-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
52 lines (43 loc) · 1.67 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch, torchaudio
import argparse
from preprocess import process_audio_data, process_image_data
from train import WatermelonModel
def infer(audio, image, model, device):
# Load and preprocess the input data
audio, sr = torchaudio.load(audio)
mfcc = process_audio_data(audio, sr).to(device)
img = process_image_data(image).to(device)
if mfcc is None or img is None:
return None
# Run inference
with torch.no_grad():
predicted_sweetness = model(mfcc, img).item()
return predicted_sweetness
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run Watermelon Sweetness Prediction")
parser.add_argument(
"--model_path", type=str, required=True, help="Path to the saved model file"
)
parser.add_argument(
"--audio_path", type=str, required=True, help="Path to audio file"
)
parser.add_argument(
"--image_path", type=str, required=True, help="Path to image file"
)
args = parser.parse_args()
# Initialize the model and device
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
model = WatermelonModel().to(device)
model.load_state_dict(torch.load(args.model_path, map_location=device))
# Example paths to audio and image files
audio_path = args.audio_patb
image_path = args.image_path
# Run inference
sweetness = infer(audio_path, image_path, model, device)
print(f"Predicted sweetness: {sweetness}")