-
Notifications
You must be signed in to change notification settings - Fork 348
/
Copy pathtest_benchmark.py
executable file
·80 lines (66 loc) · 2.97 KB
/
test_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import os
from math import log10
import numpy as np
import pandas as pd
import torch
import torchvision.utils as utils
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_ssim
from data_utils import TestDatasetFromFolder, display_transform
from model import Generator
parser = argparse.ArgumentParser(description='Test Benchmark Datasets')
parser.add_argument('--upscale_factor', default=4, type=int, help='super resolution upscale factor')
parser.add_argument('--model_name', default='netG_epoch_4_100.pth', type=str, help='generator model epoch name')
opt = parser.parse_args()
UPSCALE_FACTOR = opt.upscale_factor
MODEL_NAME = opt.model_name
results = {'Set5': {'psnr': [], 'ssim': []}, 'Set14': {'psnr': [], 'ssim': []}, 'BSD100': {'psnr': [], 'ssim': []},
'Urban100': {'psnr': [], 'ssim': []}, 'SunHays80': {'psnr': [], 'ssim': []}}
model = Generator(UPSCALE_FACTOR).eval()
if torch.cuda.is_available():
model = model.cuda()
model.load_state_dict(torch.load('epochs/' + MODEL_NAME))
test_set = TestDatasetFromFolder('data/test', upscale_factor=UPSCALE_FACTOR)
test_loader = DataLoader(dataset=test_set, num_workers=4, batch_size=1, shuffle=False)
test_bar = tqdm(test_loader, desc='[testing benchmark datasets]')
out_path = 'benchmark_results/SRF_' + str(UPSCALE_FACTOR) + '/'
if not os.path.exists(out_path):
os.makedirs(out_path)
for image_name, lr_image, hr_restore_img, hr_image in test_bar:
image_name = image_name[0]
lr_image = Variable(lr_image, volatile=True)
hr_image = Variable(hr_image, volatile=True)
if torch.cuda.is_available():
lr_image = lr_image.cuda()
hr_image = hr_image.cuda()
sr_image = model(lr_image)
mse = ((hr_image - sr_image) ** 2).data.mean()
psnr = 10 * log10(1 / mse)
ssim = pytorch_ssim.ssim(sr_image, hr_image).data[0]
test_images = torch.stack(
[display_transform()(hr_restore_img.squeeze(0)), display_transform()(hr_image.data.cpu().squeeze(0)),
display_transform()(sr_image.data.cpu().squeeze(0))])
image = utils.make_grid(test_images, nrow=3, padding=5)
utils.save_image(image, out_path + image_name.split('.')[0] + '_psnr_%.4f_ssim_%.4f.' % (psnr, ssim) +
image_name.split('.')[-1], padding=5)
# save psnr\ssim
results[image_name.split('_')[0]]['psnr'].append(psnr)
results[image_name.split('_')[0]]['ssim'].append(ssim)
out_path = 'statistics/'
saved_results = {'psnr': [], 'ssim': []}
for item in results.values():
psnr = np.array(item['psnr'])
ssim = np.array(item['ssim'])
if (len(psnr) == 0) or (len(ssim) == 0):
psnr = 'No data'
ssim = 'No data'
else:
psnr = psnr.mean()
ssim = ssim.mean()
saved_results['psnr'].append(psnr)
saved_results['ssim'].append(ssim)
data_frame = pd.DataFrame(saved_results, results.keys())
data_frame.to_csv(out_path + 'srf_' + str(UPSCALE_FACTOR) + '_test_results.csv', index_label='DataSet')