-
Notifications
You must be signed in to change notification settings - Fork 348
/
Copy pathtrain.py
executable file
·166 lines (138 loc) · 7.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
from math import log10
import pandas as pd
import torch.optim as optim
import torch.utils.data
import torchvision.utils as utils
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_ssim
from data_utils import TrainDatasetFromFolder, ValDatasetFromFolder, display_transform
from loss import GeneratorLoss
from model import Generator, Discriminator
parser = argparse.ArgumentParser(description='Train Super Resolution Models')
parser.add_argument('--crop_size', default=88, type=int, help='training images crop size')
parser.add_argument('--upscale_factor', default=4, type=int, choices=[2, 4, 8],
help='super resolution upscale factor')
parser.add_argument('--num_epochs', default=100, type=int, help='train epoch number')
if __name__ == '__main__':
opt = parser.parse_args()
CROP_SIZE = opt.crop_size
UPSCALE_FACTOR = opt.upscale_factor
NUM_EPOCHS = opt.num_epochs
train_set = TrainDatasetFromFolder('data/DIV2K_train_HR', crop_size=CROP_SIZE, upscale_factor=UPSCALE_FACTOR)
val_set = ValDatasetFromFolder('data/DIV2K_valid_HR', upscale_factor=UPSCALE_FACTOR)
train_loader = DataLoader(dataset=train_set, num_workers=4, batch_size=64, shuffle=True)
val_loader = DataLoader(dataset=val_set, num_workers=4, batch_size=1, shuffle=False)
netG = Generator(UPSCALE_FACTOR)
print('# generator parameters:', sum(param.numel() for param in netG.parameters()))
netD = Discriminator()
print('# discriminator parameters:', sum(param.numel() for param in netD.parameters()))
generator_criterion = GeneratorLoss()
if torch.cuda.is_available():
netG.cuda()
netD.cuda()
generator_criterion.cuda()
optimizerG = optim.Adam(netG.parameters())
optimizerD = optim.Adam(netD.parameters())
results = {'d_loss': [], 'g_loss': [], 'd_score': [], 'g_score': [], 'psnr': [], 'ssim': []}
for epoch in range(1, NUM_EPOCHS + 1):
train_bar = tqdm(train_loader)
running_results = {'batch_sizes': 0, 'd_loss': 0, 'g_loss': 0, 'd_score': 0, 'g_score': 0}
netG.train()
netD.train()
for data, target in train_bar:
g_update_first = True
batch_size = data.size(0)
running_results['batch_sizes'] += batch_size
############################
# (1) Update G network: minimize 1-D(G(z)) + Perception Loss + Image Loss + TV Loss
###########################
real_img = target
if torch.cuda.is_available():
real_img = real_img.float().cuda()
z = data
if torch.cuda.is_available():
z = z.float().cuda()
fake_img = netG(z)
fake_out = netD(fake_img).mean()
optimizerG.zero_grad()
g_loss = generator_criterion(fake_out, fake_img, real_img)
g_loss.backward()
optimizerG.step()
############################
# (2) Update D network: maximize D(x)-1-D(G(z))
###########################
real_out = netD(real_img).mean()
fake_out = netD(fake_img.detach()).mean()
d_loss = 1 - real_out + fake_out
optimizerD.zero_grad()
d_loss.backward()
fake_img = netG(z)
fake_out = netD(fake_img).mean()
optimizerD.step()
# loss for current batch before optimization
running_results['g_loss'] += g_loss.item() * batch_size
running_results['d_loss'] += d_loss.item() * batch_size
running_results['d_score'] += real_out.item() * batch_size
running_results['g_score'] += fake_out.item() * batch_size
train_bar.set_description(desc='[%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f' % (
epoch, NUM_EPOCHS, running_results['d_loss'] / running_results['batch_sizes'],
running_results['g_loss'] / running_results['batch_sizes'],
running_results['d_score'] / running_results['batch_sizes'],
running_results['g_score'] / running_results['batch_sizes']))
netG.eval()
out_path = 'training_results/SRF_' + str(UPSCALE_FACTOR) + '/'
if not os.path.exists(out_path):
os.makedirs(out_path)
with torch.no_grad():
val_bar = tqdm(val_loader)
valing_results = {'mse': 0, 'ssims': 0, 'psnr': 0, 'ssim': 0, 'batch_sizes': 0}
val_images = []
for val_lr, val_hr_restore, val_hr in val_bar:
batch_size = val_lr.size(0)
valing_results['batch_sizes'] += batch_size
lr = val_lr
hr = val_hr
if torch.cuda.is_available():
lr = lr.float().cuda()
hr = hr.float().cuda()
sr = netG(lr)
batch_mse = ((sr - hr) ** 2).data.mean()
valing_results['mse'] += batch_mse * batch_size
batch_ssim = pytorch_ssim.ssim(sr, hr).item()
valing_results['ssims'] += batch_ssim * batch_size
valing_results['psnr'] = 10 * log10((hr.max()**2) / (valing_results['mse'] / valing_results['batch_sizes']))
valing_results['ssim'] = valing_results['ssims'] / valing_results['batch_sizes']
val_bar.set_description(
desc='[converting LR images to SR images] PSNR: %.4f dB SSIM: %.4f' % (
valing_results['psnr'], valing_results['ssim']))
val_images.extend(
[display_transform()(val_hr_restore.squeeze(0)), display_transform()(hr.data.cpu().squeeze(0)),
display_transform()(sr.data.cpu().squeeze(0))])
val_images = torch.stack(val_images)
val_images = torch.chunk(val_images, val_images.size(0) // 15)
val_save_bar = tqdm(val_images, desc='[saving training results]')
index = 1
for image in val_save_bar:
image = utils.make_grid(image, nrow=3, padding=5)
utils.save_image(image, out_path + 'epoch_%d_index_%d.png' % (epoch, index), padding=5)
index += 1
# save model parameters
torch.save(netG.state_dict(), 'epochs/netG_epoch_%d_%d.pth' % (UPSCALE_FACTOR, epoch))
torch.save(netD.state_dict(), 'epochs/netD_epoch_%d_%d.pth' % (UPSCALE_FACTOR, epoch))
# save loss\scores\psnr\ssim
results['d_loss'].append(running_results['d_loss'] / running_results['batch_sizes'])
results['g_loss'].append(running_results['g_loss'] / running_results['batch_sizes'])
results['d_score'].append(running_results['d_score'] / running_results['batch_sizes'])
results['g_score'].append(running_results['g_score'] / running_results['batch_sizes'])
results['psnr'].append(valing_results['psnr'])
results['ssim'].append(valing_results['ssim'])
if epoch % 10 == 0 and epoch != 0:
out_path = 'statistics/'
data_frame = pd.DataFrame(
data={'Loss_D': results['d_loss'], 'Loss_G': results['g_loss'], 'Score_D': results['d_score'],
'Score_G': results['g_score'], 'PSNR': results['psnr'], 'SSIM': results['ssim']},
index=range(1, epoch + 1))
data_frame.to_csv(out_path + 'srf_' + str(UPSCALE_FACTOR) + '_train_results.csv', index_label='Epoch')