From f7c233c7f7fd9d8b74595bbfa2bbbd49d538ef59 Mon Sep 17 00:00:00 2001 From: zeramorphic Date: Mon, 2 Dec 2024 17:39:32 +0000 Subject: [PATCH] Complete formalisation of Con(NF) Signed-off-by: zeramorphic --- ConNF.lean | 1 + ConNF/Construction/Hailperin.lean | 3 +- ConNF/Construction/Result.lean | 82 +++++++++++++++++++++++++++++++ 3 files changed, 85 insertions(+), 1 deletion(-) create mode 100644 ConNF/Construction/Result.lean diff --git a/ConNF.lean b/ConNF.lean index 0b081c4baf..da084e0f6e 100644 --- a/ConNF.lean +++ b/ConNF.lean @@ -15,6 +15,7 @@ import ConNF.Construction.Hailperin import ConNF.Construction.InductionStatement import ConNF.Construction.NewModelData import ConNF.Construction.RaiseStrong +import ConNF.Construction.Result import ConNF.Construction.RunInduction import ConNF.Construction.TTT import ConNF.Counting.BaseCoding diff --git a/ConNF/Construction/Hailperin.lean b/ConNF/Construction/Hailperin.lean index a6aa6cd222..1fc40153db 100644 --- a/ConNF/Construction/Hailperin.lean +++ b/ConNF/Construction/Hailperin.lean @@ -379,7 +379,8 @@ theorem exists_cardinalOne : theorem exists_subset : ∃ x : TSet α, ∀ a b, op hγ hδ a b ∈[hβ] x ↔ ∀ c : TSet ε, c ∈[hε] a → c ∈[hε] b := by - have := exists_of_symmetric {a | ∃ b c, a = op hγ hδ b c ∧ ∀ d : TSet ε, d ∈[hε] b → d ∈[hε] c} hβ ?_ + have := exists_of_symmetric {a | ∃ b c, a = op hγ hδ b c ∧ + ∀ d : TSet ε, d ∈[hε] b → d ∈[hε] c} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro a b diff --git a/ConNF/Construction/Result.lean b/ConNF/Construction/Result.lean new file mode 100644 index 0000000000..11a38b311d --- /dev/null +++ b/ConNF/Construction/Result.lean @@ -0,0 +1,82 @@ +import ConNF.Construction.Hailperin + +/-! +# New file + +In this file... + +## Main declarations + +* `ConNF.foo`: Something new. +-/ + +noncomputable section +universe u + +open Cardinal Ordinal ConNF.TSet + +namespace ConNF + +variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) + (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) + +theorem ext (x y : TSet α) : + (∀ z : TSet β, z ∈[hβ] x ↔ z ∈[hβ] y) → x = y := + tSet_ext' hβ x y + +theorem exists_inter (x y : TSet α) : + ∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z ∈[hβ] x ∧ z ∈[hβ] y := + TSet.exists_inter hβ x y + +theorem exists_compl (x : TSet α) : + ∃ y : TSet α, ∀ z : TSet β, z ∈[hβ] y ↔ ¬z ∈[hβ] x := + TSet.exists_compl hβ x + +theorem mem_singleton_iff (x y : TSet β) : + y ∈[hβ] singleton hβ x ↔ y = x := + typedMem_singleton_iff' hβ x y + +theorem mem_up_iff (x y z : TSet β) : + z ∈[hβ] up hβ x y ↔ z = x ∨ z = y := + TSet.mem_up_iff hβ x y z + +theorem op_def (x y : TSet γ) : + op hβ hγ x y = up hβ (singleton hγ x) (up hγ x y) := + rfl + +theorem exists_singletonImage (x : TSet β) : + ∃ y : TSet α, ∀ z w, + op hγ hδ (singleton hε z) (singleton hε w) ∈[hβ] y ↔ op hδ hε z w ∈[hγ] x := + TSet.exists_singletonImage hβ hγ hδ hε x + +theorem exists_insertion2 (x : TSet γ) : + ∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ + op hε hζ a c ∈[hδ] x := + TSet.exists_insertion2 hβ hγ hδ hε hζ x + +theorem exists_insertion3 (x : TSet γ) : + ∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ + op hε hζ a b ∈[hδ] x := + TSet.exists_insertion3 hβ hγ hδ hε hζ x + +theorem exists_cross (x : TSet γ) : + ∃ y : TSet α, ∀ a, a ∈[hβ] y ↔ ∃ b c, a = op hγ hδ b c ∧ c ∈[hδ] x := + TSet.exists_cross hβ hγ hδ x + +theorem exists_typeLower (x : TSet α) : + ∃ y : TSet δ, ∀ a, a ∈[hε] y ↔ ∀ b, op hγ hδ b (singleton hε a) ∈[hβ] x := + TSet.exists_typeLower hβ hγ hδ hε x + +theorem exists_converse (x : TSet α) : + ∃ y : TSet α, ∀ a b, op hγ hδ a b ∈[hβ] y ↔ op hγ hδ b a ∈[hβ] x := + TSet.exists_converse hβ hγ hδ x + +theorem exists_cardinalOne : + ∃ x : TSet α, ∀ a : TSet β, a ∈[hβ] x ↔ ∃ b, ∀ c : TSet γ, c ∈[hγ] a ↔ c = b := + TSet.exists_cardinalOne hβ hγ + +theorem exists_subset : + ∃ x : TSet α, ∀ a b, op hγ hδ a b ∈[hβ] x ↔ ∀ c : TSet ε, c ∈[hε] a → c ∈[hε] b := + TSet.exists_subset hβ hγ hδ hε + +end ConNF