-
Notifications
You must be signed in to change notification settings - Fork 317
/
Copy path_P134_PPD42.ino
553 lines (508 loc) · 19.5 KB
/
_P134_PPD42.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#ifdef USES_P134
/*
//#######################################################################################################
//#################################### Plugin 134: PPD42NJ/NS ###########################################
//#################################### by dony71 ########################################################
//#######################################################################################################
//https://diyprojects.io/calculate-air-quality-index-iaq-iqa-dsm501-arduino-esp8266/#.Wwc8j6Qvypp
//https://forum.mysensors.org/topic/147/air-quality-sensor/216
*/
#include <SimpleTimer.h>
#define PLUGIN_134
#define PLUGIN_ID_134 134
#define PLUGIN_NAME_134 "Dust sensor - PPD42NJ/NS [TESTING]"
#define PLUGIN_VALUENAME1_134 "PM1.0" // from the datasheet the detection is from PM1 and up. You could have from PM1 to PM2.5, on subtracting PM2.5 value on PM1 value. This value come from the pin #4
#define PLUGIN_VALUENAME2_134 "ppmvPM1.0"
#define PLUGIN_VALUENAME3_134 "PM2.5" // from the datasheet the detection is from PM2.5 and up. This value come from the pin #2. With different resistor topn the pin #1, you could adjust the size threshold detection
#define PLUGIN_VALUENAME4_134 "ppmvPM2.5"
#define PLUGIN_VALUENAME5_134 "AQI" // Air Quality Index Level
//#define DUST_SENSOR_DIGITAL_PIN_PM10 D3 // PPD42 Pin 2 of PPD42 (red)
//#define DUST_SENSOR_DIGITAL_PIN_PM25 D5 // PPD42 Pin 4 (yellow)
//#define COUNTRY 2 // 0. France, 1. Europe, 2. USA/China
#define FRANCE 0
#define EUROPE 1
#define USA_CHINA 2
#define EXCELLENT 1 //"Excellent"
#define GOOD 2 //"Bon"
#define ACCEPTABLE 3 //"Moyen"
#define MODERATE 4 //"Mediocre"
#define HEAVY 5 //"Mauvais"
#define SEVERE 6 //"Tres mauvais"
#define HAZARDOUS 7 //"Dangereux"
int DUST_SENSOR_DIGITAL_PIN_PM10; // PPD42 Pin 2 of PPD42 (red)
int DUST_SENSOR_DIGITAL_PIN_PM25; // PPD42 Pin 4 (yellow)
unsigned long duration;
unsigned long starttime;
unsigned long endtime;
unsigned long lowpulseoccupancy = 0;
float concentration = 0;
float ratio = 0;
unsigned long SLEEP_TIME = 2 * 1000; // Sleep time between reads (in milliseconds)
unsigned long sampletime_ms = 5 * 60 * 1000; // Durée de mesure - sample time (ms)
//ppmv = mg/m3 * (0.08205*Temp)/Molecular_mass
//mg/m3 = milligrams of pollutant per cubic meter of air at sea level atmospheric pressure and Temp
//Temp = external temperature in Kelvin (Kelvin = Celsius + 273.15), read from temperature sensor if available
//0.08205 = Universal gas constant in atm·m3/(kmol·K)
//Molecular_mass = average molecular mass of dry air : 28.97 g/mol
struct structAQI {
// variable enregistreur - recorder variables
//unsigned long durationPM10;
unsigned long lowpulseoccupancyPM10 = 0;
//unsigned long durationPM25;
unsigned long lowpulseoccupancyPM25 = 0;
unsigned long starttime;
unsigned long endtime;
// Sensor AQI data
float concentrationPM25 = 0;
float concentrationPM10 = 0;
int AqiPM10 = -1;
int AqiPM25 = -1;
float ppmvPM10 = 0;
float ppmvPM25 = 0;
// Indicateurs AQI - AQI display
int AQI = 0;
//String AqiString = "";
int AqiString = -1;
//int AqiColor = 0;
// Country Selection for AQI Level
byte COUNTRY = 2; // default USA
int enableTEMP = 0;
float temperature = 0;
};
struct structAQI AQI;
SimpleTimer timer;
////////////////////////////////////////////////////////////////////////////
boolean Plugin_134(byte function, struct EventStruct *event, String& string)
{
boolean success = false;
switch (function)
{
case PLUGIN_DEVICE_ADD:
{
Device[++deviceCount].Number = PLUGIN_ID_134;
Device[deviceCount].Type = DEVICE_TYPE_DUAL;
Device[deviceCount].VType = SENSOR_TYPE_QUAD;
Device[deviceCount].Ports = 0;
Device[deviceCount].PullUpOption = false;
Device[deviceCount].InverseLogicOption = false;
Device[deviceCount].FormulaOption = true;
Device[deviceCount].ValueCount = 5;
Device[deviceCount].SendDataOption = true;
Device[deviceCount].TimerOption = true;
Device[deviceCount].GlobalSyncOption = true;
break;
}
case PLUGIN_GET_DEVICENAME:
{
string = F(PLUGIN_NAME_134);
break;
}
case PLUGIN_GET_DEVICEVALUENAMES:
{
strcpy_P(ExtraTaskSettings.TaskDeviceValueNames[0], PSTR(PLUGIN_VALUENAME1_134));
strcpy_P(ExtraTaskSettings.TaskDeviceValueNames[1], PSTR(PLUGIN_VALUENAME2_134));
strcpy_P(ExtraTaskSettings.TaskDeviceValueNames[2], PSTR(PLUGIN_VALUENAME3_134));
strcpy_P(ExtraTaskSettings.TaskDeviceValueNames[3], PSTR(PLUGIN_VALUENAME4_134));
strcpy_P(ExtraTaskSettings.TaskDeviceValueNames[4], PSTR(PLUGIN_VALUENAME5_134));
break;
}
case PLUGIN_WEBFORM_LOAD:
{
addFormSeparator(2);
// mode
addFormCheckBox(F("Enable ppmv measurement"), F("plugin_134_enable_compensation"), Settings.TaskDevicePluginConfig[event->TaskIndex][0]);
addFormNote(F("If this is enabled, the Temperature values below need to be configured."));
// temperature
addHtml(F("<TR><TD>Temperature:<TD>"));
addTaskSelect(F("plugin_134_temperature_task"), Settings.TaskDevicePluginConfig[event->TaskIndex][1]);
LoadTaskSettings(Settings.TaskDevicePluginConfig[event->TaskIndex][1]); // we need to load the values from another task for selection!
addHtml(F("<TR><TD>Temperature Value:<TD>"));
addTaskValueSelect(F("plugin_134_temperature_value"), Settings.TaskDevicePluginConfig[event->TaskIndex][2], Settings.TaskDevicePluginConfig[event->TaskIndex][1]);
addFormSeparator(2);
// country
String options[3];
options[0] = F("France");
options[1] = F("Europe");
options[2] = F("USA/China");
int optionValues[3] = { FRANCE, EUROPE, USA_CHINA };
byte countryType = Settings.TaskDevicePluginConfig[event->TaskIndex][3];
addFormSelector(F("AQI Level Country"), F("plugin_134_country_type"), 3, options, optionValues, countryType);
LoadTaskSettings(event->TaskIndex); // we need to restore our original taskvalues!
success = true;
break;
}
case PLUGIN_WEBFORM_SAVE:
{
Settings.TaskDevicePluginConfig[event->TaskIndex][0] = isFormItemChecked(F("plugin_134_enable_compensation") );
Settings.TaskDevicePluginConfig[event->TaskIndex][1] = getFormItemInt(F("plugin_134_temperature_task"));
Settings.TaskDevicePluginConfig[event->TaskIndex][2] = getFormItemInt(F("plugin_134_temperature_value"));
Settings.TaskDevicePluginConfig[event->TaskIndex][3] = getFormItemInt(F("plugin_134_country_type"));
success = true;
break;
}
case PLUGIN_INIT:
{
String log = F("INIT : PPD42NJ/NS ");
DUST_SENSOR_DIGITAL_PIN_PM10 = Settings.TaskDevicePin1[event->TaskIndex];
pinMode(DUST_SENSOR_DIGITAL_PIN_PM10, INPUT);
log = F("PPD42NJ/NS: Controller GPIO PM1.0: ");
log += DUST_SENSOR_DIGITAL_PIN_PM10;
addLog(LOG_LEVEL_INFO, log);
DUST_SENSOR_DIGITAL_PIN_PM25 = Settings.TaskDevicePin2[event->TaskIndex];
pinMode(DUST_SENSOR_DIGITAL_PIN_PM25, INPUT);
log = F("PPD42NJ/NS: Controller GPIO PM2.5: ");
log += DUST_SENSOR_DIGITAL_PIN_PM25;
addLog(LOG_LEVEL_INFO, log);
// wait 60s for PPD42 to warm up
//log = F("(wait 60s for PPD42NJ/NS to warm up)");
log = F("(wait 10s for PPD42NJ/NS to warm up)");
addLog(LOG_LEVEL_INFO, log);
//for (int i = 1; i <= 60; i++)
for (int i = 1; i <= 10; i++)
delay(1000); // 1s
// set measuring times interval
log = F("Ready!");
addLog(LOG_LEVEL_INFO, log);
AQI.enableTEMP = Settings.TaskDevicePluginConfig[event->TaskIndex][0];
AQI.COUNTRY = Settings.TaskDevicePluginConfig[event->TaskIndex][3];
AQI.starttime = millis();
timer.setInterval(sampletime_ms, updateAQI);
success = true;
break;
}
case PLUGIN_READ:
{
String log = F("READ : PPD42NJ/NS ");
// Actualise les mesures - update measurements
getPM(DUST_SENSOR_DIGITAL_PIN_PM10, DUST_SENSOR_DIGITAL_PIN_PM25);
// Use temperature in ppmv calculation if enable
if (AQI.enableTEMP) {
// we're checking a var from another task, so calculate that basevar
byte TaskIndex1 = Settings.TaskDevicePluginConfig[event->TaskIndex][1];
byte BaseVarIndex1 = TaskIndex1 * VARS_PER_TASK + Settings.TaskDevicePluginConfig[event->TaskIndex][2];
//float temperature = UserVar[BaseVarIndex1]; // in degrees C
AQI.temperature = UserVar[BaseVarIndex1] + 273.15; // in Kelvin
AQI.ppmvPM10 = concentrationPM10_mgm3(AQI.concentrationPM10) * ((0.08205*AQI.temperature)/28.97);
AQI.ppmvPM25 = concentrationPM25_mgm3(AQI.concentrationPM25) * ((0.08205*AQI.temperature)/28.97);
UserVar[event->BaseVarIndex + 1] = AQI.ppmvPM10;
UserVar[event->BaseVarIndex + 3] = AQI.ppmvPM25;
} else {
UserVar[event->BaseVarIndex + 1] = NAN;
UserVar[event->BaseVarIndex + 3] = NAN;
}
UserVar[event->BaseVarIndex + 0] = AQI.concentrationPM10;
log = F("PPD42NJ/NS: Concentration PM1.0 in pcs/0.01cuft : ");
log += UserVar[event->BaseVarIndex + 0];
addLog(LOG_LEVEL_INFO, log);
log = F("PPD42NJ/NS: Concentration PM1.0 in ppmv : ");
log += UserVar[event->BaseVarIndex + 1];
addLog(LOG_LEVEL_INFO, log);
UserVar[event->BaseVarIndex + 2] = AQI.concentrationPM25;
log = F("PPD42NJ/NS: Concentration PM2.5 in pcs/0.01cuft : ");
log += UserVar[event->BaseVarIndex + 2];
addLog(LOG_LEVEL_INFO, log);
log = F("PPD42NJ/NS: Concentration PM2.5 in ppmv : ");
log += UserVar[event->BaseVarIndex + 3];
addLog(LOG_LEVEL_INFO, log);
UserVar[event->BaseVarIndex + 4] = AQI.AqiString;
log = F("PPD42NJ/NS: Air Quality Index Level: ");
log += UserVar[event->BaseVarIndex + 4];
addLog(LOG_LEVEL_INFO, log);
success = true;
break;
}
}
return success;
}
void updateAQI() {
// Actualise les mesures - update measurements
AQI.endtime = millis();
float ratio = AQI.lowpulseoccupancyPM10 / (sampletime_ms * 10.0);
float concentration = 1.1 * pow( ratio, 3) - 3.8 *pow(ratio, 2) + 520 * ratio + 0.62; // using spec sheet curve
if ( sampletime_ms < 3600000 ) { concentration = concentration * ( sampletime_ms / 3600000.0 ); }
AQI.lowpulseoccupancyPM10 = 0;
AQI.concentrationPM10 = concentration * 1000;
//AQI.ppmvPM10 = concentrationPM10_mgm3(AQI.concentrationPM10) * ((0.08205*AQI.temperature)/28.97);
ratio = AQI.lowpulseoccupancyPM25 / (sampletime_ms * 10.0);
concentration = 1.1 * pow( ratio, 3) - 3.8 *pow(ratio, 2) + 520 * ratio + 0.62;
if ( sampletime_ms < 3600000 ) { concentration = concentration * ( sampletime_ms / 3600000.0 ); }
AQI.lowpulseoccupancyPM25 = 0;
AQI.concentrationPM25 = concentration * 1000;
//AQI.ppmvPM25 = concentrationPM25_mgm3(AQI.concentrationPM25) * ((0.08205*AQI.temperature)/28.97);
AQI.starttime = millis();
// Actualise l'AQI de chaque capteur - update AQI for each sensor
getAQILevel();
// Actualise l'indice AQI - update AQI index
updateAQILevel();
updateAQIDisplay();
}
void getPM(int DUST_SENSOR_DIGITAL_PIN_PM10, int DUST_SENSOR_DIGITAL_PIN_PM25) {
AQI.lowpulseoccupancyPM10 += pulseIn(DUST_SENSOR_DIGITAL_PIN_PM10, LOW);
AQI.lowpulseoccupancyPM25 += pulseIn(DUST_SENSOR_DIGITAL_PIN_PM25, LOW);
timer.run();
}
void updateAQILevel() {
AQI.AQI = AQI.AqiPM10;
}
void getAQILevel() {
if ( AQI.enableTEMP ) {
if ( AQI.COUNTRY == 0 ) {
// France
AQI.AqiPM25 = getATMO( 0, AQI.ppmvPM25 );
AQI.AqiPM10 = getATMO( 1, AQI.ppmvPM10 );
} else if ( AQI.COUNTRY == 1 ) {
// Europe
AQI.AqiPM25 = getACQI( 0, AQI.ppmvPM25 );
AQI.AqiPM10 = getACQI( 1, AQI.ppmvPM10 );
} else {
// USA / China
AQI.AqiPM25 = getAQI( 0, AQI.ppmvPM25 );
AQI.AqiPM10 = getAQI( 1, AQI.ppmvPM10 );
}
} else {
if ( AQI.COUNTRY == 0 ) {
// France
AQI.AqiPM25 = getATMO( 0, AQI.concentrationPM25/1000 );
AQI.AqiPM10 = getATMO( 1, AQI.concentrationPM10/1000 );
} else if ( AQI.COUNTRY == 1 ) {
// Europe
AQI.AqiPM25 = getACQI( 0, AQI.concentrationPM25/1000 );
AQI.AqiPM10 = getACQI( 1, AQI.concentrationPM10/1000 );
} else {
// USA / China
AQI.AqiPM25 = getAQI( 0, AQI.concentrationPM25/1000 );
AQI.AqiPM10 = getAQI( 1, AQI.concentrationPM10/1000 );
}
}
}
void updateAQIDisplay() {
// 1 EXCELLENT
// 2 GOOD
// 3 ACCEPTABLE
// 4 MODERATE
// 5 HEAVY
// 6 SEVERE
// 7 HAZARDOUS
if ( AQI.COUNTRY == 0 ) {
// Système ATMO français - French ATMO AQI system
switch ( AQI.AQI) {
case 10:
AQI.AqiString = SEVERE;
break;
case 9:
AQI.AqiString = HEAVY;
break;
case 8:
AQI.AqiString = HEAVY;
break;
case 7:
AQI.AqiString = MODERATE;
break;
case 6:
AQI.AqiString = MODERATE;
break;
case 5:
AQI.AqiString = ACCEPTABLE;
break;
case 4:
AQI.AqiString = GOOD;
break;
case 3:
AQI.AqiString = GOOD;
break;
case 2:
AQI.AqiString = EXCELLENT;
break;
case 1:
AQI.AqiString = EXCELLENT;
break;
}
} else if ( AQI.COUNTRY == 1 ) {
// European CAQI
switch ( AQI.AQI) {
case 25:
AQI.AqiString = GOOD;
break;
case 50:
AQI.AqiString = ACCEPTABLE;
break;
case 75:
AQI.AqiString = MODERATE;
break;
case 100:
AQI.AqiString = HEAVY;
break;
default:
AQI.AqiString = SEVERE;
}
} else if ( AQI.COUNTRY == 2 ) {
// USA / CN
if ( AQI.AQI <= 50 ) {
AQI.AqiString = GOOD;
} else if ( AQI.AQI > 50 && AQI.AQI <= 100 ) {
AQI.AqiString = ACCEPTABLE;
} else if ( AQI.AQI > 100 && AQI.AQI <= 150 ) {
AQI.AqiString = MODERATE;
} else if ( AQI.AQI > 150 && AQI.AQI <= 200 ) {
AQI.AqiString = HEAVY;
} else if ( AQI.AQI > 200 && AQI.AQI <= 300 ) {
AQI.AqiString = SEVERE;
} else {
AQI.AqiString = HAZARDOUS;
}
}
}
// Calcul l'indice de qualité de l'air français ATMO
// Calculate French ATMO AQI indicator
int getATMO(int sensor, float density ) {
if ( sensor == 0 ) { //PM2.5
if ( density <= 11 ) {
return 1;
} else if ( density > 11 && density <= 24 ) {
return 2;
} else if ( density > 24 && density <= 36 ) {
return 3;
} else if ( density > 36 && density <= 41 ) {
return 4;
} else if ( density > 41 && density <= 47 ) {
return 5;
} else if ( density > 47 && density <= 53 ) {
return 6;
} else if ( density > 53 && density <= 58 ) {
return 7;
} else if ( density > 58 && density <= 64 ) {
return 8;
} else if ( density > 64 && density <= 69 ) {
return 9;
} else {
return 10;
}
} else { //PM1.0
if ( density <= 6 ) {
return 1;
} else if ( density > 6 && density <= 13 ) {
return 2;
} else if ( density > 13 && density <= 20 ) {
return 3;
} else if ( density > 20 && density <= 27 ) {
return 4;
} else if ( density > 27 && density <= 34 ) {
return 5;
} else if ( density > 34 && density <= 41 ) {
return 6;
} else if ( density > 41 && density <= 49 ) {
return 7;
} else if ( density > 49 && density <= 64 ) {
return 8;
} else if ( density > 64 && density <= 79 ) {
return 9;
} else {
return 10;
}
}
}
// CAQI Européen - European CAQI level
// source : http://www.airqualitynow.eu/about_indices_definition.php
int getACQI(int sensor, float density ) {
if ( sensor == 0 ) { //PM2.5
if ( density == 0 ) {
return 0;
} else if ( density <= 15 ) {
return 25 ;
} else if ( density > 15 && density <= 30 ) {
return 50;
} else if ( density > 30 && density <= 55 ) {
return 75;
} else if ( density > 55 && density <= 110 ) {
return 100;
} else {
return 150;
}
} else { //PM1.0
if ( density == 0 ) {
return 0;
} else if ( density <= 25 ) {
return 25 ;
} else if ( density > 25 && density <= 50 ) {
return 50;
} else if ( density > 50 && density <= 90 ) {
return 75;
} else if ( density > 90 && density <= 180 ) {
return 100;
} else {
return 150;
}
}
}
// AQI formula: https://en.wikipedia.org/wiki/Air_Quality_Index#United_States
// Arduino code https://gist.github.com/nfjinjing/8d63012c18feea3ed04e
// On line AQI calculator https://www.airnow.gov/index.cfm?action=resources.conc_aqi_calc
float calcAQI(float I_high, float I_low, float C_high, float C_low, float C) {
return (I_high - I_low) * (C - C_low) / (C_high - C_low) + I_low;
}
int getAQI(int sensor, float density) {
int d10 = (int)(density * 10);
if ( sensor == 0 ) { //PM2.5
if (d10 <= 0) {
return 0;
} else if(d10 <= 120) {
return calcAQI(50, 0, 120, 0, d10);
} else if (d10 <= 354) {
return calcAQI(100, 51, 354, 121, d10);
} else if (d10 <= 554) {
return calcAQI(150, 101, 554, 355, d10);
} else if (d10 <= 1504) {
return calcAQI(200, 151, 1504, 555, d10);
} else if (d10 <= 2504) {
return calcAQI(300, 201, 2504, 1505, d10);
} else if (d10 <= 3504) {
return calcAQI(400, 301, 3504, 2505, d10);
} else if (d10 <= 5004) {
return calcAQI(500, 401, 5004, 3505, d10);
} else if (d10 <= 10000) {
return calcAQI(1000, 501, 10000, 5005, d10);
} else {
return 1001;
}
} else { //PM1.0
if (d10 <= 0) {
return 0;
} else if(d10 <= 540) {
return calcAQI(50, 0, 540, 0, d10);
} else if (d10 <= 1540) {
return calcAQI(100, 51, 1540, 541, d10);
} else if (d10 <= 2540) {
return calcAQI(150, 101, 2540, 1541, d10);
} else if (d10 <= 3550) {
return calcAQI(200, 151, 3550, 2541, d10);
} else if (d10 <= 4250) {
return calcAQI(300, 201, 4250, 3551, d10);
} else if (d10 <= 5050) {
return calcAQI(400, 301, 5050, 4251, d10);
} else if (d10 <= 6050) {
return calcAQI(500, 401, 6050, 5051, d10);
} else {
return 1001;
}
}
}
float concentrationPM25_mgm3(float concentrationPM25) {
double pi = 3.14159;
double density = 1.65 * pow (10, 12);
double r25 = 0.44 * pow (10, -6);
double vol25 = (4/3) * pi * pow (r25, 3);
double mass25 = density * vol25;
double K = 3531.5;
return (concentrationPM25) * K * mass25;
}
float concentrationPM10_mgm3(float concentrationPM10) {
double pi = 3.14159;
double density = 1.65 * pow (10, 12);
double r10 = 0.44 * pow (10, -6);
double vol10 = (4/3) * pi * pow (r10, 3);
double mass10 = density * vol10;
double K = 3531.5;
return (concentrationPM10) * K * mass10;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////
#endif // USES_P134