diff --git a/SphereEversion/Local/HPrinciple.lean b/SphereEversion/Local/HPrinciple.lean index 1941b813..71b3e35e 100644 --- a/SphereEversion/Local/HPrinciple.lean +++ b/SphereEversion/Local/HPrinciple.lean @@ -53,7 +53,7 @@ need to access its components only once. noncomputable section -open scoped unitInterval Classical Filter Topology +open scoped unitInterval Filter Topology open Filter Set RelLoc @@ -94,8 +94,6 @@ structure StepLandscape extends Landscape E where variable {E} -open scoped Classical - variable (R : RelLoc E F) namespace StepLandscape diff --git a/SphereEversion/ToMathlib/Geometry/Manifold/VectorBundle/Misc.lean b/SphereEversion/ToMathlib/Geometry/Manifold/VectorBundle/Misc.lean index f17c0f0c..22163248 100644 --- a/SphereEversion/ToMathlib/Geometry/Manifold/VectorBundle/Misc.lean +++ b/SphereEversion/ToMathlib/Geometry/Manifold/VectorBundle/Misc.lean @@ -12,12 +12,9 @@ import Mathlib.Topology.VectorBundle.Hom # Various operations on and properties of smooth vector bundles -/ - noncomputable section -open Bundle Set TopologicalSpace PartialHomeomorph - -open scoped Classical Manifold Bundle +open Bundle Set namespace FiberBundle diff --git a/SphereEversion/ToMathlib/Topology/Misc.lean b/SphereEversion/ToMathlib/Topology/Misc.lean index e30177c2..8d83dcf1 100644 --- a/SphereEversion/ToMathlib/Topology/Misc.lean +++ b/SphereEversion/ToMathlib/Topology/Misc.lean @@ -6,13 +6,10 @@ import Mathlib.Topology.Algebra.Order.Floor noncomputable section open Set Function Filter TopologicalSpace - -open scoped unitInterval Topology uniformity Filter Classical +open scoped unitInterval Topology uniformity section Maps -open Function Set - variable {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] {f : α → β} {g : β → α} -- TODO: move to Data.Set.Defs @@ -205,7 +202,7 @@ section -- TODO: move to Mathlib.Topology.Constructions -- needs classical variable {α β γ δ ι : Type*} [TopologicalSpace α] [TopologicalSpace β] {x : α} - +open scoped Classical in theorem isOpen_slice_of_isOpen_over {Ω : Set (α × β)} {x₀ : α} (hΩ_op : ∃ U ∈ 𝓝 x₀, IsOpen (Ω ∩ Prod.fst ⁻¹' U)) : IsOpen (Prod.mk x₀ ⁻¹' Ω) := by rcases hΩ_op with ⟨U, hU, hU_op⟩; convert hU_op.preimage (Continuous.Prod.mk x₀) using 1 @@ -333,8 +330,6 @@ theorem decode₂_locallyFinite {ι} [Encodable ι] {s : ι → Set α} (hs : Lo simp_rw [mem_setOf_eq, h, map_none, getD_none, empty_inter] at hn exact (not_nonempty_empty hn).elim -open TopologicalSpace - variable {X : Type*} [EMetricSpace X] [LocallyCompactSpace X] [SecondCountableTopology X] theorem exists_locallyFinite_subcover_of_locally {C : Set X} (hC : IsClosed C) {P : Set X → Prop} @@ -428,6 +423,7 @@ theorem cover_nat_nhdsWithin {α} [TopologicalSpace α] [SecondCountableTopology rw [biUnion_range] at hsf exact ⟨x, hts, hsf⟩ +open scoped Classical in /-- A version of `TopologicalSpace.cover_nat_nhdsWithin` where `f` is only defined on `s`. -/ theorem cover_nat_nhdsWithin' {α} [TopologicalSpace α] [SecondCountableTopology α] {s : Set α} {f : ∀ x ∈ s, Set α} (hf : ∀ (x) (hx : x ∈ s), f x hx ∈ 𝓝[s] x) (hs : s.Nonempty) : @@ -523,8 +519,6 @@ theorem exists_subset_iUnion_interior_of_isOpen (hs : IsOpen s) (uo : ∀ i, IsO end ShrinkingLemma -open scoped Filter - theorem Filter.EventuallyEq.slice {α β γ : Type*} [TopologicalSpace α] [TopologicalSpace β] {f g : α × β → γ} {a : α} {b : β} (h : f =ᶠ[𝓝 (a, b)] g) : (fun y ↦ f (a, y)) =ᶠ[𝓝 b] fun y ↦ g (a, y) :=