diff --git a/ConNF/Counting/Conclusions.lean b/ConNF/Counting/Conclusions.lean index fcbddb19c7..b9be7dafb9 100644 --- a/ConNF/Counting/Conclusions.lean +++ b/ConNF/Counting/Conclusions.lean @@ -53,44 +53,13 @@ theorem TSet.code_injective {β : Λ} [LeLevel β] : Function.Injective (TSet.co simp only [← hc, h₁, Enumeration.smul_f] at this exact this.symm -theorem mk_tSet_le (β : Λ) [LeLevel β] (hzero : #(CodingFunction 0) < #μ) : #(TSet β) ≤ #μ := by - refine (mk_le_of_injective TSet.code_injective).trans ?_ - simp only [mk_prod, lift_id, mk_support] - exact Cardinal.mul_le_of_le (mk_codingFunction β hzero).le le_rfl - Params.μ_isStrongLimit.isLimit.aleph0_le - -theorem mk_tangle_le (β : Λ) [LeLevel β] : #(Tangle β) ≤ #(TSet β) * #(Support β) := by - refine mk_le_of_injective (f := fun t : Tangle β => (t.set, t.support)) ?_ - intro t₁ t₂ h - simp only [Prod.mk.injEq] at h - exact Tangle.ext t₁ t₂ h.1 h.2 - -theorem exists_tangle [i : CountingAssumptions] {β : TypeIndex} [iβ : LeLevel β] (t : TSet β) : - ∃ u : Tangle β, u.set = t := by - revert i iβ - change (_ : _) → _ - refine WithBot.recBotCoe ?_ ?_ β - · intro _ _ t - exact ⟨t, rfl⟩ - · intro β _ _ t - obtain ⟨S, hS⟩ := t.has_support - exact ⟨⟨t, S, hS⟩, rfl⟩ - -protected noncomputable def Tangle.typedAtom (β : Λ) [LeLevel β] (a : Atom) : Tangle β := - (exists_tangle (typedAtom a)).choose - -protected noncomputable def Tangle.typedAtom_injective (β : Λ) [LeLevel β] : - Function.Injective (Tangle.typedAtom β) := by - intro a₁ a₂ h - refine (typedAtom (α := β)).injective ?_ - rw [← (exists_tangle (typedAtom a₁)).choose_spec, ← (exists_tangle (typedAtom a₂)).choose_spec] - exact congr_arg Tangle.set h - -theorem mk_tangle (β : Λ) [LeLevel β] (hzero : #(CodingFunction 0) < #μ) : #(Tangle β) = #μ := by +theorem mk_tSet (β : Λ) [LeLevel β] (hzero : #(CodingFunction 0) < #μ) : #(TSet β) = #μ := by refine le_antisymm ?_ ?_ - · refine le_trans (mk_tangle_le β) ?_ - exact mul_le_of_le (mk_tSet_le β hzero) mk_support.le Params.μ_isStrongLimit.isLimit.aleph0_le - · have := mk_le_of_injective (Tangle.typedAtom_injective β) + · refine (mk_le_of_injective TSet.code_injective).trans ?_ + simp only [mk_prod, lift_id, mk_support] + exact Cardinal.mul_le_of_le (mk_codingFunction β hzero).le le_rfl + Params.μ_isStrongLimit.isLimit.aleph0_le + · have := mk_le_of_injective (typedAtom (α := β)).injective simp only [mk_atom] at this exact this diff --git a/ConNF/Model/Construction.lean b/ConNF/Model/Construction.lean index ac023396a9..045a70ae96 100644 --- a/ConNF/Model/Construction.lean +++ b/ConNF/Model/Construction.lean @@ -421,6 +421,11 @@ theorem tangleData_cast_toStructPerm (α : Λ) (i₁ i₂ : TangleData α) (h : i₂.allowableToStructPerm (cast (show i₁.Allowable = i₂.Allowable by rw [h]) ρ) := by subst h; rfl +theorem tangleData_cast_toPretangle (α : Λ) (i₁ i₂ : TangleData α) (h : i₁ = i₂) (t) : + i₁.toPretangle t = + i₂.toPretangle (cast (show i₁.TSet = i₂.TSet by rw [h]) t) := + by subst h; rfl + theorem tangleData_cast_smul (α : Λ) (i₁ i₂ : TangleData α) (h : i₁ = i₂) (ρ t) : cast (show i₁.TSet = i₂.TSet by rw [h]) (i₁.allowableAction.smul ρ t) = i₂.allowableAction.smul @@ -480,6 +485,19 @@ theorem fuzz_cast (β : TypeIndex) (γ : Λ) (hβγ : β ≠ γ) (cast (show (letI := i₁; Tangle β) = (letI := i₂; Tangle β) by rw [hi]) t)) := by subst hi; subst hj; rfl +@[simp] +theorem foaData_tSet_eq_equiv_toPretangle (α : Λ) (ihs : (β : Λ) → β < α → IH β) (t) : + letI : Level := ⟨α⟩ + letI : LeLevel α := ⟨le_rfl⟩ + (letI : FOAData := buildStepFOAData α ihs + toPretangle t) = + (letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ + letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ + letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects + letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects + NewTSet.toPretangle (foaData_tSet_eq_equiv α ihs t)) := + tangleData_cast_toPretangle α _ _ (tangleDataStepFn_eq α ihs) t + @[simp] theorem foaData_allowable_eq_equiv_one (α : Λ) (ihs : (β : Λ) → β < α → IH β) : foaData_allowable_eq_equiv α ihs 1 = 1 := @@ -514,6 +532,16 @@ theorem foaData_allowable_eq_equiv_smul (α : Λ) (ihs : (β : Λ) → β < α foaData_allowable_eq_equiv α ihs ρ • foaData_tSet_eq_equiv α ihs t := tangleData_cast_smul α _ _ (tangleDataStepFn_eq α ihs) ρ t +@[simp] +theorem foaData_tSet_lt_equiv_toPretangle (α : Λ) (ihs : (β : Λ) → β < α → IH β) + (β : Λ) (hβ : β < α) (t) : + letI : Level := ⟨α⟩ + letI : LeLevel β := ⟨coe_le_coe.mpr hβ.le⟩ + (letI : FOAData := buildStepFOAData α ihs + toPretangle t) = + (ihs β hβ).toPretangle (foaData_tSet_lt_equiv α ihs β hβ t) := + tangleData_cast_toPretangle β _ _ (tangleDataStepFn_lt α ihs β hβ) t + theorem foaData_allowable_lt (α : Λ) (ihs : (β : Λ) → β < α → IH β) (β : Λ) (hβ : β < α) : letI : Level := ⟨α⟩ letI : LeLevel β := ⟨coe_le_coe.mpr hβ.le⟩ @@ -677,6 +705,31 @@ def foaData_allowable_lt'_equiv (α : Λ) (ihs : (β : Λ) → β < α → IH β Allowable β) := Equiv.cast (foaData_allowable_lt' α ihs β hβ) +theorem foaData_tSet_lt' (α : Λ) (ihs : (β : Λ) → β < α → IH β) (β : TypeIndex) (hβ : β < α) : + letI : Level := ⟨α⟩ + letI : LtLevel β := ⟨hβ⟩ + (letI : FOAData := buildStepFOAData α ihs + TSet β) = + (letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ + TSet β) := by + revert hβ + refine WithBot.recBotCoe ?_ ?_ β + · intro hβ + rfl + · intro β hβ + rw [foaData_tSet_lt] + rfl + +def foaData_tSet_lt'_equiv (α : Λ) (ihs : (β : Λ) → β < α → IH β) + (β : TypeIndex) (hβ : β < α) : + letI : Level := ⟨α⟩ + letI : LtLevel β := ⟨hβ⟩ + (letI : FOAData := buildStepFOAData α ihs + TSet β) ≃ + (letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ + TSet β) := + Equiv.cast (foaData_tSet_lt' α ihs β hβ) + theorem foaData_tangle_lt' (α : Λ) (ihs : (β : Λ) → β < α → IH β) (β : TypeIndex) (hβ : β < α) : letI : Level := ⟨α⟩ letI : LtLevel β := ⟨hβ⟩ @@ -1225,151 +1278,6 @@ noncomputable def buildStepFOAAssumptions (α : Λ) (ihs : (β : Λ) → β < α allowable_of_smulFuzz := allowable_of_smulFuzz_step α ihs h } -#exit - -def toPretangleStepLt (α : Λ) (ihs : (β : Λ) → β < α → IH β) - (β : TypeIndex) : - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - (_ : LtLevel β) → Tangle β → Pretangle β := - match β with - | ⊥ => fun _ => Pretangle.ofBot - | (β : Λ) => fun iβ t => - letI : Level := ⟨α⟩ - (ihs β (coe_lt_coe.mp iβ.elim)).toPretangle - (foaData_tSet_lt_equiv α ihs β (coe_lt_coe.mp iβ.elim) t) - -def toPretangleStep (α : Λ) (ihs : (β : Λ) → β < α → IH β) - (β : TypeIndex) : - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - (_ : LeLevel β) → Tangle β → Pretangle β := - if hβ : β = α then - letI : Level := ⟨α⟩ - letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ - letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ - letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects - letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects - fun _ t => hβ ▸ NewTangle.toPretangle - (foaData_tSet_eq_equiv α ihs (cast (by subst hβ; rfl) t)) - (fun γ hγ s => toPretangleStepLt α ihs γ hγ - ((foaData_tangle_lt'_equiv α ihs γ hγ.elim).symm s)) - else - letI : Level := ⟨α⟩ - fun iβ => toPretangleStepLt α ihs β ⟨lt_of_le_of_ne iβ.elim hβ⟩ - -theorem toPretangleStep_eq (α : Λ) (ihs : (β : Λ) → β < α → IH β) (t) : - letI : Level := ⟨α⟩ - toPretangleStep α ihs α ⟨le_rfl⟩ t = - letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ - letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ - letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects - letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects - NewTangle.toPretangle - (foaData_tSet_eq_equiv α ihs t) - (fun γ hγ s => toPretangleStepLt α ihs γ hγ - ((foaData_tangle_lt'_equiv α ihs γ hγ.elim).symm s)) := by - rw [toPretangleStep, dif_pos rfl] - rfl - -theorem toPretangleStep_lt' (α : Λ) (ihs : (β : Λ) → β < α → IH β) - (β : TypeIndex) (hβ : β < α) (t) : - letI : Level := ⟨α⟩ - toPretangleStep α ihs β ⟨hβ.le⟩ t = toPretangleStepLt α ihs β ⟨hβ⟩ t := by - rw [toPretangleStep, dif_neg (ne_of_lt hβ)] - -theorem toPretangleStepLt_bot (α : Λ) (ihs : (β : Λ) → β < α → IH β) (t) : - letI : Level := ⟨α⟩ - toPretangleStepLt α ihs ⊥ inferInstance t = Pretangle.ofBot t := - rfl - -theorem toPretangleStepLt_coe (α : Λ) (ihs : (β : Λ) → β < α → IH β) - (β : Λ) (hβ : β < α) (t) : - letI : Level := ⟨α⟩ - toPretangleStepLt α ihs β ⟨coe_lt_coe.mpr hβ⟩ t = - (ihs β hβ).toPretangle (foaData_tSet_lt_equiv α ihs β hβ t) := - rfl - -theorem toPretangleLt_smul (α : Λ) (ihs : (β : Λ) → β < α → IH β) - (h : ∀ (β : Λ) (hβ : β < α), IHProp β (fun γ hγ => ihs γ (hγ.trans_lt hβ))) - (β : TypeIndex) [iβ : letI : Level := ⟨α⟩; LtLevel β] - (ρ : - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - Allowable β) - (t : - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - Tangle β) : - toPretangleStepLt α ihs β iβ (ρ • t) = ρ • toPretangleStepLt α ihs β iβ t := by - revert iβ ihs - refine WithBot.recBotCoe ?_ ?_ β - · intro ihs _ iβ ρ t - rfl - · intro β ihs _ iβ ρ t - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - have hβ' := coe_lt_coe.mp iβ.elim - rw [toPretangleStepLt_coe α ihs β hβ', toPretangleStepLt_coe α ihs β hβ'] - rw [foaData_allowable_lt_equiv_smul, (ihs β hβ').toPretangle_smul] - rw [Allowable.toStructPerm_smul, foaData_allowable_lt_equiv_toStructPerm] - rfl - -theorem toPretangle_smul_step (α : Λ) (ihs : (β : Λ) → β < α → IH β) - (h : ∀ (β : Λ) (hβ : β < α), IHProp β (fun γ hγ => ihs γ (hγ.trans_lt hβ))) - (β : TypeIndex) [iβ : letI : Level := ⟨α⟩; LeLevel β] - (ρ : - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - Allowable β) - (t : - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - Tangle β) : - toPretangleStep α ihs β iβ (ρ • t) = ρ • toPretangleStep α ihs β iβ t := by - revert iβ ihs - refine WithBot.recBotCoe ?_ ?_ β - · intro ihs _ iβ ρ t - rfl - intro β ihs h iβ ρ t - letI : Level := ⟨α⟩ - letI : FOAData := buildStepFOAData α ihs - by_cases hβ : β = α - · cases hβ - rw [toPretangleStep_eq, toPretangleStep_eq, foaData_allowable_eq_equiv_smul] - letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ - letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ - letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects - letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects - have := NewTangle.toPretangle_smul - (foaData_allowable_eq_equiv α ihs ρ) (foaData_tSet_eq_equiv α ihs t) - (fun β hβ => toPretangleStepLt α ihs β hβ ∘ - (foaData_tangle_lt'_equiv α ihs β hβ.elim).symm) ?_ - · erw [← this] - rw [Allowable.toStructPerm_smul, foaData_allowable_eq_equiv_toStructPerm] - rfl - · intro β iβ ρ t - have := toPretangleLt_smul α ihs h β - ((foaData_allowable_lt'_equiv α ihs β iβ.elim).symm ρ) - ((foaData_tangle_lt'_equiv α ihs β iβ.elim).symm t) - simp only [comp_apply] - rw [Allowable.toStructPerm_smul, foaData_allowable_lt'_equiv_toStructPerm, - Equiv.apply_symm_apply] at this - erw [← this] - have := foaData_allowable_lt'_equiv_smul α ihs β iβ.elim - ((foaData_allowable_lt'_equiv α ihs β iβ.elim).symm ρ) - ((foaData_tangle_lt'_equiv α ihs β iβ.elim).symm t) - rw [Equiv.apply_symm_apply, Equiv.apply_symm_apply] at this - rw [← this, Equiv.symm_apply_apply] - · letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ - letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ - letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects - letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects - have hβ' := lt_of_le_of_ne iβ.elim (coe_ne_coe.mpr hβ) - letI : LtLevel β := ⟨hβ'⟩ - rw [toPretangleStep_lt' α ihs β hβ', toPretangleStep_lt' α ihs β hβ'] - exact toPretangleLt_smul α ihs h β ρ t - theorem eq_toPretangle_of_mem_step (α : Λ) (ihs : (β : Λ) → β < α → IH β) (h : ∀ (β : Λ) (hβ : β < α), IHProp β (fun γ hγ => ihs γ (hγ.trans_lt hβ))) (β : Λ) [iβ : letI : Level := ⟨α⟩; LeLevel β] @@ -1378,76 +1286,67 @@ theorem eq_toPretangle_of_mem_step (α : Λ) (ihs : (β : Λ) → β < α → IH (t₁ : letI : Level := ⟨α⟩ letI : FOAData := buildStepFOAData α ihs - Tangle β) : - ∀ t₂ ∈ Pretangle.ofCoe (toPretangleStep α ihs β iβ t₁) γ hγβ, - ∃ t₂', t₂ = toPretangleStep α ihs γ iγ t₂' := by - letI : Level := ⟨α⟩ - letI iγ' : LtLevel γ := ⟨hγβ.trans_le iβ.elim⟩ + TSet β) : + letI : Level := ⟨α⟩ + letI : FOAData := buildStepFOAData α ihs + ∀ t₂ ∈ Pretangle.ofCoe (toPretangle t₁) γ hγβ, ∃ t₂', t₂ = toPretangle t₂' := by by_cases hβ : β = α · cases hβ - rw [toPretangleStep_eq] - simp_rw [toPretangleStep_lt' α ihs γ hγβ] intro t₂ ht₂ - simp_rw [NewTangle.toPretangle, Semitangle.toPretangle] at ht₂ - simp only [Pretangle.ofCoe_symm, exists_and_right, Pretangle.ofCoe_toCoe, mem_setOf_eq] at ht₂ - obtain ⟨t₂', _, ht₂⟩ := ht₂ - exact ⟨(foaData_tangle_lt'_equiv α ihs γ iγ'.elim).symm t₂', ht₂.symm⟩ - · intro t₂ ht₂ + erw [foaData_tSet_eq_equiv_toPretangle α ihs t₁] at ht₂ + simp only [NewTSet.toPretangle, Semitangle.toPretangle, Pretangle.ofCoe_symm, exists_and_right, + Pretangle.ofCoe_toCoe, mem_setOf_eq] at ht₂ + obtain ⟨s, _, rfl⟩ := ht₂ + have := foaData_tSet_lt_equiv_toPretangle α ihs γ (coe_lt_coe.mp hγβ) + ((foaData_tSet_lt_equiv α ihs γ (coe_lt_coe.mp hγβ)).symm s) + rw [Equiv.apply_symm_apply] at this + exact ⟨(foaData_tSet_lt_equiv α ihs γ (coe_lt_coe.mp hγβ)).symm s, this.symm⟩ + · letI : Level := ⟨α⟩ have hβ' := lt_of_le_of_ne (coe_le_coe.mp iβ.elim) hβ - have hγ' := coe_lt_coe.mp iγ'.elim + have hγ' := coe_lt_coe.mp (hγβ.trans_le iβ.elim) + intro t₂ ht₂ have := (h β hβ').eq_toPretangle_of_mem γ (coe_lt_coe.mp hγβ) - (foaData_tangle_lt'_equiv α ihs β (coe_lt_coe.mpr hβ') t₁) t₂ ?_ - · obtain ⟨t₂', ht₂'⟩ := this - refine ⟨(foaData_tangle_lt'_equiv α ihs γ iγ'.elim).symm t₂', ?_⟩ - rw [ht₂', toPretangleStep_lt' α ihs γ iγ'.elim, - toPretangleStepLt_coe α ihs γ (coe_lt_coe.mp iγ'.elim), - foaData_tangle_lt'_equiv_eq_lt_equiv α ihs γ (coe_lt_coe.mp iγ'.elim)] - erw [Equiv.apply_symm_apply] - · rw [foaData_tangle_lt'_equiv_eq_lt_equiv α ihs β hβ'] - rw [toPretangleStep_lt' α ihs β (coe_lt_coe.mpr hβ'), - toPretangleStepLt_coe α ihs β hβ'] at ht₂ + (foaData_tSet_lt_equiv α ihs β hβ' t₁) t₂ ?_ + · obtain ⟨t₂', rfl⟩ := this + refine ⟨(foaData_tSet_lt_equiv α ihs γ hγ').symm t₂', ?_⟩ + rw [foaData_tSet_lt_equiv_toPretangle α ihs γ hγ', Equiv.apply_symm_apply] + · rw [foaData_tSet_lt_equiv_toPretangle α ihs β hβ'] at ht₂ exact ht₂ theorem toPretangle_ext_step (α : Λ) (ihs : (β : Λ) → β < α → IH β) (h : ∀ (β : Λ) (hβ : β < α), IHProp β (fun γ hγ => ihs γ (hγ.trans_lt hβ))) (β : Λ) (γ : Λ) - [iβ : letI : Level := ⟨α⟩; LeLevel β] [iγ : letI : Level := ⟨α⟩; LeLevel γ] + [iβ : letI : Level := ⟨α⟩; LeLevel β] [letI : Level := ⟨α⟩; LeLevel γ] (hγβ : (γ : TypeIndex) < β) (t₁ t₂ : letI : Level := ⟨α⟩ letI : FOAData := buildStepFOAData α ihs - Tangle β) : - (∀ t : Pretangle γ, t ∈ Pretangle.ofCoe (toPretangleStep α ihs β iβ t₁) γ hγβ ↔ - t ∈ Pretangle.ofCoe (toPretangleStep α ihs β iβ t₂) γ hγβ) → - toPretangleStep α ihs β iβ t₁ = toPretangleStep α ihs β iβ t₂ := by + TSet β) : + letI : Level := ⟨α⟩ + letI : FOAData := buildStepFOAData α ihs + (∀ t : Pretangle γ, t ∈ Pretangle.ofCoe (toPretangle t₁) γ hγβ ↔ + t ∈ Pretangle.ofCoe (toPretangle t₂) γ hγβ) → + toPretangle t₁ = toPretangle t₂ := by letI : Level := ⟨α⟩ - letI iγ : LtLevel γ := ⟨hγβ.trans_le iβ.elim⟩ - letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ - letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ - letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects - letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects by_cases hβ : β = α · cases hβ intro ht - simp only [NewTangle.toPretangle, toPretangleStep_eq] at ht ⊢ - have := Semitangle.ext (γ := γ) (foaData_tSet_eq_equiv α ihs t₁).t - (foaData_tSet_eq_equiv α ihs t₂).t ?_ - · rw [this] - simp only [Semitangle.toPretangle, Pretangle.ofCoe_symm, exists_and_right, - Pretangle.ofCoe_toCoe, mem_setOf_eq] at ht - ext s - constructor - · intro hs - obtain ⟨s', hs'⟩ := (ht _).mp ⟨s, hs, rfl⟩ - rw [toPretangleStepLt_coe α ihs γ (coe_lt_coe.mp iγ.elim), - toPretangleStepLt_coe α ihs γ (coe_lt_coe.mp iγ.elim)] at hs' - sorry - · sorry - · intro ht - have hβ' := lt_of_le_of_ne (coe_le_coe.mp iβ.elim) hβ - simp only [toPretangleStep_lt' α ihs β (coe_lt_coe.mpr hβ'), - toPretangleStepLt_coe α ihs β hβ'] at ht ⊢ - exact (h β hβ').toPretangle_ext γ (coe_lt_coe.mp hγβ) _ _ ht + erw [foaData_tSet_eq_equiv_toPretangle α ihs t₁, + foaData_tSet_eq_equiv_toPretangle α ihs t₂] at ht ⊢ + have : LtLevel γ := ⟨hγβ⟩ + letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ + letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ + letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects + letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects + have := NewTSet.ext γ (foaData_tSet_eq_equiv α ihs t₁) (foaData_tSet_eq_equiv α ihs t₂) ht + rw [EmbeddingLike.apply_eq_iff_eq] at this + cases this + rfl + · have hβ' := lt_of_le_of_ne (coe_le_coe.mp iβ.elim) hβ + intro ht + simp only [foaData_tSet_lt_equiv_toPretangle α ihs β hβ'] at ht ⊢ + exact (h β hβ').toPretangle_ext γ (coe_lt_coe.mp hγβ) + (foaData_tSet_lt_equiv α ihs β hβ' t₁) (foaData_tSet_lt_equiv α ihs β hβ' t₂) ht noncomputable def buildStepCountingAssumptions (α : Λ) (ihs : (β : Λ) → β < α → IH β) (h : ∀ (β : Λ) (hβ : β < α), IHProp β (fun γ hγ => ihs γ (hγ.trans_lt hβ))) : @@ -1456,11 +1355,9 @@ noncomputable def buildStepCountingAssumptions (α : Λ) (ihs : (β : Λ) → β letI : Level := ⟨α⟩ letI : FOAAssumptions := buildStepFOAAssumptions α ihs h { - eq_toPretangle_of_mem := sorry -- eq_toPretangle_of_mem_step α ihs h - toPretangle_ext := sorry -- toPretangle_ext_step α ihs h - tangle_ext := sorry + eq_toPretangle_of_mem := eq_toPretangle_of_mem_step α ihs h + toPretangle_ext := toPretangle_ext_step α ihs h singleton := sorry - singleton_support := sorry singleton_toPretangle := sorry } @@ -1471,19 +1368,19 @@ theorem mk_codingFunction_le (α : Λ) (ihs : (β : Λ) → β < α → IH β) #(CodingFunction 0) < #μ := sorry -theorem mk_tangle_step (α : Λ) (ihs : (β : Λ) → β < α → IH β) +theorem mk_tSet_step (α : Λ) (ihs : (β : Λ) → β < α → IH β) (h : ∀ (β : Λ) (hβ : β < α), IHProp β (fun γ hγ => ihs γ (hγ.trans_lt hβ))) : letI : Level := ⟨α⟩ letI : TangleDataLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).tangleData⟩ letI : PositionedTanglesLt := ⟨fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedTangles⟩ letI : TypedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).typedObjects letI : PositionedObjectsLt := fun β hβ => (ihs β (coe_lt_coe.mp hβ.elim)).positionedObjects - #NewTangle = #μ := by + #NewTSet = #μ := by letI : Level := ⟨α⟩ letI : CountingAssumptions := buildStepCountingAssumptions α ihs h haveI : LeLevel α := ⟨le_rfl⟩ rw [← foaData_tSet_eq] - exact mk_tangle α (mk_codingFunction_le α ihs h) + exact mk_tSet α (mk_codingFunction_le α ihs h) noncomputable def buildStep (α : Λ) (ihs : (β : Λ) → β < α → IH β) (h : ∀ (β : Λ) (hβ : β < α), IHProp β (fun γ hγ => ihs γ (hγ.trans_lt hβ))) : IH α := @@ -1502,7 +1399,6 @@ noncomputable def buildStep (α : Λ) (ihs : (β : Λ) → β < α → IH β) pos := sorry pos_typedAtom := sorry pos_typedNearLitter := sorry - toPretangle := sorry } noncomputable def buildStepFn (α : Λ) (ihs : (β : Λ) → β < α → IH β) diff --git a/ConNF/NewTangle/NewTangle.lean b/ConNF/NewTangle/NewTangle.lean index 2288d5063a..a696b1edb9 100644 --- a/ConNF/NewTangle/NewTangle.lean +++ b/ConNF/NewTangle/NewTangle.lean @@ -698,4 +698,22 @@ theorem NewTSet.toPretangle_smul (ρ : NewAllowable) (t : NewTSet) : (ρ • t).toPretangle = ρ • t.toPretangle := (t.val.toPretangle_smul ρ).symm +theorem NewTSet.ext (γ : Λ) [iγ : LtLevel γ] (t₁ t₂ : NewTSet) + (h : ∀ p, p ∈ Pretangle.ofCoe t₁.toPretangle γ iγ.elim ↔ + p ∈ Pretangle.ofCoe t₂.toPretangle γ iγ.elim) : + t₁ = t₂ := by + refine Subtype.ext (Semitangle.ext (γ := γ) t₁ t₂ ?_) + simp only [NewTSet.toPretangle, Semitangle.toPretangle, Pretangle.ofCoe_symm, exists_and_right, + Pretangle.ofCoe_toCoe] at h + ext u + constructor + · intro hu + obtain ⟨v, hv, huv⟩ := (h (toPretangle u)).mp ⟨u, hu, rfl⟩ + cases toPretangle.injective huv + exact hv + · intro hu + obtain ⟨v, hv, huv⟩ := (h (toPretangle u)).mpr ⟨u, hu, rfl⟩ + cases toPretangle.injective huv + exact hv + end ConNF