-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgeo.js
366 lines (321 loc) · 11.3 KB
/
geo.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Polyhédronisme
//===================================================================================================
//
// A toy for constructing and manipulating polyhedra and other meshes
//
// Includes implementation of the conway polyhedral operators derived
// from code by mathematician and mathematical sculptor
// George W. Hart http://www.georgehart.com/
//
// Copyright 2019, Anselm Levskaya
// Released under the MIT License
// Math / Vector / Matrix Functions
//===================================================================================================
// import math functions to local namespace
const { random, round, floor, sqrt,
sin, cos, tan, asin, acos, atan,
abs, pow, log,
PI, LN10
} = Math;
const log10 = x=> log(x)/LN10;
//returns string w. nsigs digits ignoring magnitude
const sigfigs = function(N, nsigs){
const mantissa = N / pow(10, floor(log10(N)));
const truncated_mantissa = round(mantissa * pow(10, (nsigs-1)));
return `${truncated_mantissa}`;
};
// general recursive deep-copy function
var clone = function(obj) {
if ((obj == null) || (typeof obj !== 'object')) {
return obj;
}
const newInstance = new obj.constructor();
for (let key in obj) {
newInstance[key] = clone(obj[key]);
}
return newInstance;
};
// often useful
const randomchoice = function(array){
const n = floor(random()*array.length);
return array[n];
};
// 3d scalar multiplication
const mult = (c, vec) =>
[c*vec[0], c*vec[1], c*vec[2]];
// 3d element-wise multiply
const _mult = (vec1, vec2) =>
[vec1[0]*vec2[0], vec1[1]*vec2[1], vec1[2]*vec2[2]];
// 3d vector addition
const add = (vec1, vec2) =>
[vec1[0]+vec2[0], vec1[1]+vec2[1], vec1[2]+vec2[2]];
// 3d vector subtraction
const sub = (vec1, vec2) =>
[vec1[0]-vec2[0], vec1[1]-vec2[1], vec1[2]-vec2[2]];
// 3d dot product
const dot = (vec1, vec2) =>
(vec1[0]*vec2[0]) + (vec1[1]*vec2[1]) + (vec1[2]*vec2[2]);
// 3d cross product d1 x d2
const cross = (d1, d2) =>
[(d1[1]*d2[2]) - (d1[2]*d2[1]),
(d1[2]*d2[0]) - (d1[0]*d2[2]),
(d1[0]*d2[1]) - (d1[1]*d2[0]) ];
// vector norm
const mag = vec => sqrt(dot(vec, vec));
// vector magnitude squared
const mag2 = vec => dot(vec, vec);
// makes vector unit length
const unit = vec => mult(1 / sqrt(mag2(vec)), vec);
// midpoint between vec1, vec2
const midpoint = (vec1, vec2) => mult(1/2.0, add(vec1, vec2));
// parametric segment between vec1, vec2 w. parameter t ranging from 0 to 1
const tween = (vec1, vec2, t) =>
[((1-t)*vec1[0]) + (t*vec2[0]),
((1-t)*vec1[1]) + (t*vec2[1]),
((1-t)*vec1[2]) + (t*vec2[2])];
// uses above to go one-third of the way along vec1->vec2 line
const oneThird = (vec1, vec2) => tween(vec1, vec2, 1/3.0);
// reflect 3vec in unit sphere, spherical reciprocal
const reciprocal = vec => mult(1.0 / mag2(vec), vec);
// point where line v1...v2 tangent to an origin sphere
const tangentPoint= function(v1, v2) {
const d = sub(v2, v1);
return sub(v1, mult(dot(d, v1)/mag2(d), d));
};
// distance of line v1...v2 to origin
const edgeDist = (v1, v2) => sqrt(mag2(tangentPoint(v1, v2)));
// square of distance from point v3 to line segment v1...v2
// http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
// calculates min distance from
// point v3 to finite line segment between v1 and v2
const linePointDist2 = function(v1, v2, v3) {
let result;
const d21 = sub(v2, v1);
const d13 = sub(v1, v3);
const d23 = sub(v2, v3);
const m2 = mag2(d21);
const t = -dot(d13, d21)/m2;
if (t <= 0) {
// closest to point beyond v1, clip to |v3-v1|^2
result = mag2(d13);
} else if (t >= 1) {
// closest to point beyond v2, clip to |v3-v2|^2
result = mag2(d23);
} else {
// closest in-between v1, v2
result = mag2(cross(d21, d13))/m2;
}
return result;
};
// find vector orthogonal to plane of 3 pts
// -- do the below algos assume this be normalized or not?
const orthogonal = function(v1,v2,v3) {
// adjacent edge vectors
const d1 = sub(v2, v1);
const d2 = sub(v3, v2);
// cross product
return cross(d1, d2);
};
// find first element common to 3 sets by brute force search
const intersect = function(set1, set2, set3) {
for (let s1 of set1) {
for (let s2 of set2) {
if (s1 === s2) {
for (let s3 of set3) {
if (s1 === s3) {
return s1;
}
}
}
}
}
return null; // empty intersection
};
// calculate centroid of array of vertices
const calcCentroid = function(vertices) {
// running sum of vertex coords
let centroidV = [0,0,0];
for (let v of vertices) {
centroidV = add(centroidV, v);
}
return mult(1 / vertices.length, centroidV );
};
// calculate average normal vector for array of vertices
const normal = function(vertices) {
// running sum of normal vectors
let normalV = [0,0,0];
let [v1, v2] = vertices.slice(-2);
for (let v3 of vertices) {
normalV = add(normalV, orthogonal(v1, v2, v3));
[v1, v2] = [v2, v3];
} // shift over one
return unit(normalV);
};
// calculates area planar face by summing over subtriangle areas
// this assumes planarity.
const planararea = function(vertices) {
let area = 0.0;
let vsum = [0.,0.,0.];
let [v1, v2] = vertices.slice(-2);
for (let v3 of vertices) {
vsum = add(vsum, cross(v1, v2));
[v1, v2] = [v2, v3];
}
area = abs(dot(normal(vertices), vsum) / 2.0);
return area;
};
// congruence signature for assigning same colors to congruent faces
const faceSignature = function(vertices, sensitivity) {
let x;
const cross_array = [];
let [v1, v2] = vertices.slice(-2);
for (let v3 of vertices) {
// accumulate inner angles
cross_array.push(mag( cross(sub(v1, v2), sub(v3, v2)) ));
[v1, v2] = [v2, v3];
}
// sort angles to create unique sequence
cross_array.sort((a,b)=>a-b);
// render sorted angles as quantized digit strings
// this is the congruence signature
let sig = "";
for (x of cross_array) { sig+=sigfigs(x, sensitivity); }
// hack to make reflected faces share the same signature
for (x of cross_array.reverse()) { sig+=sigfigs(x, sensitivity); }
return sig;
};
// projects 3d polyhedral face to 2d polygon
// for triangulation and face display
const project2dface = function(verts){
let tmpverts = clone(verts);
const v0 = verts[0];
tmpverts = _.map(tmpverts, x=>x-v0);
const n = normal(verts);
const c = unit(calcCentroid(verts)); //XXX: correct?
const p = cross(n,c);
return tmpverts.map((v) => [dot(n, v), dot(p, v)]);
};
// copies array of arrays by value (deep copy)
const copyVecArray = function(vecArray){
const newVecArray = new Array(vecArray.length);
for (let i = 0, end = vecArray.length; i < end; i++) {
newVecArray[i] = vecArray[i].slice(0);
}
return newVecArray;
};
// 3d matrix vector multiply
const mv3 = (mat,vec) =>
//Ghetto custom def of matrix-vector mult
//example matrix: [[a,b,c],[d,e,f],[g,h,i]]
[(mat[0][0]*vec[0])+(mat[0][1]*vec[1])+(mat[0][2]*vec[2]),
(mat[1][0]*vec[0])+(mat[1][1]*vec[1])+(mat[1][2]*vec[2]),
(mat[2][0]*vec[0])+(mat[2][1]*vec[1])+(mat[2][2]*vec[2])];
// 3d matrix matrix multiply
const mm3 = (A,B) =>
[[(A[0][0]*B[0][0])+(A[0][1]*B[1][0])+(A[0][2]*B[2][0]),
(A[0][0]*B[0][1])+(A[0][1]*B[1][1])+(A[0][2]*B[2][1]),
(A[0][0]*B[0][2])+(A[0][1]*B[1][2])+(A[0][2]*B[2][2])],
[(A[1][0]*B[0][0])+(A[1][1]*B[1][0])+(A[1][2]*B[2][0]),
(A[1][0]*B[0][1])+(A[1][1]*B[1][1])+(A[1][2]*B[2][1]),
(A[1][0]*B[0][2])+(A[1][1]*B[1][2])+(A[1][2]*B[2][2])],
[(A[2][0]*B[0][0])+(A[2][1]*B[1][0])+(A[2][2]*B[2][0]),
(A[2][0]*B[0][1])+(A[2][1]*B[1][1])+(A[2][2]*B[2][1]),
(A[2][0]*B[0][2])+(A[2][1]*B[1][2])+(A[2][2]*B[2][2])]];
const eye3 = [[1,0,0], [0,1,0], [0,0,1]];
// Rotation Matrix
// Totally ghetto, not at all in agreement with euler angles!
// use quaternions instead
const rotm = function(phi,theta,psi){
const xy_mat = [
[cos(phi), -1.0*sin(phi), 0.0],
[sin(phi), cos(phi), 0.0],
[0.0, 0.0, 1.0]];
const yz_mat = [
[cos(theta), 0, -1.0*sin(theta)],
[ 0, 1, 0],
[sin(theta), 0, cos(theta)]];
const xz_mat = [
[1.0, 0, 0],
[ 0, cos(psi), -1.0*sin(psi)],
[ 0, sin(psi), cos(psi)]];
return mm3(xz_mat, mm3(yz_mat,xy_mat));
};
// Rotation Matrix defined by rotation about (unit) axis [x,y,z] for angle radians
const vec_rotm = function(angle, x, y, z) {
let m;
angle /= 2;
const sinA = sin(angle);
const cosA = cos(angle);
const sinA2 = sinA*sinA;
const length = mag([x,y,z]);
if (length === 0) {
[x, y, z] = [0, 0, 1];
}
if (length !== 1) {
[x, y, z] = unit([x, y, z]);
}
if ((x === 1) && (y === 0) && (z === 0)) {
m = [[1, 0, 0],
[0, 1-(2*sinA2), 2*sinA*cosA],
[0, -2*sinA*cosA, 1-(2*sinA2)]];
} else if ((x === 0) && (y === 1) && (z === 0)) {
m = [[1-(2*sinA2), 0, -2*sinA*cosA],
[ 0, 1, 0],
[2*sinA*cosA, 0, 1-(2*sinA2)]];
} else if ((x === 0) && (y === 0) && (z === 1)) {
m = [[ 1-(2*sinA2), 2*sinA*cosA, 0],
[ -2*sinA*cosA, 1-(2*sinA2), 0],
[ 0, 0, 1]];
} else {
const x2 = x*x;
const y2 = y*y;
const z2 = z*z;
m =
[[1-(2*(y2+z2)*sinA2), 2*((x*y*sinA2)+(z*sinA*cosA)), 2*((x*z*sinA2)-(y*sinA*cosA))],
[2*((y*x*sinA2)-(z*sinA*cosA)), 1-(2*(z2+x2)*sinA2), 2*((y*z*sinA2)+(x*sinA*cosA))],
[2*((z*x*sinA2)+(y*sinA*cosA)), 2*((z*y*sinA2)-(x*sinA*cosA)), 1-(2*(x2+y2)*sinA2)]];
}
return m;
};
// Perspective Transform
// assumes world's been rotated appropriately such that Z is depth
// scales perspective such that inside depth regions min_real_depth <--> max_real_depth
// perspective lengths vary no more than: desired_ratio
// with target dimension of roughly length: desired_length
const perspT = function(vec3, max_real_depth, min_real_depth,
desired_ratio, desired_length) {
const z0 =
((max_real_depth * desired_ratio) - min_real_depth) / (1-desired_ratio);
const scalefactor =
(desired_length * desired_ratio) / (1-desired_ratio);
// projected [X, Y]
return [(scalefactor*vec3[0])/(vec3[2]+z0), (scalefactor*vec3[1])/(vec3[2]+z0)];
};
// Inverses perspective transform by projecting plane onto a unit sphere at origin
const invperspT =
function(x, y, dx, dy, max_real_depth, min_real_depth,
desired_ratio, desired_length) {
const z0 =
((max_real_depth * desired_ratio) - min_real_depth)/(1-desired_ratio);
const s = (desired_length * desired_ratio)/(1-desired_ratio);
const xp = x-dx;
const yp = y-dy;
const s2 = s*s;
const z02 = z0*z0;
const xp2 = xp*xp;
const yp2 = yp*yp;
const xsphere = ((2*s*xp*z0)
+ sqrt((4*s2*xp2*z02)
+ (4*xp2*(s2+xp2+yp2)*(1-z02))))/(2.0*(s2+xp2+yp2));
const ysphere = (((s*yp*z0)/(s2+xp2+yp2))
+ ((yp*sqrt((4*s2*z02)
+ (4*(s2+xp2+yp2)*(1-z02))))/(2.0*(s2+xp2+yp2))));
const zsphere = sqrt(1 - (xsphere*xsphere) - (ysphere*ysphere));
return [xsphere, ysphere, zsphere];
};
// Returns rotation matrix that takes vec1 to vec2
const getVec2VecRotM = function(vec1, vec2){
const axis = cross(vec1, vec2);
const angle = acos(dot(vec1, vec2));
return vec_rotm(-1*angle, axis[0], axis[1], axis[2]);
};