From 7b1308fb1e7e00efcce535cb42e26009c27dbc3c Mon Sep 17 00:00:00 2001 From: Patrick Massot Date: Fri, 24 May 2024 10:52:03 -0400 Subject: [PATCH] Fix Lean names in blueprint --- blueprint/src/global_convex_integration.tex | 6 +++--- blueprint/src/local_convex_integration.tex | 8 ++++---- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/blueprint/src/global_convex_integration.tex b/blueprint/src/global_convex_integration.tex index 70f31df2..ef09508a 100644 --- a/blueprint/src/global_convex_integration.tex +++ b/blueprint/src/global_convex_integration.tex @@ -366,7 +366,7 @@ \subsection{Jets spaces} \begin{definition} \label{def:holonomic_section} \leanok -\lean{OneJetSet.IsHolonomicAt, OneJetSec.isHolonomicAt_iff} +\lean{OneJetSec.IsHolonomicAt, OneJetSec.isHolonomicAt_iff} \uses{def:one_jet_space} A section $\F$ of $J^1(M, N) → M$ is called holonomic if it is the $1$--jet of its base map. @@ -520,7 +520,7 @@ \subsection*{Parametricity for free} \label{lem:param_for_free} \uses{def:h-princ} \leanok - \lean{RelMfld.SatisfiesHPrinciple.SatisfiesHPrincipleWith} + \lean{RelMfld.SatisfiesHPrinciple.satisfiesHPrincipleWith} Let $\Rel$ be a first order differential relation for maps from $M$ to $N$. If, for every manifold with boundary $P$, $\Rel^P$ satisfies the @@ -631,7 +631,7 @@ \section{The $h$-principle for open and ample differential relations} \label{thm:open_ample} % \uses{def:h-princ} % causes transitive arrow in depgraph \leanok - \lean{RelMfld.Ample.SatisfiesHPrincipleWith} + \lean{RelMfld.Ample.satisfiesHPrincipleWith} For any manifolds $X$ and $Y$, any relation $\Rel ⊂ J^1(X, Y)$ that is open and ample satisfies the full $h$-principle (relative, parametric and $C^0$-dense). \end{theorem} diff --git a/blueprint/src/local_convex_integration.tex b/blueprint/src/local_convex_integration.tex index 9f671dd6..f0f720c7 100644 --- a/blueprint/src/local_convex_integration.tex +++ b/blueprint/src/local_convex_integration.tex @@ -101,7 +101,7 @@ \section{The main inductive step} \begin{definition} \label{def:hol_partial} \leanok - \lean{JetSet.IsPartHolonomicAt} + \lean{JetSec.IsPartHolonomicAt} Let $E'$ be a linear subspace of $E$. A map $\F = (f, φ) : E → F × \Hom(E, F)$ is $E'$--holonomic if, for every $v$ in $E'$ and every $x$, $Df(x)v = φ(x)v$. @@ -134,7 +134,7 @@ \section{The main inductive step} \begin{definition} \label{def:htpy_jet_sec_loc} \leanok - \lean{htpy_jet_sec} + \lean{HtpyJetSec} A $1$-jet section from $E$ to $F$ is a function from $E$ to $F × \Hom(E, F)$. A homotopy of $1$-jet sections is a smooth map $\F : ℝ × E → F × \Hom(E, F)$. @@ -327,7 +327,7 @@ \section{Ample differential relations} \begin{lemma} \label{lem:ample_codim_two} \uses{def:ample_subset} - \lean{ample_of_two_le_codim} + \lean{AmpleSet.of_one_lt_codim} \leanok The complement of a linear subspace of codimension at least 2 is ample. @@ -369,7 +369,7 @@ \section{Ample differential relations} \begin{definition} \label{def:ample_relation_loc} \leanok - \lean{RelLoc.isAmple} + \lean{RelLoc.IsAmple} \uses{def:ample_subset, def:rel_slice} A first order differential relation $\Rel$ is ample if all its slices are ample.