`, `${v2}`, midName(v2, v3));
flag.newFlag(`f${i}_${v2}`, midName(v2, v3), `inner_${i}_`+midName(v2, v3));
flag.newFlag(`f${i}_${v2}`, `inner_${i}_`+midName(v2, v3), `inner_${i}_`+midName(v1, v2));
// inner rotated face of same vertex-number as original
flag.newFlag(`f_in_${i}`, `inner_${i}_`+midName(v1, v2), `inner_${i}_`+midName(v2, v3));
// shift over one
[v1, v2] = [v2, v3];
}
}
const newpoly = flag.topoly();
newpoly.name = `q${poly.name}`;
return newpoly;
};
// inset / extrude / "Loft" operator
// ------------------------------------------------------------------------------------------
const insetN = function(poly, n, inset_dist, popout_dist){
let f, i, v;
if (!n) { n = 0; }
if (inset_dist===undefined) { inset_dist = 0.5; }
if (popout_dist===undefined) { popout_dist = -0.2; }
console.log(`Taking inset of ${n===0 ? "" : n}-sided faces of ${poly.name}...`);
const flag = new polyflag();
for (i = 0; i < poly.vertices.length; i++) {
// each old vertex is a new vertex
const p = poly.vertices[i];
flag.newV(`v${i}`, p);
}
const normals = poly.normals();
const centers = poly.centers();
for (i = 0; i < poly.faces.length; i++) { //new inset vertex for every vert in face
f = poly.faces[i];
if ((f.length === n) || (n === 0)) {
for (v of f) {
flag.newV(`f${i}v${v}`, add(tween(poly.vertices[v],centers[i],inset_dist),
mult(popout_dist,normals[i])));
}
}
}
let foundAny = false; // alert if don't find any
for (i = 0; i < poly.faces.length; i++) {
f = poly.faces[i];
let v1 = `v${f[f.length-1]}`;
for (v of f) {
const v2 = `v${v}`;
if ((f.length === n) || (n === 0)) {
foundAny = true;
const fname = i + v1;
flag.newFlag(fname, v1, v2);
flag.newFlag(fname, v2, `f${i}${v2}`);
flag.newFlag(fname, `f${i}${v2}`, `f${i}${v1}`);
flag.newFlag(fname, `f${i}${v1}`, v1);
//new inset, extruded face
flag.newFlag(`ex${i}`, `f${i}${v1}`, `f${i}${v2}`);
} else {
flag.newFlag(i, v1, v2); // same old flag, if non-n
}
v1=v2;
}
} // current becomes previous
if (!foundAny) {
console.log(`No ${n}-fold components were found.`);
}
const newpoly = flag.topoly();
newpoly.name = `n${n === 0 ? "" : n}${poly.name}`;
return newpoly;
};
// extrudeN
// ------------------------------------------------------------------------------------------
// for compatibility with older operator spec
const extrudeN = function(poly, n){
const newpoly = insetN(poly, n, 0.0, 0.3);
newpoly.name = `x${n === 0 ? "" : n}${poly.name}`;
return newpoly;
}
// loft
// ------------------------------------------------------------------------------------------
const loft = function(poly, n, alpha){
const newpoly = insetN(poly, n, alpha, 0.0);
newpoly.name = `l${n === 0 ? "" : n}${poly.name}`;
return newpoly;
}
// Hollow (skeletonize)
// ------------------------------------------------------------------------------------------
const hollow = function(poly, inset_dist, thickness){
let f, i, v;
if (inset_dist === undefined) { inset_dist = 0.5; }
if (thickness === undefined) { thickness = 0.2; }
console.log(`Hollowing ${poly.name}...`);
const dualnormals = dual(poly).normals();
const normals = poly.normals();
const centers = poly.centers();
const flag = new polyflag();
for (i = 0; i < poly.vertices.length; i++) {
// each old vertex is a new vertex
const p = poly.vertices[i];
flag.newV(`v${i}`, p);
flag.newV(`downv${i}`, add(p,mult(-1*thickness,dualnormals[i])));
}
// new inset vertex for every vert in face
for (i = 0; i < poly.faces.length; i++) {
f = poly.faces[i];
for (v of f) {
flag.newV(`fin${i}v${v}`, tween(poly.vertices[v],centers[i],inset_dist));
flag.newV(`findown${i}v${v}`, add(tween(poly.vertices[v],centers[i],inset_dist),
mult(-1*thickness,normals[i])));
}
}
for (i = 0; i < poly.faces.length; i++) {
f = poly.faces[i];
let v1 = `v${f[f.length-1]}`;
for (v of f) {
const v2 = `v${v}`;
let fname = i + v1;
flag.newFlag(fname, v1, v2);
flag.newFlag(fname, v2, `fin${i}${v2}`);
flag.newFlag(fname, `fin${i}${v2}`, `fin${i}${v1}`);
flag.newFlag(fname, `fin${i}${v1}`, v1);
fname = `sides${i}${v1}`;
flag.newFlag(fname, `fin${i}${v1}`, `fin${i}${v2}`);
flag.newFlag(fname, `fin${i}${v2}`, `findown${i}${v2}`);
flag.newFlag(fname, `findown${i}${v2}`, `findown${i}${v1}`);
flag.newFlag(fname, `findown${i}${v1}`, `fin${i}${v1}`);
fname = `bottom${i}${v1}`;
flag.newFlag(fname, `down${v2}`, `down${v1}`);
flag.newFlag(fname, `down${v1}`, `findown${i}${v1}`);
flag.newFlag(fname, `findown${i}${v1}`, `findown${i}${v2}`);
flag.newFlag(fname, `findown${i}${v2}`, `down${v2}`);
v1 = v2; // current becomes previous
}
}
const newpoly = flag.topoly();
newpoly.name = `H${poly.name}`;
return newpoly;
};
// Perspectiva 1
// ------------------------------------------------------------------------------------------
// an operation reverse-engineered from Perspectiva Corporum Regularium
const perspectiva1 = function(poly){
let i;
console.log(`Taking stella of ${poly.name}...`);
const centers = poly.centers(); // calculate face centers
const flag = new polyflag();
for (i = 0; i < poly.vertices.length; i++) {
const p = poly.vertices[i];
// each old vertex is a new vertex
flag.newV(`v${i}`, p);
}
// iterate over triplets of faces v1,v2,v3
for (i = 0; i < poly.faces.length; i++) {
const f = poly.faces[i];
let v1 = `v${f[f.length-2]}`;
let v2 = `v${f[f.length-1]}`;
let vert1 = poly.vertices[f[f.length-2]];
let vert2 = poly.vertices[f[f.length-1]];
for (let v of f) {
const v3 = `v${v}`;
const vert3 = poly.vertices[v];
const v12=v1+"~"+v2; // names for "oriented" midpoints
const v21=v2+"~"+v1;
const v23=v2+"~"+v3;
// on each Nface, N new points inset from edge midpoints towards center = "stellated" points
flag.newV(v12, midpoint( midpoint(vert1,vert2), centers[i] ));
// inset Nface made of new, stellated points
flag.newFlag(`in${i}`, v12, v23);
// new tri face constituting the remainder of the stellated Nface
flag.newFlag(`f${i}${v2}`, v23, v12);
flag.newFlag(`f${i}${v2}`, v12, v2);
flag.newFlag(`f${i}${v2}`, v2, v23);
// one of the two new triangles replacing old edge between v1->v2
flag.newFlag(`f${v12}`, v1, v21);
flag.newFlag(`f${v12}`, v21, v12);
flag.newFlag(`f${v12}`, v12, v1);
[v1, v2] = [v2, v3]; // current becomes previous
[vert1, vert2] = [vert2, vert3];
}
}
const newpoly = flag.topoly();
newpoly.name = `P${poly.name}`;
return newpoly;
};
//===================================================================================================
// Goldberg-Coxeter Operators (in progress...)
//===================================================================================================
// Triangular Subdivision Operator
// ----------------------------------------------------------------------------------------------
// limited version of the Goldberg-Coxeter u_n operator for triangular meshes
// We subdivide manually here, instead of using the usual flag machinery.
const trisub = function(poly, n) {
console.log(`Taking trisub of ${poly.name}...`);
if (!n) { n = 2; }
// No-Op for non-triangular meshes.
for (let fn = 0; fn < poly.faces.length; fn++) {
if(poly.faces[fn].length != 3){
return poly;
}
}
// Calculate redundant set of new vertices for subdivided mesh.
let newVs=[];
let vmap={};
let pos = 0;
for (let fn = 0; fn < poly.faces.length; fn++) {
const f = poly.faces[fn];
let [i1, i2, i3] = f.slice(-3);
v1 = poly.vertices[i1];
v2 = poly.vertices[i2];
v3 = poly.vertices[i3];
v21 = sub(v2, v1);
v31 = sub(v3, v1);
for (let i = 0; i <= n; i++) {
for (let j = 0; j+i <= n; j++) {
let v = add(add(v1, mult(i * 1.0 / n, v21)), mult(j * 1.0 / n, v31));
vmap[`v${fn}-${i}-${j}`] = pos++;
newVs.push(v);
}
}
}
// The above vertices are redundant along original edges,
// we need to build an index map into a uniqueified list of them.
// We identify vertices that are closer than a certain epsilon distance.
const EPSILON_CLOSE = 1.0e-8;
let uniqVs = [];
let newpos = 0;
let uniqmap = {};
for (const [i, v] of newVs.entries()) {
if (i in uniqmap) { continue; } // already mapped
uniqmap[i] = newpos;
uniqVs.push(v);
for(let j = i+1; j < newVs.length; j++) {
w = newVs[j];
if (mag(sub(v, w)) < EPSILON_CLOSE) {
uniqmap[j] = newpos;
}
}
newpos++;
}
let faces = [];
for (fn = 0; fn < poly.faces.length; fn++) {
for (let i = 0; i < n; i++) {
for (let j = 0; j+i < n; j++) {
faces.push([uniqmap[vmap[`v${fn}-${i}-${j}`]],
uniqmap[vmap[`v${fn}-${i+1}-${j}`]],
uniqmap[vmap[`v${fn}-${i}-${j+1}`]]])
}
}
for (let i = 1; i < n; i++) {
for (let j = 0; j+i < n; j++) {
faces.push([uniqmap[vmap[`v${fn}-${i}-${j}`]],
uniqmap[vmap[`v${fn}-${i}-${j+1}`]],
uniqmap[vmap[`v${fn}-${i-1}-${j+1}`]]])
}
}
}
// Create new polygon out of faces and unique vertices.
const newpoly = new polyhedron();
newpoly.name = `u${n}${poly.name}`;
newpoly.faces = faces;
newpoly.vertices = uniqVs;
return newpoly;
};