From 55ae28a6363026145f1eae23d2bdc826e3d2e677 Mon Sep 17 00:00:00 2001
From: leanprover-community-bot In 1. The Irrationality of the Square Root
+
@@ -85,7 +85,7 @@ 2. Fundamental Theorem of Algebra
(hf : 0 < f.degree)
:
3. The Denumerability of the Rational N
+
@@ -121,7 +121,7 @@ 4. Pythagorean Theorem
(p1 p2 p3 : P)
:
7. Law of Quadratic Reciprocity
(hpq : p ≠ q)
:
9. The Area of a Circle Theorems100.area_disc
(r : NNReal)
:
+
@@ -189,7 +189,7 @@ 10. Euler’s Generalization of Fermat
(h : x.Coprime n)
:
-
+
@@ -202,7 +202,7 @@ 11. The Infinitude of Primes Nat.exists_infinite_primes
(n : ℕ)
:
-
+
@@ -213,7 +213,7 @@ 14. Euler’s Summation of 1 + (1/2)^2
-
+
@@ -244,7 +244,7 @@ 15. Fundamental Theorem of Integral Ca
(hb : Filter.Tendsto f (nhds b ⊓ MeasureTheory.ae MeasureTheory.volume) (nhds c))
:
+
15. Fundamental Theorem of Integral Ca
(f'int : IntervalIntegrable f' MeasureTheory.volume a b)
:
16. Insolvability of General Higher De
+
@@ -294,7 +294,7 @@ 17. De Moivre’s Formula
(z : ℂ)
:
18. Liouville’s Theorem and the Cons
(lx : Liouville x)
:
-
+
@@ -322,7 +322,7 @@ 19. Four Squares Theorem Nat.sum_four_squares
(n : ℕ)
:
-
+
@@ -339,7 +339,7 @@ 20. All Primes (1 mod 4) Equal the Sum
(hp : p % 4 ≠ 3)
:
-
+
@@ -350,7 +350,7 @@ 22. The Non-Denumerability of the Cont
+
@@ -364,7 +364,7 @@ 23. Formula for Pythagorean Triples {x y z : ℤ}
:
-
+
@@ -394,7 +394,7 @@ 25. Schroeder-Bernstein Theorem
(hg : Function.Injective g)
:
26. Leibniz’s Series for Pi
27. Sum of the Angles of a Triangle
(h3 : p3 ≠ p1)
:
30. The Ballot Problem Ballot.ballot_problem
(q p : ℕ)
:
+
@@ -465,7 +465,7 @@ 34. Divergence of the Harmonic Series
+
@@ -489,7 +489,7 @@ 35. Taylor’s Theorem (hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Set.Icc x₀ x)) (Set.Ioo x₀ x))
:
37. The Solution of a Cubic
(x : K)
:
38. Arithmetic Mean/Geometric Mean
(hz : ∀ i ∈ s, 0 ≤ z i)
:
-
+
@@ -596,7 +596,7 @@
39. Solutions to Pell’s Equation
(hp : x * x - Pell.d✝ a1 * y * y = 1)
:
-
+
pell.eq_pell
, d
is defined to be a*a - 1
for an arbitrary a > 1
.
it also has a generalized version, by showing that every Euclidean domain is a unique factorization domain, and showing that the integers form a Euclidean domain.
@@ -1516,11 +1516,11 @@it also has a generalized version, by showing that every Euclidean domain is a unique factorization domain, and showing that the integers form a Euclidean domain.
@@ -1166,7 +1166,7 @@In pell.eq_pell
, d
is defined to be a*a - 1
for an arbitrary a > 1
.
Urysohn's metrization theorem (only)
@@ -2559,7 +2559,7 @@baby version: for compact manifolds; embedding into some n
@@ -2688,7 +2688,7 @@A formalisation of the consistency of Quine's New Foundations axiom system, following Randall Holmes' proof. This is arguably the longest standing open question in set theory.
+This repository contains tutorials about Lean and mathlib that were developed +for the workshop Lean for the Curious Mathematician, +held in July 2020. The tutorials range from introductory lessons on numbers, +logic, and sets to advanced lessons on category theory and manifolds. +In addition to the materials found in this repository, we recommend watching +the videos +of the tutorials and lectures from the workshop.
This repository contains tutorials about Lean and mathlib that were developed -for the workshop Lean for the Curious Mathematician, -held in July 2020. The tutorials range from introductory lessons on numbers, -logic, and sets to advanced lessons on category theory and manifolds. -In addition to the materials found in this repository, we recommend watching -the videos -of the tutorials and lectures from the workshop.
+A formalisation of the consistency of Quine's New Foundations axiom system, following Randall Holmes' proof. This is arguably the longest standing open question in set theory.