Skip to content

Latest commit

 

History

History
97 lines (61 loc) · 4.06 KB

README.md

File metadata and controls

97 lines (61 loc) · 4.06 KB

fly_tf_realtime_pose_estimation

This repo is a clone of Tensorflow 2.0 Realtime Multi-Person Pose Estimation.

And it has been changed for the fruit fly and the Windows.

It can reach the speed of 20FPS in GPU(predict the picture one-by-one).

You can run 'happy_train.py' to train on your data and run 'happy_test.py' to test.

Good luck!

The following is the original repo.

Tensorflow 2.0 Realtime Multi-Person Pose Estimation

What's New

Oct 5, 2020

This repo contains a new upgraded version of the keras_Realtime_Multi-Person_Pose_Estimation project plus some extra scripts and new models.

I added a visualization of final heatmaps and pafs in the Tensorboard. Every 100 iterations, a single image is passed to the model. The predicted heatmaps and pafs are logged in the Tensorboard. You can check this visual representation of prediction every few hours as it gives a good sense of how the training performs.

Scripts and notebooks

This project contains the following scripts and jupyter notebooks:

train_singlenet_mobilenetv3.py - training code for the new model presented in this paper Single-Network Whole-Body Pose Estimation. I replaced VGG with Mobilenet V3. Simplified model with just 3 pafs and 1 heatmap.

train_2br_vgg.py - training code for the old CMU model (2017). This is a new version of the training code from the old repo keras_Realtime_Multi-Person_Pose_Estimation. It has been upgraded to Tensorflow 2.0.

convert_to_tflite.py - conversion of trained models into TFLite.

demo_image.py - pose estimation on the provided image.

demo_video.py - pose estimation on the provided video.

inspect_dataset.ipynb - helper notebook to get more insights into what is generated from the datasets.

test_openpose_singlenet_model.ipynb - helper notebook to preview the predictions from the singlenet model.

test_openpose_2br_vgg_model.ipynb - helper notebook to preview the predictions from the original vgg-based model.

test_tflite_models.ipynb - helper notebook to verify exported TFLite model.

Installation

Prerequisites

    ├── datasets
    │   └── coco_2017_dataset
    │       ├── annotations
    │       │   ├── person_keypoints_train2017.json
    │       │   └── person_keypoints_val2017.json
    │       ├── train2017/*
    │       └── val2017/*
    └── tensorflow_Realtime_Multi-Person_Pose_Estimation/*

Install

Virtualenv

pip install virtualenv
virtualenv .venv
source .venv/bin/activate
pip install -r requirements.txt

Examples

python convert_to_tflite.py --weights=[path to saved weights] --tflite-path=openpose_singlenet.tflite --create-model-fn=create_openpose_singlenet
python demo_image.py --image=resources/ski_224.jpg --output-image=out1.png --create-model-fn=create_openpose_singlenet
python demo_image.py --image=resources/ski_368.jpg --output-image=out2.png --create-model-fn=create_openpose_2branches_vgg
python demo_video.py --video=resources/sample1.mp4 --output-video=sample1_out1.mp4 --create-model-fn=create_openpose_2branches_vgg --input-size=368 --output-resize-factor=8 --paf-idx=10 --heatmap-idx=11
python demo_video.py --video=resources/sample1.mp4 --output-video=sample1_out2.mp4 --create-model-fn=create_openpose_singlenet --input-size=224 --output-resize-factor=8 --paf-idx=2 --heatmap-idx=3