From 94aa6fc17b51fae63cc17757ca8c6f0ac58ca551 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Fri, 22 Mar 2024 09:40:36 +1100 Subject: [PATCH 01/44] chore: adaptations for nightly-2024-03-19 (#703) --- Std.lean | 1 - Std/CodeAction/Attr.lean | 2 +- Std/CodeAction/Deprecated.lean | 4 +- Std/Data/List/Perm.lean | 3 +- Std/Logic.lean | 3 -- Std/Tactic/Alias.lean | 4 +- Std/Tactic/Lint/Basic.lean | 6 ++- Std/Tactic/OpenPrivate.lean | 2 +- Std/Tactic/PrintDependents.lean | 4 +- Std/Tactic/Relation/Rfl.lean | 78 --------------------------------- lean-toolchain | 2 +- test/rfl.lean | 3 +- 12 files changed, 17 insertions(+), 95 deletions(-) delete mode 100644 Std/Tactic/Relation/Rfl.lean diff --git a/Std.lean b/Std.lean index 4141189d59..b7cbdd26d7 100644 --- a/Std.lean +++ b/Std.lean @@ -93,7 +93,6 @@ import Std.Tactic.OpenPrivate import Std.Tactic.PermuteGoals import Std.Tactic.PrintDependents import Std.Tactic.PrintPrefix -import Std.Tactic.Relation.Rfl import Std.Tactic.SeqFocus import Std.Tactic.SqueezeScope import Std.Tactic.Unreachable diff --git a/Std/CodeAction/Attr.lean b/Std/CodeAction/Attr.lean index f748450e7d..ad5e0f62d3 100644 --- a/Std/CodeAction/Attr.lean +++ b/Std/CodeAction/Attr.lean @@ -124,7 +124,7 @@ initialize if (IR.getSorryDep (← getEnv) decl).isSome then return -- ignore in progress definitions modifyEnv (tacticSeqCodeActionExt.addEntry · (decl, ← mkTacticSeqCodeAction decl)) else - let args ← args.mapM resolveGlobalConstNoOverloadWithInfo + let args ← args.mapM realizeGlobalConstNoOverloadWithInfo if (IR.getSorryDep (← getEnv) decl).isSome then return -- ignore in progress definitions modifyEnv (tacticCodeActionExt.addEntry · (⟨decl, args⟩, ← mkTacticCodeAction decl)) | _ => pure () diff --git a/Std/CodeAction/Deprecated.lean b/Std/CodeAction/Deprecated.lean index 132edd575b..e17ed8b2f0 100644 --- a/Std/CodeAction/Deprecated.lean +++ b/Std/CodeAction/Deprecated.lean @@ -29,8 +29,8 @@ def deprecatedCodeActionProvider : CodeActionProvider := fun params snap => do let mut i := 0 let doc ← readDoc let mut msgs := #[] - for diag in snap.interactiveDiags do - if let some #[.deprecated] := diag.tags? then + for m in snap.msgLog.msgs do + if m.data.isDeprecationWarning then if h : _ then msgs := msgs.push (snap.cmdState.messages.msgs[i]'h) i := i + 1 diff --git a/Std/Data/List/Perm.lean b/Std/Data/List/Perm.lean index aa382e3ad4..2438d0f0f5 100644 --- a/Std/Data/List/Perm.lean +++ b/Std/Data/List/Perm.lean @@ -4,9 +4,10 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad, Mario Carneiro -/ import Std.Tactic.Alias -import Std.Tactic.Relation.Rfl import Std.Data.List.Init.Attach import Std.Data.List.Pairwise +-- Adaptation note: nightly-2024-03-18. We should be able to remove this after nightly-2024-03-19. +import Lean.Elab.Tactic.Rfl /-! # List Permutations diff --git a/Std/Logic.lean b/Std/Logic.lean index e7703371ff..1069b48c75 100644 --- a/Std/Logic.lean +++ b/Std/Logic.lean @@ -32,9 +32,6 @@ end Classical theorem heq_iff_eq : HEq a b ↔ a = b := ⟨eq_of_heq, heq_of_eq⟩ -theorem proof_irrel_heq {p q : Prop} (hp : p) (hq : q) : HEq hp hq := by - cases propext (iff_of_true hp hq); rfl - @[simp] theorem eq_rec_constant {α : Sort _} {a a' : α} {β : Sort _} (y : β) (h : a = a') : (@Eq.rec α a (fun α _ => β) y a' h) = y := by cases h; rfl diff --git a/Std/Tactic/Alias.lean b/Std/Tactic/Alias.lean index 87bbf2aba4..0be46ea599 100644 --- a/Std/Tactic/Alias.lean +++ b/Std/Tactic/Alias.lean @@ -79,7 +79,7 @@ def setDeprecatedTarget (target : Name) (arr : Array Attribute) : Array Attribut -/ elab (name := alias) mods:declModifiers "alias " alias:ident " := " name:ident : command => Command.liftTermElabM do - let name ← resolveGlobalConstNoOverloadWithInfo name + let name ← realizeGlobalConstNoOverloadWithInfo name let cinfo ← getConstInfo name let declMods ← elabModifiers mods let (attrs, machineApplicable) := setDeprecatedTarget name declMods.attrs @@ -164,7 +164,7 @@ private def addSide (mp : Bool) (declName : Name) (declMods : Modifiers) (thm : elab (name := aliasLR) mods:declModifiers "alias " "⟨" aliasFwd:binderIdent ", " aliasRev:binderIdent "⟩" " := " name:ident : command => Command.liftTermElabM do - let name ← resolveGlobalConstNoOverloadWithInfo name + let name ← realizeGlobalConstNoOverloadWithInfo name let declMods ← elabModifiers mods let declMods := { declMods with attrs := (setDeprecatedTarget name declMods.attrs).1 } let .thmInfo thm ← getConstInfo name | throwError "Target must be a theorem" diff --git a/Std/Tactic/Lint/Basic.lean b/Std/Tactic/Lint/Basic.lean index a14cea4afd..31ed595743 100644 --- a/Std/Tactic/Lint/Basic.lean +++ b/Std/Tactic/Lint/Basic.lean @@ -34,16 +34,18 @@ expansion. def isAutoDecl (decl : Name) : CoreM Bool := do if decl.hasMacroScopes then return true if decl.isInternal then return true + let env ← getEnv + if isReservedName env decl then return true if let Name.str n s := decl then if s.startsWith "proof_" || s.startsWith "match_" || s.startsWith "unsafe_" then return true - if (← getEnv).isConstructor n && ["injEq", "inj", "sizeOf_spec"].any (· == s) then + if env.isConstructor n && ["injEq", "inj", "sizeOf_spec"].any (· == s) then return true if let ConstantInfo.inductInfo _ := (← getEnv).find? n then if [casesOnSuffix, recOnSuffix, brecOnSuffix, binductionOnSuffix, belowSuffix, "ibelow", "ndrec", "ndrecOn", "noConfusionType", "noConfusion", "ofNat", "toCtorIdx" ].any (· == s) then return true - if let some _ := isSubobjectField? (← getEnv) n s then + if let some _ := isSubobjectField? env n s then return true pure false diff --git a/Std/Tactic/OpenPrivate.lean b/Std/Tactic/OpenPrivate.lean index 0d3686a264..7ade0b94d9 100644 --- a/Std/Tactic/OpenPrivate.lean +++ b/Std/Tactic/OpenPrivate.lean @@ -49,7 +49,7 @@ def elabOpenPrivateLike (ids : Array Ident) (tgts mods : Option (Array Ident)) (f : (priv full user : Name) → CommandElabM Name) : CommandElabM Unit := do let mut names := NameSet.empty for tgt in tgts.getD #[] do - let n ← resolveGlobalConstNoOverloadWithInfo tgt + let n ← liftCoreM <| realizeGlobalConstNoOverloadWithInfo tgt names ← Meta.collectPrivateIn n names for mod in mods.getD #[] do let some modIdx := (← getEnv).moduleIdxForModule? mod.getId diff --git a/Std/Tactic/PrintDependents.lean b/Std/Tactic/PrintDependents.lean index 007bb6c7a0..3234456a63 100644 --- a/Std/Tactic/PrintDependents.lean +++ b/Std/Tactic/PrintDependents.lean @@ -16,7 +16,7 @@ of all theorems directly referenced that are "to blame" for this dependency. Use unexpected dependencies. -/ namespace Std.Tactic -open Lean Elab +open Lean Elab Command namespace CollectDependents @@ -88,7 +88,7 @@ theorem bar' : 1 = 1 ∨ 1 ≠ 1 := foo -/ elab tk:"#print" &"dependents" ids:(ppSpace colGt ident)* : command => do let env ← getEnv - let ids ← ids.mapM fun c => return (← resolveGlobalConstNoOverloadWithInfo c, true) + let ids ← ids.mapM fun c => return (← liftCoreM <| realizeGlobalConstNoOverloadWithInfo c, true) let init := CollectDependents.mkState ids false let mut state := init let mut out := #[] diff --git a/Std/Tactic/Relation/Rfl.lean b/Std/Tactic/Relation/Rfl.lean deleted file mode 100644 index 13a1c7d4c4..0000000000 --- a/Std/Tactic/Relation/Rfl.lean +++ /dev/null @@ -1,78 +0,0 @@ -/- -Copyright (c) 2022 Newell Jensen. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. -Authors: Newell Jensen, Thomas Murrills --/ -import Lean.Meta.Tactic.Apply -import Lean.Elab.Tactic.Basic - -/-! -# `rfl` tactic extension for reflexive relations - -This extends the `rfl` tactic so that it works on any reflexive relation, -provided the reflexivity lemma has been marked as `@[refl]`. --/ - -namespace Std.Tactic - -open Lean Meta - -/-- Discrimation tree settings for the `refl` extension. -/ -def reflExt.config : WhnfCoreConfig := {} - -/-- Environment extensions for `refl` lemmas -/ -initialize reflExt : - SimpleScopedEnvExtension (Name × Array DiscrTree.Key) (DiscrTree Name) ← - registerSimpleScopedEnvExtension { - addEntry := fun dt (n, ks) => dt.insertCore ks n - initial := {} - } - -initialize registerBuiltinAttribute { - name := `refl - descr := "reflexivity relation" - add := fun decl _ kind => MetaM.run' do - let declTy := (← getConstInfo decl).type - let (_, _, targetTy) ← withReducible <| forallMetaTelescopeReducing declTy - let fail := throwError - "@[refl] attribute only applies to lemmas proving x ∼ x, got {declTy}" - let .app (.app rel lhs) rhs := targetTy | fail - unless ← withNewMCtxDepth <| isDefEq lhs rhs do fail - let key ← DiscrTree.mkPath rel reflExt.config - reflExt.add (decl, key) kind -} - -open Elab Tactic - -/-- `MetaM` version of the `rfl` tactic. - -This tactic applies to a goal whose target has the form `x ~ x`, where `~` is a reflexive -relation, that is, a relation which has a reflexive lemma tagged with the attribute [refl]. --/ -def _root_.Lean.MVarId.applyRfl (goal : MVarId) : MetaM Unit := do - let .app (.app rel _) _ ← whnfR <|← instantiateMVars <|← goal.getType - | throwError "reflexivity lemmas only apply to binary relations, not{ - indentExpr (← goal.getType)}" - let s ← saveState - let mut ex? := none - for lem in ← (reflExt.getState (← getEnv)).getMatch rel reflExt.config do - try - let gs ← goal.apply (← mkConstWithFreshMVarLevels lem) - if gs.isEmpty then return () else - logError <| MessageData.tagged `Tactic.unsolvedGoals <| m!"unsolved goals\n{ - goalsToMessageData gs}" - catch e => - ex? := ex? <|> (some (← saveState, e)) -- stash the first failure of `apply` - s.restore - if let some (sErr, e) := ex? then - sErr.restore - throw e - else - throwError "rfl failed, no lemma with @[refl] applies" - -/-- -This tactic applies to a goal whose target has the form `x ~ x`, where `~` is a reflexive -relation, that is, a relation which has a reflexive lemma tagged with the attribute [refl]. --/ -elab_rules : tactic - | `(tactic| rfl) => withMainContext do liftMetaFinishingTactic (·.applyRfl) diff --git a/lean-toolchain b/lean-toolchain index c532a09f53..5e613f5757 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-03-13 +leanprover/lean4:nightly-2024-03-19 diff --git a/test/rfl.lean b/test/rfl.lean index 8d2383785d..b9bb0db0ee 100644 --- a/test/rfl.lean +++ b/test/rfl.lean @@ -1,4 +1,5 @@ -import Std.Tactic.Relation.Rfl +import Lean.Elab.Tactic.Rfl +-- Adaptation note: we should be able to remove this import after nightly-2024-03-19 set_option linter.missingDocs false From 015ec0ded403d3b8a3221cd0ab8fc40e07f38929 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Tue, 2 Apr 2024 09:17:57 +1100 Subject: [PATCH 02/44] fix --- Std/Data/List/Lemmas.lean | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 35f1ada533..924ad6d430 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -7,6 +7,7 @@ import Std.Control.ForInStep.Lemmas import Std.Data.Nat.Basic import Std.Data.List.Basic import Std.Tactic.Init +import Std.Tactic.Alias namespace List @@ -925,7 +926,6 @@ theorem get_take' (L : List α) {j i} : theorem get?_take {l : List α} {n m : Nat} (h : m < n) : (l.take n).get? m = l.get? m := by induction n generalizing l m with | zero => - simp only [Nat.zero_eq] at h exact absurd h (Nat.not_lt_of_le m.zero_le) | succ _ hn => cases l with From 6d707f7c4d5c56495292637d5cefb0f4f691e8bc Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Tue, 2 Apr 2024 09:27:11 +1100 Subject: [PATCH 03/44] chore: adaptations for nightly-2024-04-01 (#721) * chore: adaptations for nightly-2024-04-01 * whitespace --- Std/Data/Array/Lemmas.lean | 24 ++-- Std/Data/List/Basic.lean | 244 ------------------------------------- Std/Data/List/Lemmas.lean | 2 +- Std/Tactic/Where.lean | 2 +- lean-toolchain | 2 +- scripts/check_imports.lean | 2 +- test/print_prefix.lean | 14 +-- 7 files changed, 22 insertions(+), 268 deletions(-) diff --git a/Std/Data/Array/Lemmas.lean b/Std/Data/Array/Lemmas.lean index ada732af64..afd71f84f0 100644 --- a/Std/Data/Array/Lemmas.lean +++ b/Std/Data/Array/Lemmas.lean @@ -18,12 +18,6 @@ import Std.Util.ProofWanted @[simp] theorem getElem!_fin [GetElem Cont Nat Elem Dom] (a : Cont) (i : Fin n) [Decidable (Dom a i)] [Inhabited Elem] : a[i]! = a[i.1]! := rfl -theorem getElem?_pos [GetElem Cont Idx Elem Dom] - (a : Cont) (i : Idx) (h : Dom a i) [Decidable (Dom a i)] : a[i]? = a[i] := dif_pos h - -theorem getElem?_neg [GetElem Cont Idx Elem Dom] - (a : Cont) (i : Idx) (h : ¬Dom a i) [Decidable (Dom a i)] : a[i]? = none := dif_neg h - @[simp] theorem mkArray_data (n : Nat) (v : α) : (mkArray n v).data = List.replicate n v := rfl @[simp] theorem getElem_mkArray (n : Nat) (v : α) (h : i < (mkArray n v).size) : @@ -91,13 +85,19 @@ theorem get?_push_eq (a : Array α) (x : α) : (a.push x)[a.size]? = some x := b rw [getElem?_pos, get_push_eq] theorem get?_push {a : Array α} : (a.push x)[i]? = if i = a.size then some x else a[i]? := by - split - . next heq => rw [heq, getElem?_pos, get_push_eq] - · next hne => + match Nat.lt_trichotomy i a.size with + | Or.inl g => + have h1 : i < a.size + 1 := by omega + have h2 : i ≠ a.size := by omega + simp [getElem?, size_push, g, h1, h2, get_push_lt] + | Or.inr (Or.inl heq) => + simp [heq, getElem?_pos, get_push_eq] + | Or.inr (Or.inr g) => simp only [getElem?, size_push] - split <;> split <;> try simp only [*, get_push_lt] - · next p q => exact Or.elim (Nat.eq_or_lt_of_le (Nat.le_of_lt_succ p)) hne q - · next p q => exact p (Nat.lt.step q) + have h1 : ¬ (i < a.size) := by omega + have h2 : ¬ (i < a.size + 1) := by omega + have h3 : i ≠ a.size := by omega + simp [h1, h2, h3] @[simp] theorem get?_size {a : Array α} : a[a.size]? = none := by simp only [getElem?, Nat.lt_irrefl, dite_false] diff --git a/Std/Data/List/Basic.lean b/Std/Data/List/Basic.lean index c29dc224e9..d36dd9a897 100644 --- a/Std/Data/List/Basic.lean +++ b/Std/Data/List/Basic.lean @@ -6,250 +6,6 @@ Authors: Leonardo de Moura namespace List -/-! ## Tail recursive implementations for definitions from core -/ - -/-- Tail recursive version of `erase`. -/ -@[inline] def setTR (l : List α) (n : Nat) (a : α) : List α := go l n #[] where - /-- Auxiliary for `setTR`: `setTR.go l a xs n acc = acc.toList ++ set xs a`, - unless `n ≥ l.length` in which case it returns `l` -/ - go : List α → Nat → Array α → List α - | [], _, _ => l - | _::xs, 0, acc => acc.toListAppend (a::xs) - | x::xs, n+1, acc => go xs n (acc.push x) - -@[csimp] theorem set_eq_setTR : @set = @setTR := by - funext α l n a; simp [setTR] - let rec go (acc) : ∀ xs n, l = acc.data ++ xs → - setTR.go l a xs n acc = acc.data ++ xs.set n a - | [], _ => fun h => by simp [setTR.go, set, h] - | x::xs, 0 => by simp [setTR.go, set] - | x::xs, n+1 => fun h => by simp [setTR.go, set]; rw [go _ xs]; {simp}; simp [h] - exact (go #[] _ _ rfl).symm - -/-- Tail recursive version of `erase`. -/ -@[inline] def eraseTR [BEq α] (l : List α) (a : α) : List α := go l #[] where - /-- Auxiliary for `eraseTR`: `eraseTR.go l a xs acc = acc.toList ++ erase xs a`, - unless `a` is not present in which case it returns `l` -/ - go : List α → Array α → List α - | [], _ => l - | x::xs, acc => bif x == a then acc.toListAppend xs else go xs (acc.push x) - -@[csimp] theorem erase_eq_eraseTR : @List.erase = @eraseTR := by - funext α _ l a; simp [eraseTR] - suffices ∀ xs acc, l = acc.data ++ xs → eraseTR.go l a xs acc = acc.data ++ xs.erase a from - (this l #[] (by simp)).symm - intro xs; induction xs with intro acc h - | nil => simp [List.erase, eraseTR.go, h] - | cons x xs IH => - simp [List.erase, eraseTR.go] - cases x == a <;> simp - · rw [IH]; simp; simp; exact h - -/-- Tail recursive version of `eraseIdx`. -/ -@[inline] def eraseIdxTR (l : List α) (n : Nat) : List α := go l n #[] where - /-- Auxiliary for `eraseIdxTR`: `eraseIdxTR.go l n xs acc = acc.toList ++ eraseIdx xs a`, - unless `a` is not present in which case it returns `l` -/ - go : List α → Nat → Array α → List α - | [], _, _ => l - | _::as, 0, acc => acc.toListAppend as - | a::as, n+1, acc => go as n (acc.push a) - -@[csimp] theorem eraseIdx_eq_eraseIdxTR : @eraseIdx = @eraseIdxTR := by - funext α l n; simp [eraseIdxTR] - suffices ∀ xs acc, l = acc.data ++ xs → eraseIdxTR.go l xs n acc = acc.data ++ xs.eraseIdx n from - (this l #[] (by simp)).symm - intro xs; induction xs generalizing n with intro acc h - | nil => simp [eraseIdx, eraseIdxTR.go, h] - | cons x xs IH => - match n with - | 0 => simp [eraseIdx, eraseIdxTR.go] - | n+1 => - simp [eraseIdx, eraseIdxTR.go] - rw [IH]; simp; simp; exact h - -/-- Tail recursive version of `bind`. -/ -@[inline] def bindTR (as : List α) (f : α → List β) : List β := go as #[] where - /-- Auxiliary for `bind`: `bind.go f as = acc.toList ++ bind f as` -/ - @[specialize] go : List α → Array β → List β - | [], acc => acc.toList - | x::xs, acc => go xs (acc ++ f x) - -@[csimp] theorem bind_eq_bindTR : @List.bind = @bindTR := by - funext α β as f - let rec go : ∀ as acc, bindTR.go f as acc = acc.data ++ as.bind f - | [], acc => by simp [bindTR.go, bind] - | x::xs, acc => by simp [bindTR.go, bind, go xs] - exact (go as #[]).symm - -/-- Tail recursive version of `join`. -/ -@[inline] def joinTR (l : List (List α)) : List α := bindTR l id - -@[csimp] theorem join_eq_joinTR : @join = @joinTR := by - funext α l; rw [← List.bind_id, List.bind_eq_bindTR]; rfl - -/-- Tail recursive version of `filterMap`. -/ -@[inline] def filterMapTR (f : α → Option β) (l : List α) : List β := go l #[] where - /-- Auxiliary for `filterMap`: `filterMap.go f l = acc.toList ++ filterMap f l` -/ - @[specialize] go : List α → Array β → List β - | [], acc => acc.toList - | a::as, acc => match f a with - | none => go as acc - | some b => go as (acc.push b) - -@[csimp] theorem filterMap_eq_filterMapTR : @List.filterMap = @filterMapTR := by - funext α β f l - let rec go : ∀ as acc, filterMapTR.go f as acc = acc.data ++ as.filterMap f - | [], acc => by simp [filterMapTR.go, filterMap] - | a::as, acc => by simp [filterMapTR.go, filterMap, go as]; split <;> simp [*] - exact (go l #[]).symm - -/-- Tail recursive version of `replace`. -/ -@[inline] def replaceTR [BEq α] (l : List α) (b c : α) : List α := go l #[] where - /-- Auxiliary for `replace`: `replace.go l b c xs acc = acc.toList ++ replace xs b c`, - unless `b` is not found in `xs` in which case it returns `l`. -/ - @[specialize] go : List α → Array α → List α - | [], _ => l - | a::as, acc => bif a == b then acc.toListAppend (c::as) else go as (acc.push a) - -@[csimp] theorem replace_eq_replaceTR : @List.replace = @replaceTR := by - funext α _ l b c; simp [replaceTR] - suffices ∀ xs acc, l = acc.data ++ xs → - replaceTR.go l b c xs acc = acc.data ++ xs.replace b c from - (this l #[] (by simp)).symm - intro xs; induction xs with intro acc - | nil => simp [replace, replaceTR.go] - | cons x xs IH => - simp [replace, replaceTR.go]; split <;> simp [*] - · intro h; rw [IH]; simp; simp; exact h - -/-- Tail recursive version of `take`. -/ -@[inline] def takeTR (n : Nat) (l : List α) : List α := go l n #[] where - /-- Auxiliary for `take`: `take.go l xs n acc = acc.toList ++ take n xs`, - unless `n ≥ xs.length` in which case it returns `l`. -/ - @[specialize] go : List α → Nat → Array α → List α - | [], _, _ => l - | _::_, 0, acc => acc.toList - | a::as, n+1, acc => go as n (acc.push a) - -@[csimp] theorem take_eq_takeTR : @take = @takeTR := by - funext α n l; simp [takeTR] - suffices ∀ xs acc, l = acc.data ++ xs → takeTR.go l xs n acc = acc.data ++ xs.take n from - (this l #[] (by simp)).symm - intro xs; induction xs generalizing n with intro acc - | nil => cases n <;> simp [take, takeTR.go] - | cons x xs IH => - cases n with simp [take, takeTR.go] - | succ n => intro h; rw [IH]; simp; simp; exact h - -/-- Tail recursive version of `takeWhile`. -/ -@[inline] def takeWhileTR (p : α → Bool) (l : List α) : List α := go l #[] where - /-- Auxiliary for `takeWhile`: `takeWhile.go p l xs acc = acc.toList ++ takeWhile p xs`, - unless no element satisfying `p` is found in `xs` in which case it returns `l`. -/ - @[specialize] go : List α → Array α → List α - | [], _ => l - | a::as, acc => bif p a then go as (acc.push a) else acc.toList - -@[csimp] theorem takeWhile_eq_takeWhileTR : @takeWhile = @takeWhileTR := by - funext α p l; simp [takeWhileTR] - suffices ∀ xs acc, l = acc.data ++ xs → - takeWhileTR.go p l xs acc = acc.data ++ xs.takeWhile p from - (this l #[] (by simp)).symm - intro xs; induction xs with intro acc - | nil => simp [takeWhile, takeWhileTR.go] - | cons x xs IH => - simp [takeWhile, takeWhileTR.go]; split <;> simp [*] - · intro h; rw [IH]; simp; simp; exact h - -/-- Tail recursive version of `foldr`. -/ -@[specialize] def foldrTR (f : α → β → β) (init : β) (l : List α) : β := l.toArray.foldr f init - -@[csimp] theorem foldr_eq_foldrTR : @foldr = @foldrTR := by - funext α β f init l; simp [foldrTR, Array.foldr_eq_foldr_data, -Array.size_toArray] - -/-- Tail recursive version of `zipWith`. -/ -@[inline] def zipWithTR (f : α → β → γ) (as : List α) (bs : List β) : List γ := go as bs #[] where - /-- Auxiliary for `zipWith`: `zipWith.go f as bs acc = acc.toList ++ zipWith f as bs` -/ - go : List α → List β → Array γ → List γ - | a::as, b::bs, acc => go as bs (acc.push (f a b)) - | _, _, acc => acc.toList - -@[csimp] theorem zipWith_eq_zipWithTR : @zipWith = @zipWithTR := by - funext α β γ f as bs - let rec go : ∀ as bs acc, zipWithTR.go f as bs acc = acc.data ++ as.zipWith f bs - | [], _, acc | _::_, [], acc => by simp [zipWithTR.go, zipWith] - | a::as, b::bs, acc => by simp [zipWithTR.go, zipWith, go as bs] - exact (go as bs #[]).symm - -/-- Tail recursive version of `unzip`. -/ -def unzipTR (l : List (α × β)) : List α × List β := - l.foldr (fun (a, b) (al, bl) => (a::al, b::bl)) ([], []) - -@[csimp] theorem unzip_eq_unzipTR : @unzip = @unzipTR := by - funext α β l; simp [unzipTR]; induction l <;> simp [*] - -/-- Tail recursive version of `enumFrom`. -/ -def enumFromTR (n : Nat) (l : List α) : List (Nat × α) := - let arr := l.toArray - (arr.foldr (fun a (n, acc) => (n-1, (n-1, a) :: acc)) (n + arr.size, [])).2 - -@[csimp] theorem enumFrom_eq_enumFromTR : @enumFrom = @enumFromTR := by - funext α n l; simp [enumFromTR, -Array.size_toArray] - let f := fun (a : α) (n, acc) => (n-1, (n-1, a) :: acc) - let rec go : ∀ l n, l.foldr f (n + l.length, []) = (n, enumFrom n l) - | [], n => rfl - | a::as, n => by - rw [← show _ + as.length = n + (a::as).length from Nat.succ_add .., foldr, go as] - simp [enumFrom, f] - rw [Array.foldr_eq_foldr_data] - simp [go] - -theorem replicateTR_loop_eq : ∀ n, replicateTR.loop a n acc = replicate n a ++ acc - | 0 => rfl - | n+1 => by rw [← replicateTR_loop_replicate_eq _ 1 n, replicate, replicate, - replicateTR.loop, replicateTR_loop_eq n, replicateTR_loop_eq n, append_assoc]; rfl - -/-- Tail recursive version of `dropLast`. -/ -@[inline] def dropLastTR (l : List α) : List α := l.toArray.pop.toList - -@[csimp] theorem dropLast_eq_dropLastTR : @dropLast = @dropLastTR := by - funext α l; simp [dropLastTR] - -/-- Tail recursive version of `intersperse`. -/ -def intersperseTR (sep : α) : List α → List α - | [] => [] - | [x] => [x] - | x::y::xs => x :: sep :: y :: xs.foldr (fun a r => sep :: a :: r) [] - -@[csimp] theorem intersperse_eq_intersperseTR : @intersperse = @intersperseTR := by - funext α sep l; simp [intersperseTR] - match l with - | [] | [_] => rfl - | x::y::xs => simp [intersperse]; induction xs generalizing y <;> simp [*] - -/-- Tail recursive version of `intercalate`. -/ -def intercalateTR (sep : List α) : List (List α) → List α - | [] => [] - | [x] => x - | x::xs => go sep.toArray x xs #[] -where - /-- Auxiliary for `intercalateTR`: - `intercalateTR.go sep x xs acc = acc.toList ++ intercalate sep.toList (x::xs)` -/ - go (sep : Array α) : List α → List (List α) → Array α → List α - | x, [], acc => acc.toListAppend x - | x, y::xs, acc => go sep y xs (acc ++ x ++ sep) - -@[csimp] theorem intercalate_eq_intercalateTR : @intercalate = @intercalateTR := by - funext α sep l; simp [intercalate, intercalateTR] - match l with - | [] => rfl - | [_] => simp - | x::y::xs => - let rec go {acc x} : ∀ xs, - intercalateTR.go sep.toArray x xs acc = acc.data ++ join (intersperse sep (x::xs)) - | [] => by simp [intercalateTR.go] - | _::_ => by simp [intercalateTR.go, go] - simp [intersperse, go] - /-! ## New definitions -/ /-- diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 924ad6d430..1d1b2a5a71 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -753,7 +753,7 @@ theorem get?_zero (l : List α) : l.get? 0 = l.head? := by cases l <;> rfl @[simp] theorem getElem_eq_get (l : List α) (i : Nat) (h) : l[i]'h = l.get ⟨i, h⟩ := rfl @[simp] theorem getElem?_eq_get? (l : List α) (i : Nat) : l[i]? = l.get? i := by - unfold getElem?; split + simp only [getElem?]; split · exact (get?_eq_get ‹_›).symm · exact (get?_eq_none.2 <| Nat.not_lt.1 ‹_›).symm diff --git a/Std/Tactic/Where.lean b/Std/Tactic/Where.lean index 367670e49c..5a3cbbbfa3 100644 --- a/Std/Tactic/Where.lean +++ b/Std/Tactic/Where.lean @@ -35,7 +35,7 @@ private def describeOpenDecls (ds : List OpenDecl) : MessageData := Id.run do (lines, simple) := flush lines simple let ex' := ex.map toMessageData lines := lines.push m!"open {ns} hiding {MessageData.joinSep ex' ", "}" - (lines, simple) := flush lines simple + (lines, _) := flush lines simple return MessageData.joinSep lines.toList "\n" private def describeOptions (opts : Options) : CommandElabM (Option MessageData) := do diff --git a/lean-toolchain b/lean-toolchain index 5e613f5757..4610193327 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-03-19 +leanprover/lean4:nightly-2024-04-01 diff --git a/scripts/check_imports.lean b/scripts/check_imports.lean index 2023954e45..048981bba0 100644 --- a/scripts/check_imports.lean +++ b/scripts/check_imports.lean @@ -82,7 +82,7 @@ def checkMissingImports (modName : Name) (modData : ModuleData) (reqImports : Ar def checkStdDataDir (modMap : HashMap Name ModuleData) (entry : IO.FS.DirEntry) (autofix : Bool := false) : LogIO Unit := do - let moduleName := `Std.Data ++ entry.fileName + let moduleName := `Std.Data ++ .mkSimple entry.fileName let requiredImports ← addModulesIn (recurse := true) #[] (root := moduleName) entry.path let .some module := modMap.find? moduleName | warn true s!"Could not find {moduleName}; Not imported into Std." diff --git a/test/print_prefix.lean b/test/print_prefix.lean index 9f742b382a..a506e926c6 100644 --- a/test/print_prefix.lean +++ b/test/print_prefix.lean @@ -133,17 +133,15 @@ testMatchProof._unsafe_rec : (n : Nat) → Fin n → Unit testMatchProof.match_1 : (motive : (x : Nat) → Fin x → Sort u_1) → (x : Nat) → (x_1 : Fin x) → - ((n : Nat) → (isLt : 0 < n) → motive n { val := 0, isLt := isLt }) → - ((as i : Nat) → (h : Nat.succ i < Nat.succ as) → motive (Nat.succ as) { val := Nat.succ i, isLt := h }) → - motive x x_1 + ((n : Nat) → (isLt : 0 < n) → motive n ⟨0, isLt⟩) → + ((as i : Nat) → (h : i.succ < as.succ) → motive as.succ ⟨i.succ, h⟩) → motive x x_1 testMatchProof.match_1._cstage1 : (motive : (x : Nat) → Fin x → Sort u_1) → (x : Nat) → (x_1 : Fin x) → - ((n : Nat) → (isLt : 0 < n) → motive n { val := 0, isLt := isLt }) → - ((as i : Nat) → (h : Nat.succ i < Nat.succ as) → motive (Nat.succ as) { val := Nat.succ i, isLt := h }) → - motive x x_1 -testMatchProof.proof_1 : ∀ (as i : Nat), Nat.succ i < Nat.succ as → Nat.succ i ≤ as -testMatchProof.proof_2 : ∀ (as i : Nat), Nat.succ i < Nat.succ as → Nat.succ i ≤ as + ((n : Nat) → (isLt : 0 < n) → motive n ⟨0, isLt⟩) → + ((as i : Nat) → (h : i.succ < as.succ) → motive as.succ ⟨i.succ, h⟩) → motive x x_1 +testMatchProof.proof_1 : ∀ (as i : Nat), i.succ < as.succ → i.succ ≤ as +testMatchProof.proof_2 : ∀ (as i : Nat), i.succ < as.succ → i.succ ≤ as -/ #guard_msgs in #print prefix (config:={internals:=true}) testMatchProof From 9ed83a2bdbf7ab0a14434f0c2e56856691ddcc7c Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Fri, 19 Apr 2024 10:01:03 +0000 Subject: [PATCH 04/44] Update lean-toolchain for testing https://github.com/leanprover/lean4/pull/3951 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index 2d7b40ae05..ebf5fc0f62 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-17 +leanprover/lean4-pr-releases:pr-release-3951 From 6742a139e1bf8705d4b97550c3fe99418275c7e3 Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Fri, 19 Apr 2024 10:23:45 +0000 Subject: [PATCH 05/44] Trigger CI for https://github.com/leanprover/lean4/pull/3951 From 0ac6b68532fd8cac7dfffd73124bf110ee19d7f7 Mon Sep 17 00:00:00 2001 From: Joachim Breitner Date: Fri, 19 Apr 2024 12:35:09 +0200 Subject: [PATCH 06/44] Avoid MessageData.isEmpty in printPrefix --- Std/Tactic/PrintPrefix.lean | 19 +++++++------------ 1 file changed, 7 insertions(+), 12 deletions(-) diff --git a/Std/Tactic/PrintPrefix.lean b/Std/Tactic/PrintPrefix.lean index ca757c8e15..b342b38b12 100644 --- a/Std/Tactic/PrintPrefix.lean +++ b/Std/Tactic/PrintPrefix.lean @@ -73,12 +73,11 @@ private def lexNameLt : Name -> Name -> Bool | .str _ _, .num _ _ => false | .str p m, .str q n => m < n || m == n && lexNameLt p q -private def appendMatchingConstants (msg : MessageData) (opts : PrintPrefixConfig) (pre : Name) - : MetaM MessageData := do +private def matchingConstants (opts : PrintPrefixConfig) (pre : Name) + : MetaM (Array MessageData) := do let cinfos ← getMatchingConstants (matchName opts pre) opts.imported let cinfos := cinfos.qsort fun p q => lexNameLt (reverseName p.name) (reverseName q.name) - let mut msg := msg - let ppInfo cinfo : MetaM MessageData := do + cinfos.mapM fun cinfo => do if opts.showTypes then pure <| .ofPPFormat { pp := fun | some ctx => ctx.runMetaM <| @@ -87,9 +86,6 @@ private def appendMatchingConstants (msg : MessageData) (opts : PrintPrefixConfi } ++ "\n" else pure m!"{ppConst (← mkConstWithLevelParams cinfo.name)}\n" - for cinfo in cinfos do - msg := msg ++ (← ppInfo cinfo) - pure msg /-- The command `#print prefix foo` will print all definitions that start with @@ -122,9 +118,8 @@ elab (name := printPrefix) "#print" tk:"prefix" cfg:(Lean.Parser.Tactic.config)? name:ident : command => liftTermElabM do let nameId := name.getId let opts ← elabPrintPrefixConfig (mkOptionalNode cfg) - let mut msg ← appendMatchingConstants "" opts nameId - if msg.isEmpty then + let mut msgs ← matchingConstants opts nameId + if msgs.isEmpty then if let [name] ← resolveGlobalConst name then - msg ← appendMatchingConstants msg opts name - if !msg.isEmpty then - logInfoAt tk msg + msgs ← matchingConstants opts name + logInfoAt tk (.joinSep msgs.toList "") From 2101c899839ff7abd7edbd668bd07e6482189a3c Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Fri, 19 Apr 2024 12:53:38 +0000 Subject: [PATCH 07/44] Trigger CI for https://github.com/leanprover/lean4/pull/3951 From 925794abfb1ccb2c973560a1e41d8d8c3c0f49b8 Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Mon, 22 Apr 2024 09:05:13 +0000 Subject: [PATCH 08/44] chore: bump to nightly-2024-04-22 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index 56bf95b8c1..b96d89db4d 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-21 +leanprover/lean4:nightly-2024-04-22 From 9913768eaebd975b356614aaa389ba346b6c140d Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Mon, 22 Apr 2024 20:50:59 +1000 Subject: [PATCH 09/44] fix test --- test/print_prefix.lean | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/test/print_prefix.lean b/test/print_prefix.lean index 7b9cdaada3..6677469882 100644 --- a/test/print_prefix.lean +++ b/test/print_prefix.lean @@ -12,8 +12,7 @@ TEmpty.recOn.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t #guard_msgs in #print prefix TEmpty -- Test type that probably won't change much. -/-- --/ +/-- info: -/ #guard_msgs in #print prefix (config := {imported := false}) Empty From db7365916cd45634fe0abf93229206f7874f1452 Mon Sep 17 00:00:00 2001 From: Markus Himmel Date: Mon, 22 Apr 2024 21:54:33 +0200 Subject: [PATCH 10/44] feat: relax some typeclass assumptions for list lemmas (#760) --- Std/Data/List/Lemmas.lean | 39 +++++++++++++++++++++++---------------- 1 file changed, 23 insertions(+), 16 deletions(-) diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 96128ba147..514ed09dbc 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -1517,7 +1517,7 @@ theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map /-! ### erase -/ section erase -variable [BEq α] [LawfulBEq α] +variable [BEq α] @[simp] theorem erase_nil (a : α) : [].erase a = [] := rfl @@ -1526,58 +1526,65 @@ theorem erase_cons (a b : α) (l : List α) : if h : b == a then by simp [List.erase, h] else by simp [List.erase, h, (beq_eq_false_iff_ne _ _).2 h] -@[simp] theorem erase_cons_head (a : α) (l : List α) : (a :: l).erase a = l := by +@[simp] theorem erase_cons_head [LawfulBEq α] (a : α) (l : List α) : (a :: l).erase a = l := by simp [erase_cons] @[simp] theorem erase_cons_tail {a b : α} (l : List α) (h : ¬(b == a)) : (b :: l).erase a = b :: l.erase a := by simp only [erase_cons, if_neg h] -theorem erase_eq_eraseP (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·) +theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a) := by + induction l + · simp + · next b t ih => + rw [erase_cons, eraseP_cons, ih] + if h : b == a then simp [h] else simp [h] + +theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·) | [] => rfl | b :: l => by if h : a = b then simp [h] else simp [h, Ne.symm h, erase_eq_eraseP a l] -theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a := by - simp [erase_eq_eraseP]; exact Sublist.eraseP h - -theorem erase_of_not_mem {a : α} : ∀ {l : List α}, a ∉ l → l.erase a = l +theorem erase_of_not_mem [LawfulBEq α] {a : α} : ∀ {l : List α}, a ∉ l → l.erase a = l | [], _ => rfl | b :: l, h => by rw [mem_cons, not_or] at h simp only [erase_cons, if_neg, erase_of_not_mem h.2, beq_iff_eq, Ne.symm h.1, not_false_eq_true] -theorem exists_erase_eq {a : α} {l : List α} (h : a ∈ l) : +theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) : ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂ := by let ⟨_, l₁, l₂, h₁, e, h₂, h₃⟩ := exists_of_eraseP h (beq_self_eq_true _) rw [erase_eq_eraseP]; exact ⟨l₁, l₂, fun h => h₁ _ h (beq_self_eq_true _), eq_of_beq e ▸ h₂, h₃⟩ -@[simp] theorem length_erase_of_mem {a : α} {l : List α} (h : a ∈ l) : +@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) : length (l.erase a) = Nat.pred (length l) := by rw [erase_eq_eraseP]; exact length_eraseP_of_mem h (beq_self_eq_true a) -theorem erase_append_left {l₁ : List α} (l₂) (h : a ∈ l₁) : +theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) : (l₁ ++ l₂).erase a = l₁.erase a ++ l₂ := by simp [erase_eq_eraseP]; exact eraseP_append_left (beq_self_eq_true a) l₂ h -theorem erase_append_right {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) : +theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) : (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a) := by rw [erase_eq_eraseP, erase_eq_eraseP, eraseP_append_right] intros b h' h''; rw [eq_of_beq h''] at h; exact h h' theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l := - erase_eq_eraseP a l ▸ eraseP_sublist l + erase_eq_eraseP' a l ▸ eraseP_sublist l theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l := (erase_sublist a l).subset -theorem sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a := by - simp only [erase_eq_eraseP]; exact h.eraseP +theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a := by + simp only [erase_eq_eraseP']; exact h.eraseP +@[deprecated] alias sublist.erase := Sublist.erase theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l := erase_subset _ _ h -@[simp] theorem mem_erase_of_ne {a b : α} {l : List α} (ab : a ≠ b) : a ∈ l.erase b ↔ a ∈ l := +@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) : + a ∈ l.erase b ↔ a ∈ l := erase_eq_eraseP b l ▸ mem_eraseP_of_neg (mt eq_of_beq ab.symm) -theorem erase_comm (a b : α) (l : List α) : (l.erase a).erase b = (l.erase b).erase a := by +theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) : + (l.erase a).erase b = (l.erase b).erase a := by if ab : a == b then rw [eq_of_beq ab] else ?_ if ha : a ∈ l then ?_ else simp only [erase_of_not_mem ha, erase_of_not_mem (mt mem_of_mem_erase ha)] From aefb007b09fb74fe5e887bcf5521609208379c0d Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Tue, 23 Apr 2024 10:35:58 +1000 Subject: [PATCH 11/44] cleanup imports in Data/Array --- Std/Data/Array/Lemmas.lean | 1 - Std/Data/ByteArray.lean | 1 + Std/Data/List/Lemmas.lean | 1 - Std/Data/List/Perm.lean | 2 -- 4 files changed, 1 insertion(+), 4 deletions(-) diff --git a/Std/Data/Array/Lemmas.lean b/Std/Data/Array/Lemmas.lean index cb017deaab..f96220a4b1 100644 --- a/Std/Data/Array/Lemmas.lean +++ b/Std/Data/Array/Lemmas.lean @@ -5,7 +5,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Gabriel Ebner -/ import Std.Data.List.Lemmas -import Std.Data.Array.Init.Lemmas import Std.Data.Array.Basic import Std.Tactic.SeqFocus import Std.Util.ProofWanted diff --git a/Std/Data/ByteArray.lean b/Std/Data/ByteArray.lean index 1a6d6b5df2..dcee0d4948 100644 --- a/Std/Data/ByteArray.lean +++ b/Std/Data/ByteArray.lean @@ -3,6 +3,7 @@ Copyright (c) 2023 François G. Dorais. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: François G. Dorais -/ +import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas namespace ByteArray diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 9a032f99b3..545fd8f769 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro -/ import Std.Control.ForInStep.Lemmas -import Std.Data.Nat.Basic import Std.Data.List.Init.Lemmas import Std.Data.List.Basic import Std.Tactic.Init diff --git a/Std/Data/List/Perm.lean b/Std/Data/List/Perm.lean index 9b74cccaec..d4522bee2f 100644 --- a/Std/Data/List/Perm.lean +++ b/Std/Data/List/Perm.lean @@ -6,8 +6,6 @@ Authors: Leonardo de Moura, Jeremy Avigad, Mario Carneiro import Std.Tactic.Alias import Std.Data.List.Init.Attach import Std.Data.List.Pairwise --- Adaptation note: nightly-2024-03-18. We should be able to remove this after nightly-2024-03-19. -import Lean.Elab.Tactic.Rfl /-! # List Permutations From dc4c58b8c90df6f88a3bbb4ac973116bcb822833 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Tue, 23 Apr 2024 10:48:15 +1000 Subject: [PATCH 12/44] chore: adaptations for nightly-2024-04-22 --- .docker/gitpod/Dockerfile | 41 ++++++++ .gitpod.yml | 6 ++ Std.lean | 2 +- Std/Classes/Order.lean | 6 ++ Std/Data/Array.lean | 1 + Std/Data/Array/Basic.lean | 26 +++-- Std/Data/Array/Init/Lemmas.lean | 47 +++++++++ Std/Data/Array/Lemmas.lean | 37 ------- Std/Data/ByteArray.lean | 1 + Std/Data/Fin/Lemmas.lean | 11 +- Std/Data/HashMap/Basic.lean | 170 +++++++++++++++++++++++++++---- Std/Data/List.lean | 1 + Std/Data/List/Basic.lean | 14 +-- Std/Data/List/Count.lean | 1 - Std/Data/List/Init/Attach.lean | 36 ++++--- Std/Data/List/Init/Lemmas.lean | 39 +++++++ Std/Data/List/Lemmas.lean | 128 ++++++++++++----------- Std/Data/List/Perm.lean | 33 +++--- Std/Data/RBMap/Alter.lean | 102 ------------------- Std/Data/RBMap/Basic.lean | 43 +++++--- Std/Data/RBMap/Lemmas.lean | 142 ++++++++++++++++++++++++++ Std/Data/RBMap/WF.lean | 131 ++++++++++++++++-------- Std/Data/String/Lemmas.lean | 6 ++ Std/Data/Sum/Lemmas.lean | 5 + Std/Data/UInt.lean | 21 ++-- Std/Lean/PersistentHashMap.lean | 6 -- Std/Logic.lean | 3 + Std/Tactic/Classical.lean | 20 +++- Std/Tactic/FalseOrByContra.lean | 65 ------------ Std/Tactic/PrintPrefix.lean | 107 +++++++++---------- Std/Tactic/ShowUnused.lean | 73 +++++++++++++ Std/Tactic/SqueezeScope.lean | 2 +- lean-toolchain | 2 +- test/case.lean | 9 +- test/false_or_by_contra.lean | 53 ---------- test/isIndependentOf.lean | 4 +- test/lintTC.lean | 5 +- test/lint_unreachableTactic.lean | 5 +- test/print_prefix.lean | 128 ++++++++++++----------- test/show_unused.lean | 14 +++ test/simpa.lean | 10 +- 41 files changed, 948 insertions(+), 608 deletions(-) create mode 100644 .docker/gitpod/Dockerfile create mode 100644 .gitpod.yml create mode 100644 Std/Data/Array/Init/Lemmas.lean create mode 100644 Std/Data/List/Init/Lemmas.lean delete mode 100644 Std/Tactic/FalseOrByContra.lean create mode 100644 Std/Tactic/ShowUnused.lean delete mode 100644 test/false_or_by_contra.lean create mode 100644 test/show_unused.lean diff --git a/.docker/gitpod/Dockerfile b/.docker/gitpod/Dockerfile new file mode 100644 index 0000000000..ededb0b68a --- /dev/null +++ b/.docker/gitpod/Dockerfile @@ -0,0 +1,41 @@ +# This is the Dockerfile for leanprover/std4 +# This file is mostly copied from [mathlib4](https://github.com/leanprover-community/mathlib4/blob/master/.docker/gitpod/Dockerfile) + +# gitpod doesn't support multiple FROM statements, (or rather, you can't copy from one to another) +# so we just install everything in one go +FROM ubuntu:jammy + +USER root + +RUN apt-get update && apt-get install sudo git curl bash-completion python3-requests gcc make -y && apt-get clean + +RUN useradd -l -u 33333 -G sudo -md /home/gitpod -s /bin/bash -p gitpod gitpod \ + # passwordless sudo for users in the 'sudo' group + && sed -i.bkp -e 's/%sudo\s\+ALL=(ALL\(:ALL\)\?)\s\+ALL/%sudo ALL=NOPASSWD:ALL/g' /etc/sudoers +USER gitpod +WORKDIR /home/gitpod + +SHELL ["/bin/bash", "-c"] + +# gitpod bash prompt +RUN { echo && echo "PS1='\[\033[01;32m\]\u\[\033[00m\] \[\033[01;34m\]\w\[\033[00m\]\$(__git_ps1 \" (%s)\") $ '" ; } >> .bashrc + +# install elan +RUN curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh -s -- -y --default-toolchain none + +# install whichever toolchain std4 is currently using +RUN . ~/.profile && elan toolchain install $(curl https://raw.githubusercontent.com/leanprover/std4/main/lean-toolchain) + +# install neovim (for any lean.nvim user), via tarball since the appimage doesn't work for some reason, and jammy's version is ancient +RUN curl -s -L https://github.com/neovim/neovim/releases/download/stable/nvim-linux64.tar.gz | tar xzf - && sudo mv nvim-linux64 /opt/nvim + +ENV PATH="/home/gitpod/.local/bin:/home/gitpod/.elan/bin:/opt/nvim/bin:${PATH}" + +# fix the infoview when the container is used on gitpod: +ENV VSCODE_API_VERSION="1.50.0" + +# ssh to github once to bypass the unknown fingerprint warning +RUN ssh -o StrictHostKeyChecking=no github.com || true + +# run sudo once to suppress usage info +RUN sudo echo finished diff --git a/.gitpod.yml b/.gitpod.yml new file mode 100644 index 0000000000..5170403ac3 --- /dev/null +++ b/.gitpod.yml @@ -0,0 +1,6 @@ +image: + file: .docker/gitpod/Dockerfile + +vscode: + extensions: + - leanprover.lean4 diff --git a/Std.lean b/Std.lean index b7cbdd26d7..1063d08efc 100644 --- a/Std.lean +++ b/Std.lean @@ -79,7 +79,6 @@ import Std.Tactic.Case import Std.Tactic.Classical import Std.Tactic.Congr import Std.Tactic.Exact -import Std.Tactic.FalseOrByContra import Std.Tactic.Init import Std.Tactic.Instances import Std.Tactic.Lint @@ -94,6 +93,7 @@ import Std.Tactic.PermuteGoals import Std.Tactic.PrintDependents import Std.Tactic.PrintPrefix import Std.Tactic.SeqFocus +import Std.Tactic.ShowUnused import Std.Tactic.SqueezeScope import Std.Tactic.Unreachable import Std.Tactic.Where diff --git a/Std/Classes/Order.lean b/Std/Classes/Order.lean index fcf0e23bf0..b3024c4bcd 100644 --- a/Std/Classes/Order.lean +++ b/Std/Classes/Order.lean @@ -88,6 +88,12 @@ theorem cmp_congr_right [TransCmp cmp] (yz : cmp y z = .eq) : cmp x y = cmp x z end TransCmp +instance [inst : OrientedCmp cmp] : OrientedCmp (flip cmp) where + symm _ _ := inst.symm .. + +instance [inst : TransCmp cmp] : TransCmp (flip cmp) where + le_trans h1 h2 := inst.le_trans h2 h1 + end Std namespace Ordering diff --git a/Std/Data/Array.lean b/Std/Data/Array.lean index 22f2f38305..3291a67387 100644 --- a/Std/Data/Array.lean +++ b/Std/Data/Array.lean @@ -1,4 +1,5 @@ import Std.Data.Array.Basic +import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas import Std.Data.Array.Match import Std.Data.Array.Merge diff --git a/Std/Data/Array/Basic.lean b/Std/Data/Array/Basic.lean index c000df3524..d0c937f1a9 100644 --- a/Std/Data/Array/Basic.lean +++ b/Std/Data/Array/Basic.lean @@ -130,15 +130,21 @@ protected def maxI [ord : Ord α] [Inhabited α] xs.minI (ord := ord.opposite) start stop /-- -Unsafe implementation of `attach`, taking advantage of the fact that the representation of -`Array {x // x ∈ xs}` is the same as the input `Array α`. +Unsafe implementation of `attachWith`, taking advantage of the fact that the representation of +`Array {x // P x}` is the same as the input `Array α`. -/ -@[inline] private unsafe def attachImpl (xs : Array α) : Array {x // x ∈ xs} := unsafeCast xs +@[inline] private unsafe def attachWithImpl + (xs : Array α) (P : α → Prop) (_ : ∀ x ∈ xs, P x) : Array {x // P x} := unsafeCast xs -/-- "Attach" the proof that the elements of `xs` are in `xs` to produce a new list +/-- `O(1)`. "Attach" a proof `P x` that holds for all the elements of `xs` to produce a new array + with the same elements but in the type `{x // P x}`. -/ +@[implemented_by attachWithImpl] def attachWith + (xs : Array α) (P : α → Prop) (H : ∀ x ∈ xs, P x) : Array {x // P x} := + ⟨xs.data.attachWith P fun x h => H x (Array.Mem.mk h)⟩ + +/-- `O(1)`. "Attach" the proof that the elements of `xs` are in `xs` to produce a new array with the same elements but in the type `{x // x ∈ xs}`. -/ -@[implemented_by attachImpl] def attach (xs : Array α) : Array {x // x ∈ xs} := - ⟨xs.data.pmap Subtype.mk fun _ => Array.Mem.mk⟩ +@[inline] def attach (xs : Array α) : Array {x // x ∈ xs} := xs.attachWith _ fun _ => id /-- `O(|join L|)`. `join L` concatenates all the arrays in `L` into one array. @@ -155,11 +161,11 @@ namespace Subarray The empty subarray. -/ protected def empty : Subarray α where - as := #[] + array := #[] start := 0 stop := 0 - h₁ := Nat.le_refl 0 - h₂ := Nat.le_refl 0 + start_le_stop := Nat.le_refl 0 + stop_le_array_size := Nat.le_refl 0 instance : EmptyCollection (Subarray α) := ⟨Subarray.empty⟩ @@ -192,7 +198,7 @@ def popHead? (as : Subarray α) : Option (α × Subarray α) := let tail := { as with start := as.start + 1 - h₁ := Nat.le_of_lt_succ $ Nat.succ_lt_succ h } + start_le_stop := Nat.le_of_lt_succ $ Nat.succ_lt_succ h } some (head, tail) else none diff --git a/Std/Data/Array/Init/Lemmas.lean b/Std/Data/Array/Init/Lemmas.lean new file mode 100644 index 0000000000..443254f4d4 --- /dev/null +++ b/Std/Data/Array/Init/Lemmas.lean @@ -0,0 +1,47 @@ +/- +Copyright (c) 2021 Mario Carneiro. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. + +Authors: Mario Carneiro, Gabriel Ebner +-/ + +/-! # Bootstrapping properties of Arrays -/ + +namespace Array + +@[simp] theorem size_ofFn_go {n} (f : Fin n → α) (i acc) : + (ofFn.go f i acc).size = acc.size + (n - i) := by + if hin : i < n then + unfold ofFn.go + have : 1 + (n - (i + 1)) = n - i := + Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) + rw [dif_pos hin, size_ofFn_go f (i+1), size_push, Nat.add_assoc, this] + else + have : n - i = 0 := Nat.sub_eq_zero_of_le (Nat.le_of_not_lt hin) + unfold ofFn.go + simp [hin, this] +termination_by n - i + +@[simp] theorem size_ofFn (f : Fin n → α) : (ofFn f).size = n := by simp [ofFn] + +theorem getElem_ofFn_go (f : Fin n → α) (i) {acc k} + (hki : k < n) (hin : i ≤ n) (hi : i = acc.size) + (hacc : ∀ j, ∀ hj : j < acc.size, acc[j] = f ⟨j, Nat.lt_of_lt_of_le hj (hi ▸ hin)⟩) : + haveI : acc.size + (n - acc.size) = n := Nat.add_sub_cancel' (hi ▸ hin) + (ofFn.go f i acc)[k]'(by simp [*]) = f ⟨k, hki⟩ := by + unfold ofFn.go + if hin : i < n then + have : 1 + (n - (i + 1)) = n - i := + Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) + simp only [dif_pos hin] + rw [getElem_ofFn_go f (i+1) _ hin (by simp [*]) (fun j hj => ?hacc)] + cases (Nat.lt_or_eq_of_le <| Nat.le_of_lt_succ (by simpa using hj)) with + | inl hj => simp [get_push, hj, hacc j hj] + | inr hj => simp [get_push, *] + else + simp [hin, hacc k (Nat.lt_of_lt_of_le hki (Nat.le_of_not_lt (hi ▸ hin)))] +termination_by n - i + +@[simp] theorem getElem_ofFn (f : Fin n → α) (i : Nat) (h) : + (ofFn f)[i] = f ⟨i, size_ofFn f ▸ h⟩ := + getElem_ofFn_go _ _ _ (by simp) (by simp) nofun diff --git a/Std/Data/Array/Lemmas.lean b/Std/Data/Array/Lemmas.lean index afd71f84f0..f6a82f2e47 100644 --- a/Std/Data/Array/Lemmas.lean +++ b/Std/Data/Array/Lemmas.lean @@ -245,43 +245,6 @@ theorem size_eq_length_data (as : Array α) : as.size = as.data.length := rfl simp [← show k < _ + 1 ↔ _ from Nat.lt_succ (n := a.size - 1), this] at h rw [List.get?_eq_none.2 ‹_›, List.get?_eq_none.2 (a.data.length_reverse ▸ ‹_›)] -@[simp] theorem size_ofFn_go {n} (f : Fin n → α) (i acc) : - (ofFn.go f i acc).size = acc.size + (n - i) := by - if hin : i < n then - unfold ofFn.go - have : 1 + (n - (i + 1)) = n - i := - Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) - rw [dif_pos hin, size_ofFn_go f (i+1), size_push, Nat.add_assoc, this] - else - have : n - i = 0 := Nat.sub_eq_zero_of_le (Nat.le_of_not_lt hin) - unfold ofFn.go - simp [hin, this] -termination_by n - i - -@[simp] theorem size_ofFn (f : Fin n → α) : (ofFn f).size = n := by simp [ofFn] - -theorem getElem_ofFn_go (f : Fin n → α) (i) {acc k} - (hki : k < n) (hin : i ≤ n) (hi : i = acc.size) - (hacc : ∀ j, ∀ hj : j < acc.size, acc[j] = f ⟨j, Nat.lt_of_lt_of_le hj (hi ▸ hin)⟩) : - haveI : acc.size + (n - acc.size) = n := Nat.add_sub_cancel' (hi ▸ hin) - (ofFn.go f i acc)[k]'(by simp [*]) = f ⟨k, hki⟩ := by - unfold ofFn.go - if hin : i < n then - have : 1 + (n - (i + 1)) = n - i := - Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) - simp only [dif_pos hin] - rw [getElem_ofFn_go f (i+1) _ hin (by simp [*]) (fun j hj => ?hacc)] - cases (Nat.lt_or_eq_of_le <| Nat.le_of_lt_succ (by simpa using hj)) with - | inl hj => simp [get_push, hj, hacc j hj] - | inr hj => simp [get_push, *] - else - simp [hin, hacc k (Nat.lt_of_lt_of_le hki (Nat.le_of_not_lt (hi ▸ hin)))] -termination_by n - i - -@[simp] theorem getElem_ofFn (f : Fin n → α) (i : Nat) (h) : - (ofFn f)[i] = f ⟨i, size_ofFn f ▸ h⟩ := - getElem_ofFn_go _ _ _ (by simp) (by simp) nofun - theorem forIn_eq_data_forIn [Monad m] (as : Array α) (b : β) (f : α → β → m (ForInStep β)) : forIn as b f = forIn as.data b f := by diff --git a/Std/Data/ByteArray.lean b/Std/Data/ByteArray.lean index 1a6d6b5df2..dcee0d4948 100644 --- a/Std/Data/ByteArray.lean +++ b/Std/Data/ByteArray.lean @@ -3,6 +3,7 @@ Copyright (c) 2023 François G. Dorais. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: François G. Dorais -/ +import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas namespace ByteArray diff --git a/Std/Data/Fin/Lemmas.lean b/Std/Data/Fin/Lemmas.lean index f463c64255..244fd5ef3a 100644 --- a/Std/Data/Fin/Lemmas.lean +++ b/Std/Data/Fin/Lemmas.lean @@ -4,7 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Std.Data.Fin.Basic -import Std.Data.Array.Lemmas +import Std.Data.List.Init.Lemmas +import Std.Data.Array.Init.Lemmas namespace Fin @@ -24,7 +25,7 @@ attribute [norm_cast] val_last @[simp] theorem length_list (n) : (list n).length = n := by simp [list] @[simp] theorem get_list (i : Fin (list n).length) : (list n).get i = i.cast (length_list n) := by - cases i; simp only [list]; rw [←Array.getElem_eq_data_get, getElem_enum, cast_mk] + cases i; simp only [list]; rw [← Array.getElem_eq_data_get, getElem_enum, cast_mk] @[simp] theorem list_zero : list 0 = [] := rfl @@ -55,7 +56,7 @@ theorem foldl_succ (f : α → Fin (n+1) → α) (x) : foldl (n+1) f x = foldl n (fun x i => f x i.succ) (f x 0) := foldl_loop .. theorem foldl_eq_foldl_list (f : α → Fin n → α) (x) : foldl n f x = (list n).foldl f x := by - induction n using Nat.recAux generalizing x with + induction n generalizing x with | zero => rfl | succ n ih => rw [foldl_succ, ih, list_succ, List.foldl_cons, List.foldl_map] @@ -69,7 +70,7 @@ theorem foldr_loop_succ (f : Fin n → α → α) (x) (h : m < n) : theorem foldr_loop (f : Fin (n+1) → α → α) (x) (h : m+1 ≤ n+1) : foldr.loop (n+1) f ⟨m+1, h⟩ x = f 0 (foldr.loop n (fun i => f i.succ) ⟨m, Nat.le_of_succ_le_succ h⟩ x) := by - induction m using Nat.recAux generalizing x with + induction m generalizing x with | zero => simp [foldr_loop_zero, foldr_loop_succ] | succ m ih => rw [foldr_loop_succ, ih]; rfl @@ -77,6 +78,6 @@ theorem foldr_succ (f : Fin (n+1) → α → α) (x) : foldr (n+1) f x = f 0 (foldr n (fun i => f i.succ) x) := foldr_loop .. theorem foldr_eq_foldr_list (f : Fin n → α → α) (x) : foldr n f x = (list n).foldr f x := by - induction n using Nat.recAux with + induction n with | zero => rfl | succ n ih => rw [foldr_succ, ih, list_succ, List.foldr_cons, List.foldr_map] diff --git a/Std/Data/HashMap/Basic.lean b/Std/Data/HashMap/Basic.lean index 247db447ef..dd45ffd827 100644 --- a/Std/Data/HashMap/Basic.lean +++ b/Std/Data/HashMap/Basic.lean @@ -179,7 +179,7 @@ def erase [BEq α] [Hashable α] (m : Imp α β) (a : α) : Imp α β := let ⟨size, buckets⟩ := m let ⟨i, h⟩ := mkIdx buckets.2 (hash a |>.toUSize) let bkt := buckets.1[i] - bif bkt.contains a then ⟨size - 1, buckets.update i (bkt.erase a) h⟩ else m + bif bkt.contains a then ⟨size - 1, buckets.update i (bkt.erase a) h⟩ else ⟨size, buckets⟩ /-- Map a function over the values in the map. -/ @[inline] def mapVal (f : α → β → γ) (self : Imp α β) : Imp α γ := @@ -262,26 +262,52 @@ instance [BEq α] [Hashable α] : Inhabited (HashMap α β) where instance [BEq α] [Hashable α] : EmptyCollection (HashMap α β) := ⟨mkHashMap⟩ -/-- Make a new empty hash map. -/ +/-- +Make a new empty hash map. +``` +(empty : Std.HashMap Int Int).toList = [] +``` +-/ @[inline] def empty [BEq α] [Hashable α] : HashMap α β := mkHashMap variable {_ : BEq α} {_ : Hashable α} -/-- The number of elements in the hash map. -/ +/-- +The number of elements in the hash map. +``` +(ofList [("one", 1), ("two", 2)]).size = 2 +``` +-/ @[inline] def size (self : HashMap α β) : Nat := self.1.size -/-- Is the map empty? -/ +/-- +Is the map empty? +``` +(empty : Std.HashMap Int Int).isEmpty = true +(ofList [("one", 1), ("two", 2)]).isEmpty = false +``` +-/ @[inline] def isEmpty (self : HashMap α β) : Bool := self.size = 0 /-- Inserts key-value pair `a, b` into the map. If an element equal to `a` is already in the map, it is replaced by `b`. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.insert "three" 3 = {"one" => 1, "two" => 2, "three" => 3} +hashMap.insert "two" 0 = {"one" => 1, "two" => 0} +``` -/ def insert (self : HashMap α β) (a : α) (b : β) : HashMap α β := ⟨self.1.insert a b, self.2.insert⟩ /-- Similar to `insert`, but also returns a boolean flag indicating whether an existing entry has been replaced with `a => b`. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.insert' "three" 3 = ({"one" => 1, "two" => 2, "three" => 3}, false) +hashMap.insert' "two" 0 = ({"one" => 1, "two" => 0}, true) +``` -/ @[inline] def insert' (m : HashMap α β) (a : α) (b : β) : HashMap α β × Bool := let old := m.size @@ -291,43 +317,117 @@ replaced with `a => b`. /-- Removes key `a` from the map. If it does not exist in the map, the map is returned unchanged. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.erase "one" = {"two" => 2} +hashMap.erase "three" = {"one" => 1, "two" => 2} +``` -/ @[inline] def erase (self : HashMap α β) (a : α) : HashMap α β := ⟨self.1.erase a, self.2.erase⟩ /-- Performs an in-place edit of the value, ensuring that the value is used linearly. The function `f` is passed the original key of the entry, along with the value in the map. +``` +(ofList [("one", 1), ("two", 2)]).modify "one" (fun _ v => v + 1) = {"one" => 2, "two" => 2} +(ofList [("one", 1), ("two", 2)]).modify "three" (fun _ v => v + 1) = {"one" => 1, "two" => 2} +``` -/ def modify (self : HashMap α β) (a : α) (f : α → β → β) : HashMap α β := ⟨self.1.modify a f, self.2.modify⟩ -/-- Given a key `a`, returns a key-value pair in the map whose key compares equal to `a`. -/ +/-- +Given a key `a`, returns a key-value pair in the map whose key compares equal to `a`. +Note that the returned key may not be identical to the input, if `==` ignores some part +of the value. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.findEntry? "one" = some ("one", 1) +hashMap.findEntry? "three" = none +``` +-/ @[inline] def findEntry? (self : HashMap α β) (a : α) : Option (α × β) := self.1.findEntry? a -/-- Looks up an element in the map with key `a`. -/ +/-- +Looks up an element in the map with key `a`. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.find? "one" = some 1 +hashMap.find? "three" = none +``` +-/ @[inline] def find? (self : HashMap α β) (a : α) : Option β := self.1.find? a -/-- Looks up an element in the map with key `a`. Returns `b₀` if the element is not found. -/ +/-- +Looks up an element in the map with key `a`. Returns `b₀` if the element is not found. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.findD "one" 0 = 1 +hashMap.findD "three" 0 = 0 +``` +-/ @[inline] def findD (self : HashMap α β) (a : α) (b₀ : β) : β := (self.find? a).getD b₀ -/-- Looks up an element in the map with key `a`. Panics if the element is not found. -/ +/-- +Looks up an element in the map with key `a`. Panics if the element is not found. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.find! "one" = 1 +hashMap.find! "three" => panic! +``` +-/ @[inline] def find! [Inhabited β] (self : HashMap α β) (a : α) : β := (self.find? a).getD (panic! "key is not in the map") instance : GetElem (HashMap α β) α (Option β) fun _ _ => True where getElem m k _ := m.find? k -/-- Returns true if the element `a` is in the map. -/ +/-- +Returns true if the element `a` is in the map. +``` +def hashMap := ofList [("one", 1), ("two", 2)] +hashMap.contains "one" = true +hashMap.contains "three" = false +``` +-/ @[inline] def contains (self : HashMap α β) (a : α) : Bool := self.1.contains a -/-- Folds a monadic function over the elements in the map (in arbitrary order). -/ +/-- +Folds a monadic function over the elements in the map (in arbitrary order). +``` +def sumEven (sum: Nat) (k : String) (v : Nat) : Except String Nat := + if v % 2 == 0 then pure (sum + v) else throw s!"value {v} at key {k} is not even" + +foldM sumEven 0 (ofList [("one", 1), ("three", 3)]) = + Except.error "value 3 at key three is not even" +foldM sumEven 0 (ofList [("two", 2), ("four", 4)]) = Except.ok 6 +``` +-/ @[inline] def foldM [Monad m] (f : δ → α → β → m δ) (init : δ) (self : HashMap α β) : m δ := self.1.foldM f init -/-- Folds a function over the elements in the map (in arbitrary order). -/ +/-- +Folds a function over the elements in the map (in arbitrary order). +``` +fold (fun sum _ v => sum + v) 0 (ofList [("one", 1), ("two", 2)]) = 3 +``` +-/ @[inline] def fold (f : δ → α → β → δ) (init : δ) (self : HashMap α β) : δ := self.1.fold f init -/-- Combines two hashmaps using a monadic function `f` to combine two values at a key. -/ +/-- +Combines two hashmaps using a monadic function `f` to combine two values at a key. +``` +def map1 := ofList [("one", 1), ("two", 2)] +def map2 := ofList [("two", 2), ("three", 3)] +def map3 := ofList [("two", 3), ("three", 3)] +def mergeIfNoConflict? (_ : String) (v₁ v₂ : Nat) : Option Nat := + if v₁ != v₂ then none else some v₁ + + +mergeWithM mergeIfNoConflict? map1 map2 = some {"one" => 1, "two" => 2, "three" => 3} +mergeWithM mergeIfNoConflict? map1 map3 = none +``` +-/ @[specialize] def mergeWithM [Monad m] (f : α → β → β → m β) (self other : HashMap α β) : m (HashMap α β) := other.foldM (init := self) fun m k v₂ => @@ -335,7 +435,14 @@ instance : GetElem (HashMap α β) α (Option β) fun _ _ => True where | none => return m.insert k v₂ | some v₁ => return m.insert k (← f k v₁ v₂) -/-- Combines two hashmaps using function `f` to combine two values at a key. -/ +/-- +Combines two hashmaps using function `f` to combine two values at a key. +``` +mergeWith (fun _ v₁ v₂ => v₁ + v₂ ) + (ofList [("one", 1), ("two", 2)]) (ofList [("two", 2), ("three", 3)]) = + {"one" => 1, "two" => 4, "three" => 3} +``` +-/ @[inline] def mergeWith (f : α → β → β → β) (self other : HashMap α β) : HashMap α β := -- Implementing this function directly, rather than via `mergeWithM`, gives -- us less constrained universes. @@ -344,13 +451,34 @@ instance : GetElem (HashMap α β) α (Option β) fun _ _ => True where | none => map.insert k v₂ | some v₁ => map.insert k $ f k v₁ v₂ -/-- Runs a monadic function over the elements in the map (in arbitrary order). -/ +/-- +Runs a monadic function over the elements in the map (in arbitrary order). +``` +def checkEven (k : String) (v : Nat) : Except String Unit := + if v % 2 == 0 then pure () else throw s!"value {v} at key {k} is not even" + +forM checkEven (ofList [("one", 1), ("three", 3)]) = Except.error "value 3 at key three is not even" +forM checkEven (ofList [("two", 2), ("four", 4)]) = Except.ok () +``` +-/ @[inline] def forM [Monad m] (f : α → β → m PUnit) (self : HashMap α β) : m PUnit := self.1.forM f -/-- Converts the map into a list of key-value pairs. -/ +/-- +Converts the map into a list of key-value pairs. +``` +open List +(ofList [("one", 1), ("two", 2)]).toList ~ [("one", 1), ("two", 2)] +``` +-/ def toList (self : HashMap α β) : List (α × β) := self.fold (init := []) fun r k v => (k, v)::r -/-- Converts the map into an array of key-value pairs. -/ +/-- +Converts the map into an array of key-value pairs. +``` +open List +(ofList [("one", 1), ("two", 2)]).toArray.data ~ #[("one", 1), ("two", 2)].data +``` +-/ def toArray (self : HashMap α β) : Array (α × β) := self.fold (init := #[]) fun r k v => r.push (k, v) @@ -360,11 +488,19 @@ def numBuckets (self : HashMap α β) : Nat := self.1.buckets.1.size /-- Builds a `HashMap` from a list of key-value pairs. Values of duplicated keys are replaced by their respective last occurrences. +``` +ofList [("one", 1), ("one", 2)] = {"one" => 2} +``` -/ def ofList [BEq α] [Hashable α] (l : List (α × β)) : HashMap α β := l.foldl (init := HashMap.empty) fun m (k, v) => m.insert k v -/-- Variant of `ofList` which accepts a function that combines values of duplicated keys. -/ +/-- +Variant of `ofList` which accepts a function that combines values of duplicated keys. +``` +ofListWith [("one", 1), ("one", 2)] (fun v₁ v₂ => v₁ + v₂) = {"one" => 3} +``` +-/ def ofListWith [BEq α] [Hashable α] (l : List (α × β)) (f : β → β → β) : HashMap α β := l.foldl (init := HashMap.empty) fun m p => match m.find? p.1 with diff --git a/Std/Data/List.lean b/Std/Data/List.lean index 4165ebcfe7..137c762db9 100644 --- a/Std/Data/List.lean +++ b/Std/Data/List.lean @@ -1,6 +1,7 @@ import Std.Data.List.Basic import Std.Data.List.Count import Std.Data.List.Init.Attach +import Std.Data.List.Init.Lemmas import Std.Data.List.Lemmas import Std.Data.List.Pairwise import Std.Data.List.Perm diff --git a/Std/Data/List/Basic.lean b/Std/Data/List/Basic.lean index d36dd9a897..01db611d70 100644 --- a/Std/Data/List/Basic.lean +++ b/Std/Data/List/Basic.lean @@ -147,17 +147,17 @@ Constructs the union of two lists, by inserting the elements of `l₁` in revers As a result, `l₂` will always be a suffix, but only the last occurrence of each element in `l₁` will be retained (but order will otherwise be preserved). -/ -@[inline] protected def union [DecidableEq α] (l₁ l₂ : List α) : List α := foldr .insert l₂ l₁ +@[inline] protected def union [BEq α] (l₁ l₂ : List α) : List α := foldr .insert l₂ l₁ -instance [DecidableEq α] : Union (List α) := ⟨List.union⟩ +instance [BEq α] : Union (List α) := ⟨List.union⟩ /-- Constructs the intersection of two lists, by filtering the elements of `l₁` that are in `l₂`. Unlike `bagInter` this does not preserve multiplicity: `[1, 1].inter [1]` is `[1, 1]`. -/ -@[inline] protected def inter [DecidableEq α] (l₁ l₂ : List α) : List α := filter (· ∈ l₂) l₁ +@[inline] protected def inter [BEq α] (l₁ l₂ : List α) : List α := filter (elem · l₂) l₁ -instance [DecidableEq α] : Inter (List α) := ⟨List.inter⟩ +instance [BEq α] : Inter (List α) := ⟨List.inter⟩ /-- `l₁ <+ l₂`, or `Sublist l₁ l₂`, says that `l₁` is a (non-contiguous) subsequence of `l₂`. -/ inductive Sublist {α} : List α → List α → Prop @@ -171,11 +171,11 @@ inductive Sublist {α} : List α → List α → Prop @[inherit_doc] scoped infixl:50 " <+ " => Sublist /-- True if the first list is a potentially non-contiguous sub-sequence of the second list. -/ -def isSublist [DecidableEq α] : List α → List α → Bool +def isSublist [BEq α] : List α → List α → Bool | [], _ => true | _, [] => false | l₁@(hd₁::tl₁), hd₂::tl₂ => - if hd₁ = hd₂ + if hd₁ == hd₂ then tl₁.isSublist tl₂ else l₁.isSublist tl₂ @@ -885,7 +885,7 @@ instance nodupDecidable [DecidableEq α] : ∀ l : List α, Decidable (Nodup l) Defined as `pwFilter (≠)`. eraseDup [1, 0, 2, 2, 1] = [0, 2, 1] -/ -@[inline] def eraseDup [DecidableEq α] : List α → List α := pwFilter (· ≠ ·) +@[inline] def eraseDup [BEq α] : List α → List α := pwFilter (· != ·) /-- `range' start len step` is the list of numbers `[start, start+step, ..., start+(len-1)*step]`. It is intended mainly for proving properties of `range` and `iota`. -/ diff --git a/Std/Data/List/Count.lean b/Std/Data/List/Count.lean index 4458c457dc..6611d032f6 100644 --- a/Std/Data/List/Count.lean +++ b/Std/Data/List/Count.lean @@ -116,7 +116,6 @@ theorem countP_mono_left (h : ∀ x ∈ l, p x → q x) : countP p l ≤ countP apply Nat.le_trans ?_ (Nat.le_add_right _ _) apply ihl hl . simp [ha h] - apply Nat.succ_le_succ apply ihl hl theorem countP_congr (h : ∀ x ∈ l, p x ↔ q x) : countP p l = countP q l := diff --git a/Std/Data/List/Init/Attach.lean b/Std/Data/List/Init/Attach.lean index 63ebca89df..d2b2bf0990 100644 --- a/Std/Data/List/Init/Attach.lean +++ b/Std/Data/List/Init/Attach.lean @@ -6,35 +6,39 @@ Authors: Mario Carneiro namespace List -/-- Partial map. If `f : Π a, p a → β` is a partial function defined on - `a : α` satisfying `p`, then `pmap f l h` is essentially the same as `map f l` - but is defined only when all members of `l` satisfy `p`, using the proof +/-- `O(n)`. Partial map. If `f : Π a, P a → β` is a partial function defined on + `a : α` satisfying `P`, then `pmap f l h` is essentially the same as `map f l` + but is defined only when all members of `l` satisfy `P`, using the proof to apply `f`. -/ -@[simp] def pmap {p : α → Prop} (f : ∀ a, p a → β) : ∀ l : List α, (∀ a ∈ l, p a) → List β +@[simp] def pmap {P : α → Prop} (f : ∀ a, P a → β) : ∀ l : List α, (H : ∀ a ∈ l, P a) → List β | [], _ => [] | a :: l, H => f a (forall_mem_cons.1 H).1 :: pmap f l (forall_mem_cons.1 H).2 /-- -Unsafe implementation of `attach`, taking advantage of the fact that the representation of -`List {x // x ∈ l}` is the same as the input `List α`. +Unsafe implementation of `attachWith`, taking advantage of the fact that the representation of +`List {x // P x}` is the same as the input `List α`. (Someday, the compiler might do this optimization automatically, but until then...) -/ -@[inline] private unsafe def attachImpl (l : List α) : List {x // x ∈ l} := unsafeCast l +@[inline] private unsafe def attachWithImpl + (l : List α) (P : α → Prop) (_ : ∀ x ∈ l, P x) : List {x // P x} := unsafeCast l -/-- "Attach" the proof that the elements of `l` are in `l` to produce a new list +/-- `O(1)`. "Attach" a proof `P x` that holds for all the elements of `l` to produce a new list + with the same elements but in the type `{x // P x}`. -/ +@[implemented_by attachWithImpl] def attachWith + (l : List α) (P : α → Prop) (H : ∀ x ∈ l, P x) : List {x // P x} := pmap Subtype.mk l H + +/-- `O(1)`. "Attach" the proof that the elements of `l` are in `l` to produce a new list with the same elements but in the type `{x // x ∈ l}`. -/ -@[implemented_by attachImpl] def attach (l : List α) : List {x // x ∈ l} := - pmap Subtype.mk l fun _ => id +@[inline] def attach (l : List α) : List {x // x ∈ l} := attachWith l _ fun _ => id /-- Implementation of `pmap` using the zero-copy version of `attach`. -/ -@[inline] private def pmapImpl {p : α → Prop} (f : ∀ a, p a → β) (l : List α) (h : ∀ a ∈ l, p a) : - List β := l.attach.map fun ⟨x, h'⟩ => f x (h _ h') +@[inline] private def pmapImpl {P : α → Prop} (f : ∀ a, P a → β) (l : List α) (H : ∀ a ∈ l, P a) : + List β := (l.attachWith _ H).map fun ⟨x, h'⟩ => f x h' @[csimp] private theorem pmap_eq_pmapImpl : @pmap = @pmapImpl := by funext α β p f L h' - let rec go : ∀ L' (hL' : ∀ ⦃x⦄, x ∈ L' → x ∈ L), - pmap f L' (fun _ h => h' _ <| hL' h) = - map (fun ⟨x, hx⟩ => f x (h' _ hx)) (pmap Subtype.mk L' hL') + let rec go : ∀ L' (hL' : ∀ ⦃x⦄, x ∈ L' → p x), + pmap f L' hL' = map (fun ⟨x, hx⟩ => f x hx) (pmap Subtype.mk L' hL') | nil, hL' => rfl | cons _ L', hL' => congrArg _ <| go L' fun _ hx => hL' (.tail _ hx) - exact go L fun _ hx => hx + exact go L h' diff --git a/Std/Data/List/Init/Lemmas.lean b/Std/Data/List/Init/Lemmas.lean new file mode 100644 index 0000000000..8770f6c2ee --- /dev/null +++ b/Std/Data/List/Init/Lemmas.lean @@ -0,0 +1,39 @@ +/- +Copyright (c) 2014 Parikshit Khanna. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro +-/ + +/-! # Bootstrapping properties of Lists -/ + +namespace List + +@[ext] theorem ext : ∀ {l₁ l₂ : List α}, (∀ n, l₁.get? n = l₂.get? n) → l₁ = l₂ + | [], [], _ => rfl + | a :: l₁, [], h => nomatch h 0 + | [], a' :: l₂, h => nomatch h 0 + | a :: l₁, a' :: l₂, h => by + have h0 : some a = some a' := h 0 + injection h0 with aa; simp only [aa, ext fun n => h (n+1)] + +theorem ext_get {l₁ l₂ : List α} (hl : length l₁ = length l₂) + (h : ∀ n h₁ h₂, get l₁ ⟨n, h₁⟩ = get l₂ ⟨n, h₂⟩) : l₁ = l₂ := + ext fun n => + if h₁ : n < length l₁ then by + rw [get?_eq_get, get?_eq_get, h n h₁ (by rwa [← hl])] + else by + have h₁ := Nat.le_of_not_lt h₁ + rw [get?_len_le h₁, get?_len_le]; rwa [← hl] + +@[simp] theorem get_map (f : α → β) {l n} : get (map f l) n = f (get l ⟨n, length_map l f ▸ n.2⟩) := + Option.some.inj <| by rw [← get?_eq_get, get?_map, get?_eq_get]; rfl + +/-! ### foldl / foldr -/ + +theorem foldl_map (f : β₁ → β₂) (g : α → β₂ → α) (l : List β₁) (init : α) : + (l.map f).foldl g init = l.foldl (fun x y => g x (f y)) init := by + induction l generalizing init <;> simp [*] + +theorem foldr_map (f : α₁ → α₂) (g : α₂ → β → β) (l : List α₁) (init : β) : + (l.map f).foldr g init = l.foldr (fun x y => g (f x) y) init := by + induction l generalizing init <;> simp [*] diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 1d1b2a5a71..545fd8f769 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro -/ import Std.Control.ForInStep.Lemmas -import Std.Data.Nat.Basic +import Std.Data.List.Init.Lemmas import Std.Data.List.Basic import Std.Tactic.Init import Std.Tactic.Alias @@ -92,8 +92,11 @@ theorem append_of_mem {a : α} {l : List α} : a ∈ l → ∃ s t : List α, l | .head l => ⟨[], l, rfl⟩ | .tail b h => let ⟨s, t, h'⟩ := append_of_mem h; ⟨b::s, t, by rw [h', cons_append]⟩ -@[simp] theorem elem_iff {_ : DecidableEq α} {a : α} {as : List α} : - elem a as ↔ a ∈ as := ⟨mem_of_elem_eq_true, elem_eq_true_of_mem⟩ +theorem elem_iff [BEq α] [LawfulBEq α] {a : α} {as : List α} : + elem a as = true ↔ a ∈ as := ⟨mem_of_elem_eq_true, elem_eq_true_of_mem⟩ + +@[simp] theorem elem_eq_mem [BEq α] [LawfulBEq α] (a : α) (as : List α) : + elem a as = decide (a ∈ as) := by rw [Bool.eq_iff_iff, elem_iff, decide_eq_true_iff] theorem mem_of_ne_of_mem {a y : α} {l : List α} (h₁ : a ≠ y) (h₂ : a ∈ y :: l) : a ∈ l := Or.elim (mem_cons.mp h₂) (absurd · h₁) (·) @@ -617,13 +620,14 @@ theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l | refl => apply Sublist.refl | step => simp [*, replicate, Sublist.cons] -theorem isSublist_iff_sublist [DecidableEq α] {l₁ l₂ : List α} : l₁.isSublist l₂ ↔ l₁ <+ l₂ := by +theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} : + l₁.isSublist l₂ ↔ l₁ <+ l₂ := by cases l₁ <;> cases l₂ <;> simp [isSublist] case cons.cons hd₁ tl₁ hd₂ tl₂ => if h_eq : hd₁ = hd₂ then simp [h_eq, cons_sublist_cons, isSublist_iff_sublist] else - simp only [h_eq] + simp only [beq_iff_eq, h_eq] constructor · intro h_sub apply Sublist.cons @@ -690,6 +694,11 @@ theorem getLastD_mem_cons : ∀ (l : List α) (a : α), getLastD l a ∈ a::l | [], _ => .head .. | _::_, _ => .tail _ <| getLast_mem _ +@[simp] theorem getLast?_reverse (l : List α) : l.reverse.getLast? = l.head? := by cases l <;> simp + +@[simp] theorem head?_reverse (l : List α) : l.reverse.head? = l.getLast? := by + rw [← getLast?_reverse, reverse_reverse] + /-! ### dropLast -/ /-! NB: `dropLast` is the specification for `Array.pop`, so theorems about `List.dropLast` @@ -774,9 +783,6 @@ theorem get?_inj rw [mem_iff_get?] exact ⟨_, h₂⟩; exact ⟨_ , h₂.symm⟩ -@[simp] theorem get_map (f : α → β) {l n} : get (map f l) n = f (get l ⟨n, length_map l f ▸ n.2⟩) := - Option.some.inj <| by rw [← get?_eq_get, get?_map, get?_eq_get]; rfl - /-- If one has `get l i hi` in a formula and `h : l = l'`, one can not `rw h` in the formula as `hi` gives `i < l.length` and not `i < l'.length`. The theorem `get_of_eq` can be used to make @@ -817,23 +823,6 @@ theorem get_cons_length (x : α) (xs : List α) (n : Nat) (h : n = xs.length) : (x :: xs).get ⟨n, by simp [h]⟩ = (x :: xs).getLast (cons_ne_nil x xs) := by rw [getLast_eq_get]; cases h; rfl -@[ext] theorem ext : ∀ {l₁ l₂ : List α}, (∀ n, l₁.get? n = l₂.get? n) → l₁ = l₂ - | [], [], _ => rfl - | a :: l₁, [], h => nomatch h 0 - | [], a' :: l₂, h => nomatch h 0 - | a :: l₁, a' :: l₂, h => by - have h0 : some a = some a' := h 0 - injection h0 with aa; simp only [aa, ext fun n => h (n+1)] - -theorem ext_get {l₁ l₂ : List α} (hl : length l₁ = length l₂) - (h : ∀ n h₁ h₂, get l₁ ⟨n, h₁⟩ = get l₂ ⟨n, h₂⟩) : l₁ = l₂ := - ext fun n => - if h₁ : n < length l₁ then by - rw [get?_eq_get, get?_eq_get, h n h₁ (by rwa [← hl])] - else by - have h₁ := Nat.le_of_not_lt h₁ - rw [get?_len_le h₁, get?_len_le]; rwa [← hl] - theorem get!_of_get? [Inhabited α] : ∀ {l : List α} {n}, get? l n = some a → get! l n = a | _a::_, 0, rfl => rfl | _::l, _+1, e => get!_of_get? (l := l) e @@ -935,6 +924,16 @@ theorem get?_take {l : List α} {n m : Nat} (h : m < n) : (l.take n).get? m = l. · simp only [get?, take] · simpa only using hn (Nat.lt_of_succ_lt_succ h) +theorem get?_take_eq_none {l : List α} {n m : Nat} (h : n ≤ m) : + (l.take n).get? m = none := + get?_eq_none.mpr <| Nat.le_trans (length_take_le _ _) h + +theorem get?_take_eq_if {l : List α} {n m : Nat} : + (l.take n).get? m = if m < n then l.get? m else none := by + split + · next h => exact get?_take h + · next h => exact get?_take_eq_none (Nat.le_of_not_lt h) + @[simp] theorem nth_take_of_succ {l : List α} {n : Nat} : (l.take (n + 1)).get? n = l.get? n := get?_take (Nat.lt_succ_self n) @@ -1301,6 +1300,18 @@ theorem mem_or_eq_of_mem_set : ∀ {l : List α} {n : Nat} {a b : α}, a ∈ l.s | _ :: _, _+1, _, _, .head .. => .inl (.head ..) | _ :: _, _+1, _, _, .tail _ h => (mem_or_eq_of_mem_set h).imp_left (.tail _) +theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) : + (l.set n a).drop m = l.drop m := + List.ext fun i => by rw [get?_drop, get?_drop, get?_set_ne _ _ (by omega)] + +theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) : + (l.set n a).take m = l.take m := + List.ext fun i => by + rw [get?_take_eq_if, get?_take_eq_if] + split + · next h' => rw [get?_set_ne _ _ (by omega)] + · rfl + /-! ### remove nth -/ theorem length_removeNth : ∀ {l i}, i < length l → length (@removeNth α l i) = length l - 1 @@ -1366,13 +1377,13 @@ theorem all_eq_not_any_not (l : List α) (p : α → Bool) : l.all p = !l.any (! /-! ### insert -/ section insert -variable [DecidableEq α] +variable [BEq α] [LawfulBEq α] @[simp] theorem insert_of_mem {l : List α} (h : a ∈ l) : l.insert a = l := by - simp only [List.insert, elem_iff, if_pos h] + simp [List.insert, h] @[simp] theorem insert_of_not_mem {l : List α} (h : a ∉ l) : l.insert a = a :: l := by - simp only [List.insert, elem_iff, if_neg h] + simp [List.insert, h] @[simp] theorem mem_insert_iff {l : List α} : a ∈ l.insert b ↔ a = b ∨ a ∈ l := by if h : b ∈ l then @@ -1502,7 +1513,7 @@ theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map /-! ### erase -/ section erase -variable [BEq α] [LawfulBEq α] +variable [BEq α] @[simp] theorem erase_nil (a : α) : [].erase a = [] := rfl @@ -1511,58 +1522,65 @@ theorem erase_cons (a b : α) (l : List α) : if h : b == a then by simp [List.erase, h] else by simp [List.erase, h, (beq_eq_false_iff_ne _ _).2 h] -@[simp] theorem erase_cons_head (a : α) (l : List α) : (a :: l).erase a = l := by +@[simp] theorem erase_cons_head [LawfulBEq α] (a : α) (l : List α) : (a :: l).erase a = l := by simp [erase_cons] @[simp] theorem erase_cons_tail {a b : α} (l : List α) (h : ¬(b == a)) : (b :: l).erase a = b :: l.erase a := by simp only [erase_cons, if_neg h] -theorem erase_eq_eraseP (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·) +theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a) := by + induction l + · simp + · next b t ih => + rw [erase_cons, eraseP_cons, ih] + if h : b == a then simp [h] else simp [h] + +theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·) | [] => rfl | b :: l => by if h : a = b then simp [h] else simp [h, Ne.symm h, erase_eq_eraseP a l] -theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a := by - simp [erase_eq_eraseP]; exact Sublist.eraseP h - -theorem erase_of_not_mem {a : α} : ∀ {l : List α}, a ∉ l → l.erase a = l +theorem erase_of_not_mem [LawfulBEq α] {a : α} : ∀ {l : List α}, a ∉ l → l.erase a = l | [], _ => rfl | b :: l, h => by rw [mem_cons, not_or] at h simp only [erase_cons, if_neg, erase_of_not_mem h.2, beq_iff_eq, Ne.symm h.1, not_false_eq_true] -theorem exists_erase_eq {a : α} {l : List α} (h : a ∈ l) : +theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) : ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂ := by let ⟨_, l₁, l₂, h₁, e, h₂, h₃⟩ := exists_of_eraseP h (beq_self_eq_true _) rw [erase_eq_eraseP]; exact ⟨l₁, l₂, fun h => h₁ _ h (beq_self_eq_true _), eq_of_beq e ▸ h₂, h₃⟩ -@[simp] theorem length_erase_of_mem {a : α} {l : List α} (h : a ∈ l) : +@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) : length (l.erase a) = Nat.pred (length l) := by rw [erase_eq_eraseP]; exact length_eraseP_of_mem h (beq_self_eq_true a) -theorem erase_append_left {l₁ : List α} (l₂) (h : a ∈ l₁) : +theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) : (l₁ ++ l₂).erase a = l₁.erase a ++ l₂ := by simp [erase_eq_eraseP]; exact eraseP_append_left (beq_self_eq_true a) l₂ h -theorem erase_append_right {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) : +theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) : (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a) := by rw [erase_eq_eraseP, erase_eq_eraseP, eraseP_append_right] intros b h' h''; rw [eq_of_beq h''] at h; exact h h' theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l := - erase_eq_eraseP a l ▸ eraseP_sublist l + erase_eq_eraseP' a l ▸ eraseP_sublist l theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l := (erase_sublist a l).subset -theorem sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a := by - simp only [erase_eq_eraseP]; exact h.eraseP +theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a := by + simp only [erase_eq_eraseP']; exact h.eraseP +@[deprecated] alias sublist.erase := Sublist.erase theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l := erase_subset _ _ h -@[simp] theorem mem_erase_of_ne {a b : α} {l : List α} (ab : a ≠ b) : a ∈ l.erase b ↔ a ∈ l := +@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) : + a ∈ l.erase b ↔ a ∈ l := erase_eq_eraseP b l ▸ mem_eraseP_of_neg (mt eq_of_beq ab.symm) -theorem erase_comm (a b : α) (l : List α) : (l.erase a).erase b = (l.erase b).erase a := by +theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) : + (l.erase a).erase b = (l.erase b).erase a := by if ab : a == b then rw [eq_of_beq ab] else ?_ if ha : a ∈ l then ?_ else simp only [erase_of_not_mem ha, erase_of_not_mem (mt mem_of_mem_erase ha)] @@ -1978,14 +1996,6 @@ theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) /-! ### foldl / foldr -/ -theorem foldl_map (f : β₁ → β₂) (g : α → β₂ → α) (l : List β₁) (init : α) : - (l.map f).foldl g init = l.foldl (fun x y => g x (f y)) init := by - induction l generalizing init <;> simp [*] - -theorem foldr_map (f : α₁ → α₂) (g : α₂ → β → β) (l : List α₁) (init : β) : - (l.map f).foldr g init = l.foldr (fun x y => g (f x) y) init := by - induction l generalizing init <;> simp [*] - theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁) (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init) := by induction l generalizing init <;> simp [*, H] @@ -1998,25 +2008,25 @@ theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : section union -variable [DecidableEq α] +variable [BEq α] -theorem union_def [DecidableEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁ := rfl +theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁ := rfl @[simp] theorem nil_union (l : List α) : nil ∪ l = l := by simp [List.union_def, foldr] @[simp] theorem cons_union (a : α) (l₁ l₂ : List α) : (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a := by simp [List.union_def, foldr] -@[simp] theorem mem_union_iff {_ : DecidableEq α} {x : α} {l₁ l₂ : List α} : +@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} : x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂ := by induction l₁ <;> simp [*, or_assoc] end union /-! ### inter -/ -theorem inter_def [DecidableEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (· ∈ l₂) l₁ := rfl +theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁ := rfl -@[simp] theorem mem_inter_iff {_ : DecidableEq α} {x : α} {l₁ l₂ : List α} : +@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} : x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂ := by cases l₁ <;> simp [List.inter_def, mem_filter] @@ -2062,8 +2072,8 @@ theorem forIn_eq_bindList [Monad m] [LawfulMonad m] /-! ### diff -/ section Diff --- TODO: theorems about `BEq` -variable [DecidableEq α] +variable [BEq α] +variable [LawfulBEq α] @[simp] theorem diff_nil (l : List α) : l.diff [] = l := rfl diff --git a/Std/Data/List/Perm.lean b/Std/Data/List/Perm.lean index 2438d0f0f5..9b74cccaec 100644 --- a/Std/Data/List/Perm.lean +++ b/Std/Data/List/Perm.lean @@ -476,13 +476,10 @@ theorem Perm.diff_right {l₁ l₂ : List α} (t : List α) (h : l₁ ~ l₂) : induction t generalizing l₁ l₂ h with simp only [List.diff] | nil => exact h | cons x t ih => - split <;> rename_i hx - · simp [elem_eq_true_of_mem (h.subset (mem_of_elem_eq_true hx))] - exact ih (h.erase _) - · have : ¬elem x l₂ = true := fun contra => - hx <| elem_eq_true_of_mem <| h.symm.subset <| mem_of_elem_eq_true contra - simp [this] - exact ih h + simp only [elem_eq_mem, decide_eq_true_eq, Perm.mem_iff h] + split + · exact ih (h.erase _) + · exact ih h theorem Perm.diff_left (l : List α) {t₁ t₂ : List α} (h : t₁ ~ t₂) : l.diff t₁ = l.diff t₂ := by induction h generalizing l with try simp [List.diff] @@ -500,21 +497,15 @@ theorem Perm.diff {l₁ l₂ t₁ t₂ : List α} (hl : l₁ ~ l₂) (ht : t₁ theorem Subperm.diff_right {l₁ l₂ : List α} (h : l₁ <+~ l₂) (t : List α) : l₁.diff t <+~ l₂.diff t := by - induction t generalizing l₁ l₂ h with - | nil => simp only [List.diff]; exact h + induction t generalizing l₁ l₂ h with simp [List.diff, elem_eq_mem, *] | cons x t ih => - simp only [List.diff]; split <;> rename_i hx1 - · have : elem x l₂ = true := by - apply elem_eq_true_of_mem - apply h.subset (mem_of_elem_eq_true hx1) - simp [this] - apply ih - apply h.erase - · split <;> rename_i hx2 - · apply ih - have := h.erase x - simpa [erase_of_not_mem (hx1 ∘ elem_eq_true_of_mem)] using this - · apply ih h + split <;> rename_i hx1 + · simp [h.subset hx1] + exact ih (h.erase _) + · split + · rw [← erase_of_not_mem hx1] + exact ih (h.erase _) + · exact ih h theorem erase_cons_subperm_cons_erase (a b : α) (l : List α) : (a :: l).erase b <+~ a :: l.erase b := by diff --git a/Std/Data/RBMap/Alter.lean b/Std/Data/RBMap/Alter.lean index 6e6d99b455..c1119ee434 100644 --- a/Std/Data/RBMap/Alter.lean +++ b/Std/Data/RBMap/Alter.lean @@ -26,20 +26,6 @@ def OnRoot (p : α → Prop) : RBNode α → Prop | nil => True | node _ _ x _ => p x -/-- -Auxiliary definition for `zoom_ins`: set the root of the tree to `v`, creating a node if necessary. --/ -def setRoot (v : α) : RBNode α → RBNode α - | nil => node red nil v nil - | node c a _ b => node c a v b - -/-- -Auxiliary definition for `zoom_ins`: set the root of the tree to `v`, creating a node if necessary. --/ -def delRoot : RBNode α → RBNode α - | nil => nil - | node _ a _ b => a.append b - namespace Path /-- Same as `fill` but taking its arguments in a pair for easier composition with `zoom`. -/ @@ -54,39 +40,6 @@ theorem zoom_fill' (cut : α → Ordering) (t : RBNode α) (path : Path α) : theorem zoom_fill (H : zoom cut t path = (t', path')) : path.fill t = path'.fill t' := (H ▸ zoom_fill' cut t path).symm -theorem zoom_ins {t : RBNode α} {cmp : α → α → Ordering} : - t.zoom (cmp v) path = (t', path') → - path.ins (t.ins cmp v) = path'.ins (t'.setRoot v) := by - unfold RBNode.ins; split <;> simp [zoom] - · intro | rfl, rfl => rfl - all_goals - · split - · exact zoom_ins - · exact zoom_ins - · intro | rfl => rfl - -theorem insertNew_eq_insert (h : zoom (cmp v) t = (nil, path)) : - path.insertNew v = (t.insert cmp v).setBlack := - insert_setBlack .. ▸ (zoom_ins h).symm - -theorem zoom_del {t : RBNode α} : - t.zoom cut path = (t', path') → - path.del (t.del cut) (match t with | node c .. => c | _ => red) = - path'.del t'.delRoot (match t' with | node c .. => c | _ => red) := by - unfold RBNode.del; split <;> simp [zoom] - · intro | rfl, rfl => rfl - · next c a y b => - split - · have IH := @zoom_del (t := a) - match a with - | nil => intro | rfl => rfl - | node black .. | node red .. => apply IH - · have IH := @zoom_del (t := b) - match b with - | nil => intro | rfl => rfl - | node black .. | node red .. => apply IH - · intro | rfl => rfl - variable (c₀ : RBColor) (n₀ : Nat) in /-- The balance invariant for a path. `path.Balanced c₀ n₀ c n` means that `path` is a red-black tree @@ -134,13 +87,6 @@ protected theorem _root_.Std.RBNode.Balanced.zoom : t.Balanced c n → path.Bala · exact hb.zoom (.blackR ha hp) · intro e; cases e; exact ⟨_, _, .black ha hb, hp⟩ -theorem ins_eq_fill {path : Path α} {t : RBNode α} : - path.Balanced c₀ n₀ c n → t.Balanced c n → path.ins t = (path.fill t).setBlack - | .root, h => rfl - | .redL hb H, ha | .redR ha H, hb => by unfold ins; exact ins_eq_fill H (.red ha hb) - | .blackL hb H, ha => by rw [ins, fill, ← ins_eq_fill H (.black ha hb), balance1_eq ha] - | .blackR ha H, hb => by rw [ins, fill, ← ins_eq_fill H (.black ha hb), balance2_eq hb] - protected theorem Balanced.ins {path : Path α} (hp : path.Balanced c₀ n₀ c n) (ht : t.RedRed (c = red) n) : ∃ n, (path.ins t).Balanced black n := by @@ -160,21 +106,6 @@ protected theorem Balanced.ins {path : Path α} protected theorem Balanced.insertNew {path : Path α} (H : path.Balanced c n black 0) : ∃ n, (path.insertNew v).Balanced black n := H.ins (.balanced (.red .nil .nil)) -protected theorem Balanced.insert {path : Path α} (hp : path.Balanced c₀ n₀ c n) : - t.Balanced c n → ∃ c n, (path.insert t v).Balanced c n - | .nil => ⟨_, hp.insertNew⟩ - | .red ha hb => ⟨_, _, hp.fill (.red ha hb)⟩ - | .black ha hb => ⟨_, _, hp.fill (.black ha hb)⟩ - -theorem zoom_insert {path : Path α} {t : RBNode α} (ht : t.Balanced c n) - (H : zoom (cmp v) t = (t', path)) : - (path.insert t' v).setBlack = (t.insert cmp v).setBlack := by - have ⟨_, _, ht', hp'⟩ := ht.zoom .root H - cases ht' with simp [insert] - | nil => simp [insertNew_eq_insert H, setBlack_idem] - | red hl hr => rw [← ins_eq_fill hp' (.red hl hr), insert_setBlack]; exact (zoom_ins H).symm - | black hl hr => rw [← ins_eq_fill hp' (.black hl hr), insert_setBlack]; exact (zoom_ins H).symm - protected theorem Balanced.del {path : Path α} (hp : path.Balanced c₀ n₀ c n) (ht : t.DelProp c' n) (hc : c = black → c' ≠ red) : ∃ n, (path.del t c').Balanced black n := by @@ -194,18 +125,6 @@ protected theorem Balanced.del {path : Path α} | red, _, ⟨_, hb⟩ => exact ih ⟨_, rfl, .redred ⟨⟩ ha hb⟩ nofun | black, _, ⟨_, rfl, hb⟩ => exact ih ⟨_, rfl, (ha.balRight hb).imp fun _ => ⟨⟩⟩ nofun -/-- Asserts that `p` holds on all elements to the left of the hole. -/ -def AllL (p : α → Prop) : Path α → Prop - | .root => True - | .left _ parent _ _ => parent.AllL p - | .right _ a x parent => a.All p ∧ p x ∧ parent.AllL p - -/-- Asserts that `p` holds on all elements to the right of the hole. -/ -def AllR (p : α → Prop) : Path α → Prop - | .root => True - | .left _ parent x b => parent.AllR p ∧ p x ∧ b.All p - | .right _ _ _ parent => parent.AllR p - /-- The property of a path returned by `t.zoom cut`. Each of the parents visited along the path have the appropriate ordering relation to the cut. @@ -215,15 +134,6 @@ def Zoomed (cut : α → Ordering) : Path α → Prop | .left _ parent x _ => cut x = .lt ∧ parent.Zoomed cut | .right _ _ x parent => cut x = .gt ∧ parent.Zoomed cut -theorem zoom_zoomed₁ (e : zoom cut t path = (t', path')) : t'.OnRoot (cut · = .eq) := - match t, e with - | nil, rfl => trivial - | node .., e => by - revert e; unfold zoom; split - · exact zoom_zoomed₁ - · exact zoom_zoomed₁ - · next H => intro e; cases e; exact H - theorem zoom_zoomed₂ (e : zoom cut t path = (t', path')) (hp : path.Zoomed cut) : path'.Zoomed cut := match t, e with @@ -309,13 +219,6 @@ theorem Ordered.insertNew {path : Path α} (hp : path.Ordered cmp) (vp : path.Ro (path.insertNew v).Ordered cmp := hp.ins ⟨⟨⟩, ⟨⟩, ⟨⟩, ⟨⟩⟩ ⟨vp, ⟨⟩, ⟨⟩⟩ -theorem Ordered.insert : ∀ {path : Path α} {t : RBNode α}, - path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → path.RootOrdered cmp v → - t.OnRoot (cmpEq cmp v) → (path.insert t v).Ordered cmp - | _, nil, hp, _, _, vp, _ => hp.insertNew vp - | _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩, vp, xv => Ordered.fill.2 - ⟨hp, ⟨ax.imp xv.lt_congr_right.2, xb.imp xv.lt_congr_left.2, ha, hb⟩, vp, ap, bp⟩ - theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c}, t.Ordered cmp → path.Ordered cmp → t.All (path.RootOrdered cmp) → (path.del t c).Ordered cmp | .root, t, _, ht, _, _ => Ordered.setBlack.2 ht @@ -330,11 +233,6 @@ theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c}, unfold del; have ⟨xb, bp⟩ := All_and.1 H exact hp.del (ha.balRight ax xb hb) (ap.balRight xp bp) -theorem Ordered.erase : ∀ {path : Path α} {t : RBNode α}, - path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → (path.erase t).Ordered cmp - | _, nil, hp, ht, tp => Ordered.fill.2 ⟨hp, ht, tp⟩ - | _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩ => hp.del (ha.append ax xb hb) (ap.append bp) - end Path /-! ## alter -/ diff --git a/Std/Data/RBMap/Basic.lean b/Std/Data/RBMap/Basic.lean index f404c6c5f3..4753a1446b 100644 --- a/Std/Data/RBMap/Basic.lean +++ b/Std/Data/RBMap/Basic.lean @@ -6,6 +6,7 @@ Authors: Leonardo de Moura, Mario Carneiro import Std.Classes.Order import Std.Control.ForInStep.Basic import Std.Tactic.Lint.Misc +import Std.Tactic.Alias /-! # Red-black trees @@ -55,16 +56,19 @@ open RBColor instance : EmptyCollection (RBNode α) := ⟨nil⟩ /-- The minimum element of a tree is the left-most value. -/ -protected def min : RBNode α → Option α +protected def min? : RBNode α → Option α | nil => none | node _ nil v _ => some v - | node _ l _ _ => l.min + | node _ l _ _ => l.min? /-- The maximum element of a tree is the right-most value. -/ -protected def max : RBNode α → Option α +protected def max? : RBNode α → Option α | nil => none | node _ _ v nil => some v - | node _ _ _ r => r.max + | node _ _ _ r => r.max? + +@[deprecated] protected alias min := RBNode.min? +@[deprecated] protected alias max := RBNode.max? /-- Fold a function in tree order along the nodes. `v₀` is used at `nil` nodes and @@ -263,8 +267,8 @@ def isOrdered (cmp : α → α → Ordering) /-- The second half of Okasaki's `balance`, concerning red-red sequences in the right child. -/ @[inline] def balance2 : RBNode α → α → RBNode α → RBNode α - | a, x, node red (node red b y c) z d - | a, x, node red b y (node red c z d) => node red (node black a x b) y (node black c z d) + | a, x, node red b y (node red c z d) + | a, x, node red (node red b y c) z d => node red (node black a x b) y (node black c z d) | a, x, b => node black a x b /-- Returns `red` if the node is red, otherwise `black`. (Nil nodes are treated as `black`.) -/ @@ -280,11 +284,16 @@ Returns `black` if the node is black, otherwise `red`. | node c .. => c | _ => red -/-- Change the color of the root to `black`. -/ +/-- Changes the color of the root to `black`. -/ def setBlack : RBNode α → RBNode α | nil => nil | node _ l v r => node black l v r +/-- `O(n)`. Reverses the ordering of the tree without any rebalancing. -/ +@[simp] def reverse : RBNode α → RBNode α + | nil => nil + | node c l v r => node c r.reverse v l.reverse + section Insert /-- @@ -646,10 +655,13 @@ instance : ToStream (RBSet α cmp) (RBNode.Stream α) := ⟨fun x => x.1.toStrea @[inline] def toList (t : RBSet α cmp) : List α := t.1.toList /-- `O(log n)`. Returns the entry `a` such that `a ≤ k` for all keys in the RBSet. -/ -@[inline] protected def min (t : RBSet α cmp) : Option α := t.1.min +@[inline] protected def min? (t : RBSet α cmp) : Option α := t.1.min? /-- `O(log n)`. Returns the entry `a` such that `a ≥ k` for all keys in the RBSet. -/ -@[inline] protected def max (t : RBSet α cmp) : Option α := t.1.max +@[inline] protected def max? (t : RBSet α cmp) : Option α := t.1.max? + +@[deprecated] protected alias min := RBSet.min? +@[deprecated] protected alias max := RBSet.max? instance [Repr α] : Repr (RBSet α cmp) where reprPrec m prec := Repr.addAppParen ("RBSet.ofList " ++ repr m.toList) prec @@ -751,10 +763,10 @@ instance [BEq α] : BEq (RBSet α cmp) where def size (m : RBSet α cmp) : Nat := m.1.size /-- `O(log n)`. Returns the minimum element of the tree, or panics if the tree is empty. -/ -@[inline] def min! [Inhabited α] (t : RBSet α cmp) : α := t.min.getD (panic! "tree is empty") +@[inline] def min! [Inhabited α] (t : RBSet α cmp) : α := t.min?.getD (panic! "tree is empty") /-- `O(log n)`. Returns the maximum element of the tree, or panics if the tree is empty. -/ -@[inline] def max! [Inhabited α] (t : RBSet α cmp) : α := t.max.getD (panic! "tree is empty") +@[inline] def max! [Inhabited α] (t : RBSet α cmp) : α := t.max?.getD (panic! "tree is empty") /-- `O(log n)`. Attempts to find the value with key `k : α` in `t` and panics if there is no such key. @@ -890,7 +902,7 @@ variable {α : Type u} {β : Type v} {σ : Type w} {cmp : α → α → Ordering /-- `O(n)`. Run monadic function `f` on each element of the tree (in increasing order). -/ @[inline] def forM [Monad m] (f : α → β → m PUnit) (t : RBMap α β cmp) : m PUnit := - t.foldlM (fun _ k v => f k v) ⟨⟩ + t.1.forM (fun (a, b) => f a b) instance : ForIn m (RBMap α β cmp) (α × β) := inferInstanceAs (ForIn _ (RBSet ..) _) @@ -1002,10 +1014,13 @@ instance : Stream (Values.Stream α β) β := ⟨Values.Stream.next?⟩ @[inline] def toList : RBMap α β cmp → List (α × β) := RBSet.toList /-- `O(log n)`. Returns the key-value pair `(a, b)` such that `a ≤ k` for all keys in the RBMap. -/ -@[inline] protected def min : RBMap α β cmp → Option (α × β) := RBSet.min +@[inline] protected def min? : RBMap α β cmp → Option (α × β) := RBSet.min? /-- `O(log n)`. Returns the key-value pair `(a, b)` such that `a ≥ k` for all keys in the RBMap. -/ -@[inline] protected def max : RBMap α β cmp → Option (α × β) := RBSet.max +@[inline] protected def max? : RBMap α β cmp → Option (α × β) := RBSet.max? + +@[deprecated] protected alias min := RBMap.min? +@[deprecated] protected alias max := RBMap.max? instance [Repr α] [Repr β] : Repr (RBMap α β cmp) where reprPrec m prec := Repr.addAppParen ("RBMap.ofList " ++ repr m.toList) prec diff --git a/Std/Data/RBMap/Lemmas.lean b/Std/Data/RBMap/Lemmas.lean index 64e26eb4a7..24ca552fd0 100644 --- a/Std/Data/RBMap/Lemmas.lean +++ b/Std/Data/RBMap/Lemmas.lean @@ -92,6 +92,15 @@ theorem WF.depth_bound {t : RBNode α} (h : t.WF cmp) : t.depth ≤ 2 * (t.size end depth +@[simp] theorem min?_reverse (t : RBNode α) : t.reverse.min? = t.max? := by + unfold RBNode.max?; split <;> simp [RBNode.min?] + unfold RBNode.min?; rw [min?.match_1.eq_3] + · apply min?_reverse + · simpa [reverse_eq_iff] + +@[simp] theorem max?_reverse (t : RBNode α) : t.reverse.max? = t.min? := by + rw [← min?_reverse, reverse_reverse] + @[simp] theorem mem_nil {x} : ¬x ∈ (.nil : RBNode α) := by simp [(·∈·), EMem] @[simp] theorem mem_node {y c a x b} : y ∈ (.node c a x b : RBNode α) ↔ y = x ∨ y ∈ a ∨ y ∈ b := by simp [(·∈·), EMem] @@ -366,15 +375,39 @@ theorem foldr_cons (t : RBNode α) (l) : t.foldr (·::·) l = t.toList ++ l := b @[simp] theorem toList_node : (.node c a x b : RBNode α).toList = a.toList ++ x :: b.toList := by rw [toList, foldr, foldr_cons]; rfl +@[simp] theorem toList_reverse (t : RBNode α) : t.reverse.toList = t.toList.reverse := by + induction t <;> simp [*] + @[simp] theorem mem_toList {t : RBNode α} : x ∈ t.toList ↔ x ∈ t := by induction t <;> simp [*, or_left_comm] +@[simp] theorem mem_reverse {t : RBNode α} : a ∈ t.reverse ↔ a ∈ t := by rw [← mem_toList]; simp + +theorem min?_eq_toList_head? {t : RBNode α} : t.min? = t.toList.head? := by + induction t with + | nil => rfl + | node _ l _ _ ih => + cases l <;> simp [RBNode.min?, ih] + next ll _ _ => cases toList ll <;> rfl + +theorem max?_eq_toList_getLast? {t : RBNode α} : t.max? = t.toList.getLast? := by + rw [← min?_reverse, min?_eq_toList_head?]; simp + theorem foldr_eq_foldr_toList {t : RBNode α} : t.foldr f init = t.toList.foldr f init := by induction t generalizing init <;> simp [*] theorem foldl_eq_foldl_toList {t : RBNode α} : t.foldl f init = t.toList.foldl f init := by induction t generalizing init <;> simp [*] +theorem foldl_reverse {α β : Type _} {t : RBNode α} {f : β → α → β} {init : β} : + t.reverse.foldl f init = t.foldr (flip f) init := by + simp (config := {unfoldPartialApp := true}) + [foldr_eq_foldr_toList, foldl_eq_foldl_toList, flip] + +theorem foldr_reverse {α β : Type _} {t : RBNode α} {f : α → β → β} {init : β} : + t.reverse.foldr f init = t.foldl (flip f) init := + foldl_reverse.symm.trans (by simp; rfl) + theorem forM_eq_forM_toList [Monad m] [LawfulMonad m] {t : RBNode α} : t.forM (m := m) f = t.toList.forM f := by induction t <;> simp [*] @@ -466,6 +499,27 @@ theorem Ordered.toList_sorted {t : RBNode α} : t.Ordered cmp → t.toList.Pairw theorem size_eq {t : RBNode α} : t.size = t.toList.length := by induction t <;> simp [*, size]; rfl +@[simp] theorem reverse_size (t : RBNode α) : t.reverse.size = t.size := by simp [size_eq] + +@[simp] theorem find?_reverse (t : RBNode α) (cut : α → Ordering) : + t.reverse.find? cut = t.find? (cut · |>.swap) := by + induction t <;> simp [*, find?] + cases cut _ <;> simp [Ordering.swap] + +/-- +Auxiliary definition for `zoom_ins`: set the root of the tree to `v`, creating a node if necessary. +-/ +def setRoot (v : α) : RBNode α → RBNode α + | nil => node red nil v nil + | node c a _ b => node c a v b + +/-- +Auxiliary definition for `zoom_ins`: set the root of the tree to `v`, creating a node if necessary. +-/ +def delRoot : RBNode α → RBNode α + | nil => nil + | node _ a _ b => a.append b + namespace Path attribute [simp] RootOrdered Ordered @@ -515,6 +569,15 @@ theorem ordered_iff {p : Path α} : fun ⟨⟨hL, ⟨hl, lx⟩, Ll, Lx⟩, hR, LR, lR, xR⟩ => ⟨⟨hL, hR, LR⟩, lx, ⟨Lx, xR⟩, ⟨fun _ ha _ hb => Ll _ hb _ ha, lR⟩, hl⟩⟩ +theorem zoom_zoomed₁ (e : zoom cut t path = (t', path')) : t'.OnRoot (cut · = .eq) := + match t, e with + | nil, rfl => trivial + | node .., e => by + revert e; unfold zoom; split + · exact zoom_zoomed₁ + · exact zoom_zoomed₁ + · next H => intro e; cases e; exact H + @[simp] theorem fill_toList {p : Path α} : (p.fill t).toList = p.withList t.toList := by induction p generalizing t <;> simp [*] @@ -533,6 +596,85 @@ theorem insert_toList {p : Path α} : (p.insert t v).toList = p.withList (t.setRoot v).toList := by simp [insert]; split <;> simp [setRoot] +protected theorem Balanced.insert {path : Path α} (hp : path.Balanced c₀ n₀ c n) : + t.Balanced c n → ∃ c n, (path.insert t v).Balanced c n + | .nil => ⟨_, hp.insertNew⟩ + | .red ha hb => ⟨_, _, hp.fill (.red ha hb)⟩ + | .black ha hb => ⟨_, _, hp.fill (.black ha hb)⟩ + +theorem Ordered.insert : ∀ {path : Path α} {t : RBNode α}, + path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → path.RootOrdered cmp v → + t.OnRoot (cmpEq cmp v) → (path.insert t v).Ordered cmp + | _, nil, hp, _, _, vp, _ => hp.insertNew vp + | _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩, vp, xv => Ordered.fill.2 + ⟨hp, ⟨ax.imp xv.lt_congr_right.2, xb.imp xv.lt_congr_left.2, ha, hb⟩, vp, ap, bp⟩ + +theorem Ordered.erase : ∀ {path : Path α} {t : RBNode α}, + path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → (path.erase t).Ordered cmp + | _, nil, hp, ht, tp => Ordered.fill.2 ⟨hp, ht, tp⟩ + | _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩ => hp.del (ha.append ax xb hb) (ap.append bp) + +theorem zoom_ins {t : RBNode α} {cmp : α → α → Ordering} : + t.zoom (cmp v) path = (t', path') → + path.ins (t.ins cmp v) = path'.ins (t'.setRoot v) := by + unfold RBNode.ins; split <;> simp [zoom] + · intro | rfl, rfl => rfl + all_goals + · split + · exact zoom_ins + · exact zoom_ins + · intro | rfl => rfl + +theorem insertNew_eq_insert (h : zoom (cmp v) t = (nil, path)) : + path.insertNew v = (t.insert cmp v).setBlack := + insert_setBlack .. ▸ (zoom_ins h).symm + +theorem ins_eq_fill {path : Path α} {t : RBNode α} : + path.Balanced c₀ n₀ c n → t.Balanced c n → path.ins t = (path.fill t).setBlack + | .root, h => rfl + | .redL hb H, ha | .redR ha H, hb => by unfold ins; exact ins_eq_fill H (.red ha hb) + | .blackL hb H, ha => by rw [ins, fill, ← ins_eq_fill H (.black ha hb), balance1_eq ha] + | .blackR ha H, hb => by rw [ins, fill, ← ins_eq_fill H (.black ha hb), balance2_eq hb] + +theorem zoom_insert {path : Path α} {t : RBNode α} (ht : t.Balanced c n) + (H : zoom (cmp v) t = (t', path)) : + (path.insert t' v).setBlack = (t.insert cmp v).setBlack := by + have ⟨_, _, ht', hp'⟩ := ht.zoom .root H + cases ht' with simp [insert] + | nil => simp [insertNew_eq_insert H, setBlack_idem] + | red hl hr => rw [← ins_eq_fill hp' (.red hl hr), insert_setBlack]; exact (zoom_ins H).symm + | black hl hr => rw [← ins_eq_fill hp' (.black hl hr), insert_setBlack]; exact (zoom_ins H).symm + +theorem zoom_del {t : RBNode α} : + t.zoom cut path = (t', path') → + path.del (t.del cut) (match t with | node c .. => c | _ => red) = + path'.del t'.delRoot (match t' with | node c .. => c | _ => red) := by + unfold RBNode.del; split <;> simp [zoom] + · intro | rfl, rfl => rfl + · next c a y b => + split + · have IH := @zoom_del (t := a) + match a with + | nil => intro | rfl => rfl + | node black .. | node red .. => apply IH + · have IH := @zoom_del (t := b) + match b with + | nil => intro | rfl => rfl + | node black .. | node red .. => apply IH + · intro | rfl => rfl + +/-- Asserts that `p` holds on all elements to the left of the hole. -/ +def AllL (p : α → Prop) : Path α → Prop + | .root => True + | .left _ parent _ _ => parent.AllL p + | .right _ a x parent => a.All p ∧ p x ∧ parent.AllL p + +/-- Asserts that `p` holds on all elements to the right of the hole. -/ +def AllR (p : α → Prop) : Path α → Prop + | .root => True + | .left _ parent x b => parent.AllR p ∧ p x ∧ b.All p + | .right _ _ _ parent => parent.AllR p + end Path theorem insert_toList_zoom {t : RBNode α} (ht : Balanced t c n) diff --git a/Std/Data/RBMap/WF.lean b/Std/Data/RBMap/WF.lean index ddc72ea38f..0e00e65465 100644 --- a/Std/Data/RBMap/WF.lean +++ b/Std/Data/RBMap/WF.lean @@ -27,6 +27,9 @@ theorem All.trivial (H : ∀ {x : α}, p x) : ∀ {t : RBNode α}, t.All p theorem All_and {t : RBNode α} : t.All (fun a => p a ∧ q a) ↔ t.All p ∧ t.All q := by induction t <;> simp [*, and_assoc, and_left_comm] +protected theorem cmpLT.flip (h₁ : cmpLT cmp x y) : cmpLT (flip cmp) y x := + ⟨have : TransCmp cmp := inferInstanceAs (TransCmp (flip (flip cmp))); h₁.1⟩ + theorem cmpLT.trans (h₁ : cmpLT cmp x y) (h₂ : cmpLT cmp y z) : cmpLT cmp x z := ⟨TransCmp.lt_trans h₁.1 h₂.1⟩ @@ -42,6 +45,36 @@ theorem cmpEq.lt_congr_left (H : cmpEq cmp x y) : cmpLT cmp x z ↔ cmpLT cmp y theorem cmpEq.lt_congr_right (H : cmpEq cmp y z) : cmpLT cmp x y ↔ cmpLT cmp x z := ⟨fun ⟨h⟩ => ⟨TransCmp.cmp_congr_right H.1 ▸ h⟩, fun ⟨h⟩ => ⟨TransCmp.cmp_congr_right H.1 ▸ h⟩⟩ +@[simp] theorem reverse_reverse (t : RBNode α) : t.reverse.reverse = t := by + induction t <;> simp [*] + +theorem reverse_eq_iff {t t' : RBNode α} : t.reverse = t' ↔ t = t'.reverse := by + constructor <;> rintro rfl <;> simp + +@[simp] theorem reverse_balance1 (l : RBNode α) (v : α) (r : RBNode α) : + (balance1 l v r).reverse = balance2 r.reverse v l.reverse := by + unfold balance1 balance2; split <;> simp + · rw [balance2.match_1.eq_2]; simp [reverse_eq_iff]; intros; solve_by_elim + · rw [balance2.match_1.eq_3] <;> (simp [reverse_eq_iff]; intros; solve_by_elim) + +@[simp] theorem reverse_balance2 (l : RBNode α) (v : α) (r : RBNode α) : + (balance2 l v r).reverse = balance1 r.reverse v l.reverse := by + refine Eq.trans ?_ (reverse_reverse _); rw [reverse_balance1]; simp + +@[simp] theorem All.reverse {t : RBNode α} : t.reverse.All p ↔ t.All p := by + induction t <;> simp [*, and_comm] + +/-- The `reverse` function reverses the ordering invariants. -/ +protected theorem Ordered.reverse : ∀ {t : RBNode α}, t.Ordered cmp → t.reverse.Ordered (flip cmp) + | .nil, _ => ⟨⟩ + | .node .., ⟨lv, vr, hl, hr⟩ => + ⟨(All.reverse.2 vr).imp cmpLT.flip, (All.reverse.2 lv).imp cmpLT.flip, hr.reverse, hl.reverse⟩ + +protected theorem Balanced.reverse {t : RBNode α} : t.Balanced c n → t.reverse.Balanced c n + | .nil => .nil + | .black hl hr => .black hr.reverse hl.reverse + | .red hl hr => .red hr.reverse hl.reverse + /-- The `balance1` function preserves the ordering invariants. -/ protected theorem Ordered.balance1 {l : RBNode α} {v : α} {r : RBNode α} (lv : l.All (cmpLT cmp · v)) (vr : r.All (cmpLT cmp v ·)) @@ -63,19 +96,17 @@ protected theorem Ordered.balance1 {l : RBNode α} {v : α} {r : RBNode α} protected theorem Ordered.balance2 {l : RBNode α} {v : α} {r : RBNode α} (lv : l.All (cmpLT cmp · v)) (vr : r.All (cmpLT cmp v ·)) (hl : l.Ordered cmp) (hr : r.Ordered cmp) : (balance2 l v r).Ordered cmp := by - unfold balance2; split - · next b y c z d => - have ⟨_, ⟨vy, vb, _⟩, _⟩ := vr; have ⟨⟨yz, _, cz⟩, zd, ⟨by_, yc, hy, hz⟩, hd⟩ := hr - exact ⟨⟨vy, vy.trans_r lv, by_⟩, ⟨yz, yc, yz.trans_l zd⟩, ⟨lv, vb, hl, hy⟩, cz, zd, hz, hd⟩ - · next a x b y c _ => - have ⟨vx, va, _⟩ := vr; have ⟨ax, xy, ha, hy⟩ := hr - exact ⟨⟨vx, vx.trans_r lv, ax⟩, xy, ⟨lv, va, hl, ha⟩, hy⟩ - · exact ⟨lv, vr, hl, hr⟩ + rw [← reverse_reverse (balance2 ..), reverse_balance2] + exact .reverse <| hr.reverse.balance1 + ((All.reverse.2 vr).imp cmpLT.flip) ((All.reverse.2 lv).imp cmpLT.flip) hl.reverse @[simp] theorem balance2_All {l : RBNode α} {v : α} {r : RBNode α} : (balance2 l v r).All p ↔ p v ∧ l.All p ∧ r.All p := by unfold balance2; split <;> simp [and_assoc, and_left_comm] +@[simp] theorem reverse_setBlack {t : RBNode α} : (setBlack t).reverse = setBlack t.reverse := by + unfold setBlack; split <;> simp + protected theorem Ordered.setBlack {t : RBNode α} : (setBlack t).Ordered cmp ↔ t.Ordered cmp := by unfold setBlack; split <;> simp [Ordered] @@ -85,9 +116,10 @@ protected theorem Balanced.setBlack : t.Balanced c n → ∃ n', (setBlack t).Ba theorem setBlack_idem {t : RBNode α} : t.setBlack.setBlack = t.setBlack := by cases t <;> rfl -theorem insert_setBlack {t : RBNode α} : - (t.insert cmp v).setBlack = (t.ins cmp v).setBlack := by - unfold insert; split <;> simp [setBlack_idem] +@[simp] theorem reverse_ins [inst : @OrientedCmp α cmp] {t : RBNode α} : + (ins cmp x t).reverse = ins (flip cmp) x t.reverse := by + induction t <;> [skip; (rename_i c a y b iha ihb; cases c)] <;> simp [ins, flip] + <;> rw [← inst.symm x y] <;> split <;> simp [*, Ordering.swap, iha, ihb] protected theorem All.ins {x : α} {t : RBNode α} (h₁ : p x) (h₂ : t.All p) : (ins cmp x t).All p := by @@ -112,6 +144,17 @@ protected theorem Ordered.ins : ∀ {t : RBNode α}, t.Ordered cmp → (ins cmp ay.imp fun ⟨h'⟩ => ⟨(TransCmp.cmp_congr_right h).trans h'⟩, yb.imp fun ⟨h'⟩ => ⟨(TransCmp.cmp_congr_left h).trans h'⟩, ha, hb⟩) +@[simp] theorem isRed_reverse {t : RBNode α} : t.reverse.isRed = t.isRed := by + cases t <;> simp [isRed] + +@[simp] theorem reverse_insert [inst : @OrientedCmp α cmp] {t : RBNode α} : + (insert cmp t x).reverse = insert (flip cmp) t.reverse x := by + simp [insert] <;> split <;> simp + +theorem insert_setBlack {t : RBNode α} : + (t.insert cmp v).setBlack = (t.ins cmp v).setBlack := by + unfold insert; split <;> simp [setBlack_idem] + /-- The `insert` function preserves the ordering invariants. -/ protected theorem Ordered.insert (h : t.Ordered cmp) : (insert cmp t v).Ordered cmp := by unfold RBNode.insert; split <;> simp [Ordered.setBlack, h.ins (x := v)] @@ -145,6 +188,10 @@ protected theorem RedRed.imp (h : p → q) : RedRed p t n → RedRed q t n | .balanced h => .balanced h | .redred hp ha hb => .redred (h hp) ha hb +protected theorem RedRed.reverse : RedRed p t n → RedRed p t.reverse n + | .balanced h => .balanced h.reverse + | .redred hp ha hb => .redred hp hb.reverse ha.reverse + /-- If `t` has the red-red invariant, then setting the root to black yields a balanced tree. -/ protected theorem RedRed.setBlack : t.RedRed p n → ∃ n', (setBlack t).Balanced black n' | .balanced h => h.setBlack @@ -164,15 +211,8 @@ protected theorem RedRed.balance1 {l : RBNode α} {v : α} {r : RBNode α} /-- The `balance2` function repairs the balance invariant when the second argument is red-red. -/ protected theorem RedRed.balance2 {l : RBNode α} {v : α} {r : RBNode α} - (hl : l.Balanced c n) (hr : r.RedRed p n) : ∃ c, (balance2 l v r).Balanced c (n + 1) := by - unfold balance2; split - · have .redred _ (.red ha hb) hc := hr; exact ⟨_, .red (.black hl ha) (.black hb hc)⟩ - · have .redred _ ha (.red hb hc) := hr; exact ⟨_, .red (.black hl ha) (.black hb hc)⟩ - · next H1 H2 => match hr with - | .balanced hr => exact ⟨_, .black hl hr⟩ - | .redred _ (c₁ := black) (c₂ := black) ha hb => exact ⟨_, .black hl (.red ha hb)⟩ - | .redred _ (c₁ := red) (.red ..) _ => cases H1 _ _ _ _ _ rfl - | .redred _ (c₂ := red) _ (.red ..) => cases H2 _ _ _ _ _ rfl + (hl : l.Balanced c n) (hr : r.RedRed p n) : ∃ c, (balance2 l v r).Balanced c (n + 1) := + (hr.reverse.balance1 hl.reverse (v := v)).imp fun _ h => by simpa using h.reverse /-- The `balance1` function does nothing if the first argument is already balanced. -/ theorem balance1_eq {l : RBNode α} {v : α} {r : RBNode α} @@ -181,8 +221,8 @@ theorem balance1_eq {l : RBNode α} {v : α} {r : RBNode α} /-- The `balance2` function does nothing if the second argument is already balanced. -/ theorem balance2_eq {l : RBNode α} {v : α} {r : RBNode α} - (hr : r.Balanced c n) : balance2 l v r = node black l v r := by - unfold balance2; split <;> first | rfl | nomatch hr + (hr : r.Balanced c n) : balance2 l v r = node black l v r := + (reverse_reverse _).symm.trans <| by simp [balance1_eq hr.reverse] /-! ## insert -/ @@ -225,6 +265,9 @@ theorem Balanced.insert {t : RBNode α} (h : t.Balanced c n) : | _, .balanced h => split <;> [exact ⟨_, h.setBlack⟩; exact ⟨_, _, h⟩] | _, .redred _ ha hb => have .node red .. := t; exact ⟨_, _, .black ha hb⟩ +@[simp] theorem reverse_setRed {t : RBNode α} : (setRed t).reverse = setRed t.reverse := by + unfold setRed; split <;> simp + protected theorem All.setRed {t : RBNode α} (h : t.All p) : (setRed t).All p := by unfold setRed; split <;> simp_all @@ -232,6 +275,18 @@ protected theorem All.setRed {t : RBNode α} (h : t.All p) : (setRed t).All p := protected theorem Ordered.setRed {t : RBNode α} : (setRed t).Ordered cmp ↔ t.Ordered cmp := by unfold setRed; split <;> simp [Ordered] +@[simp] theorem reverse_balLeft (l : RBNode α) (v : α) (r : RBNode α) : + (balLeft l v r).reverse = balRight r.reverse v l.reverse := by + unfold balLeft balRight; split + · simp + · rw [balLeft.match_2.eq_2 _ _ _ _ (by simp [reverse_eq_iff]; intros; solve_by_elim)] + split <;> simp + rw [balRight.match_1.eq_3] <;> (simp [reverse_eq_iff]; intros; solve_by_elim) + +@[simp] theorem reverse_balRight (l : RBNode α) (v : α) (r : RBNode α) : + (balRight l v r).reverse = balLeft r.reverse v l.reverse := by + rw [← reverse_reverse (balLeft ..)]; simp + protected theorem All.balLeft (hl : l.All p) (hv : p v) (hr : r.All p) : (balLeft l v r).All p := by unfold balLeft; split <;> (try simp_all); split <;> simp_all [All.setRed] @@ -267,38 +322,24 @@ protected theorem Balanced.balLeft (hl : l.RedRed True n) (hr : r.Balanced cr (n let ⟨c, h⟩ := RedRed.balance2 hb (.redred trivial hc hd); .redred rfl (.black hl ha) h protected theorem All.balRight - (hl : l.All p) (hv : p v) (hr : r.All p) : (balRight l v r).All p := by - unfold balRight; split <;> (try simp_all); split <;> simp_all [All.setRed] + (hl : l.All p) (hv : p v) (hr : r.All p) : (balRight l v r).All p := + All.reverse.1 <| reverse_balRight .. ▸ (All.reverse.2 hr).balLeft hv (All.reverse.2 hl) /-- The `balRight` function preserves the ordering invariants. -/ protected theorem Ordered.balRight {l : RBNode α} {v : α} {r : RBNode α} (lv : l.All (cmpLT cmp · v)) (vr : r.All (cmpLT cmp v ·)) (hl : l.Ordered cmp) (hr : r.Ordered cmp) : (balRight l v r).Ordered cmp := by - unfold balRight; split - · exact ⟨lv, vr, hl, hr⟩ - split - · exact hl.balance1 lv vr hr - · have ⟨yv, _, cv⟩ := lv.2.2; have ⟨ax, ⟨xy, xb, _⟩, ha, by_, yc, hb, hc⟩ := hl - exact ⟨balance1_All.2 ⟨xy, (xy.trans_r ax).setRed, by_⟩, ⟨yv, yc, yv.trans_l vr⟩, - (Ordered.setRed.2 ha).balance1 ax.setRed xb hb, cv, vr, hc, hr⟩ - · exact ⟨lv, vr, hl, hr⟩ + rw [← reverse_reverse (balRight ..), reverse_balRight] + exact .reverse <| hr.reverse.balLeft + ((All.reverse.2 vr).imp cmpLT.flip) ((All.reverse.2 lv).imp cmpLT.flip) hl.reverse /-- The balancing properties of the `balRight` function. -/ protected theorem Balanced.balRight (hl : l.Balanced cl (n + 1)) (hr : r.RedRed True n) : (balRight l v r).RedRed (cl = red) (n + 1) := by - unfold balRight; split - · next b y c => exact - let ⟨cb, cc, hb, hc⟩ := hr.of_red - match cl with - | red => .redred rfl hl (.black hb hc) - | black => .balanced (.red hl (.black hb hc)) - · next H => exact match hr with - | .redred .. => nomatch H _ _ _ rfl - | .balanced hr => match hl with - | .black hb hc => - let ⟨c, h⟩ := RedRed.balance1 (.redred trivial hb hc) hr; .balanced h - | .red (.black ha hb) (.black hc hd) => - let ⟨c, h⟩ := RedRed.balance1 (.redred trivial ha hb) hc; .redred rfl h (.black hd hr) + rw [← reverse_reverse (balRight ..), reverse_balRight] + exact .reverse <| hl.reverse.balLeft hr.reverse + +-- note: reverse_append is false! protected theorem All.append (hl : l.All p) (hr : r.All p) : (append l r).All p := by unfold append; split <;> try simp [*] diff --git a/Std/Data/String/Lemmas.lean b/Std/Data/String/Lemmas.lean index b1994dde0d..0bd703baa7 100644 --- a/Std/Data/String/Lemmas.lean +++ b/Std/Data/String/Lemmas.lean @@ -32,6 +32,12 @@ theorem ext_iff {s₁ s₂ : String} : s₁ = s₂ ↔ s₁.data = s₂.data := rw [push, mk_length, List.length_append, List.length_singleton, Nat.succ.injEq] rfl +@[simp] theorem length_pushn (c : Char) (n : Nat) : (pushn s c n).length = s.length + n := by + unfold pushn; induction n <;> simp [Nat.repeat, Nat.add_assoc, *] + +@[simp] theorem length_append (s t : String) : (s ++ t).length = s.length + t.length := by + simp only [length, append, List.length_append] + @[simp] theorem data_push (s : String) (c : Char) : (s.push c).1 = s.1 ++ [c] := rfl @[simp] theorem data_append (s t : String) : (s ++ t).1 = s.1 ++ t.1 := rfl diff --git a/Std/Data/Sum/Lemmas.lean b/Std/Data/Sum/Lemmas.lean index f7766d2985..80d4fb4230 100644 --- a/Std/Data/Sum/Lemmas.lean +++ b/Std/Data/Sum/Lemmas.lean @@ -5,6 +5,7 @@ Authors: Mario Carneiro, Yury G. Kudryashov -/ import Std.Data.Sum.Basic +import Std.Logic /-! # Disjoint union of types @@ -112,6 +113,10 @@ theorem comp_elim (f : γ → δ) (g : α → γ) (h : β → γ) : Sum.elim (f ∘ inl) (f ∘ inr) = f := funext fun x => Sum.casesOn x (fun _ => rfl) fun _ => rfl +theorem elim_eq_iff {u u' : α → γ} {v v' : β → γ} : + Sum.elim u v = Sum.elim u' v' ↔ u = u' ∧ v = v' := by + simp [funext_iff] + /-! ### `Sum.map` -/ @[simp] theorem map_map (f' : α' → α'') (g' : β' → β'') (f : α → α') (g : β → β') : diff --git a/Std/Data/UInt.lean b/Std/Data/UInt.lean index d94c11ae26..a2f422f1a4 100644 --- a/Std/Data/UInt.lean +++ b/Std/Data/UInt.lean @@ -13,14 +13,11 @@ Authors: François G. Dorais theorem UInt8.toNat_lt (x : UInt8) : x.toNat < 2 ^ 8 := x.val.isLt -@[simp] theorem UInt8.toUInt16_toNat (x : UInt8) : x.toUInt16.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt8.toUInt16_toNat (x : UInt8) : x.toUInt16.toNat = x.toNat := rfl -@[simp] theorem UInt8.toUInt32_toNat (x : UInt8) : x.toUInt32.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt8.toUInt32_toNat (x : UInt8) : x.toUInt32.toNat = x.toNat := rfl -@[simp] theorem UInt8.toUInt64_toNat (x : UInt8) : x.toUInt64.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt8.toUInt64_toNat (x : UInt8) : x.toUInt64.toNat = x.toNat := rfl /-! ### UInt16 -/ @@ -33,11 +30,9 @@ theorem UInt16.toNat_lt (x : UInt16) : x.toNat < 2 ^ 16 := x.val.isLt @[simp] theorem UInt16.toUInt8_toNat (x : UInt16) : x.toUInt8.toNat = x.toNat % 2 ^ 8 := rfl -@[simp] theorem UInt16.toUInt32_toNat (x : UInt16) : x.toUInt32.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt16.toUInt32_toNat (x : UInt16) : x.toUInt32.toNat = x.toNat := rfl -@[simp] theorem UInt16.toUInt64_toNat (x : UInt16) : x.toUInt64.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt16.toUInt64_toNat (x : UInt16) : x.toUInt64.toNat = x.toNat := rfl /-! ### UInt32 -/ @@ -52,8 +47,7 @@ theorem UInt32.toNat_lt (x : UInt32) : x.toNat < 2 ^ 32 := x.val.isLt @[simp] theorem UInt32.toUInt16_toNat (x : UInt32) : x.toUInt16.toNat = x.toNat % 2 ^ 16 := rfl -@[simp] theorem UInt32.toUInt64_toNat (x : UInt32) : x.toUInt64.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt32.toUInt64_toNat (x : UInt32) : x.toUInt64.toNat = x.toNat := rfl /-! ### UInt64 -/ @@ -97,5 +91,4 @@ theorem USize.toNat_lt (x : USize) : x.toNat < 2 ^ System.Platform.numBits := by @[simp] theorem USize.toUInt64_toNat (x : USize) : x.toUInt64.toNat = x.toNat := by simp only [USize.toUInt64, UInt64.toNat]; rfl -@[simp] theorem UInt32.toUSize_toNat (x : UInt32) : x.toUSize.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt USize.le_size) +@[simp] theorem UInt32.toUSize_toNat (x : UInt32) : x.toUSize.toNat = x.toNat := rfl diff --git a/Std/Lean/PersistentHashMap.lean b/Std/Lean/PersistentHashMap.lean index 4122f193b4..5054e15758 100644 --- a/Std/Lean/PersistentHashMap.lean +++ b/Std/Lean/PersistentHashMap.lean @@ -19,12 +19,6 @@ def insert' (m : PersistentHashMap α β) (a : α) (b : β) : PersistentHashMap let m := m.insert a b (m, m.size == oldSize) -/-- -Turns a `PersistentHashMap` into an array of key-value pairs. --/ -def toArray (m : PersistentHashMap α β) : Array (α × β) := - m.foldl (init := Array.mkEmpty m.size) fun xs k v => xs.push (k, v) - /-- Builds a `PersistentHashMap` from a list of key-value pairs. Values of duplicated keys are replaced by their respective last occurrences. diff --git a/Std/Logic.lean b/Std/Logic.lean index 1069b48c75..c11432896d 100644 --- a/Std/Logic.lean +++ b/Std/Logic.lean @@ -56,6 +56,9 @@ theorem funext₃ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {δ : ∀ a {f g : ∀ a b c, δ a b c} (h : ∀ a b c, f a b c = g a b c) : f = g := funext fun _ => funext₂ <| h _ +theorem Function.funext_iff {β : α → Sort u} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := + ⟨congrFun, funext⟩ + theorem ne_of_apply_ne {α β : Sort _} (f : α → β) {x y : α} : f x ≠ f y → x ≠ y := mt <| congrArg _ diff --git a/Std/Tactic/Classical.lean b/Std/Tactic/Classical.lean index 3bd386c858..cf05a4d59f 100644 --- a/Std/Tactic/Classical.lean +++ b/Std/Tactic/Classical.lean @@ -8,7 +8,7 @@ import Lean.Elab.ElabRules /-! # `classical` and `classical!` tactics -/ namespace Std.Tactic -open Lean Meta +open Lean Meta Elab.Tactic /-- `classical!` adds a proof of `Classical.propDecidable` as a local variable, which makes it @@ -24,6 +24,19 @@ Consider using `classical` instead if you want to use the decidable instance whe macro (name := classical!) "classical!" : tactic => `(tactic| have em := Classical.propDecidable) +/-- +`classical t` runs `t` in a scope where `Classical.propDecidable` is a low priority +local instance. +-/ +def classical [Monad m] [MonadEnv m] [MonadFinally m] [MonadLiftT MetaM m] (t : m α) : + m α := do + modifyEnv Meta.instanceExtension.pushScope + Meta.addInstance ``Classical.propDecidable .local 10 + try + t + finally + modifyEnv Meta.instanceExtension.popScope + /-- `classical tacs` runs `tacs` in a scope where `Classical.propDecidable` is a low priority local instance. It differs from `classical!` in that `classical!` uses a local variable, @@ -45,7 +58,4 @@ scope of the tactic. -- FIXME: using ppDedent looks good in the common case, but produces the incorrect result when -- the `classical` does not scope over the rest of the block. elab "classical" tacs:ppDedent(tacticSeq) : tactic => do - modifyEnv Meta.instanceExtension.pushScope - Meta.addInstance ``Classical.propDecidable .local 10 - try Elab.Tactic.evalTactic tacs - finally modifyEnv Meta.instanceExtension.popScope + classical <| Elab.Tactic.evalTactic tacs diff --git a/Std/Tactic/FalseOrByContra.lean b/Std/Tactic/FalseOrByContra.lean deleted file mode 100644 index 8a3a8d0763..0000000000 --- a/Std/Tactic/FalseOrByContra.lean +++ /dev/null @@ -1,65 +0,0 @@ -/- -Copyright (c) 2023 Lean FRO, LLC. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. -Authors: Scott Morrison --/ -import Lean.Elab.Tactic.Basic -import Std.Lean.Meta.Basic -import Lean.Meta.Tactic.Util - -/-! -# `false_or_by_contra` tactic - -Changes the goal to `False`, retaining as much information as possible: - -If the goal is `False`, do nothing. -If the goal is an implication or a function type, introduce the argument. -(If the goal is `x ≠ y`, introduce `x = y`.) -Otherwise, for a goal `P`, replace it with `¬ ¬ P` and introduce `¬ P`. --/ - -open Lean - -/-- -Changes the goal to `False`, retaining as much information as possible: - -If the goal is `False`, do nothing. -If the goal is an implication or a function type, introduce the argument and restart. -(In particular, if the goal is `x ≠ y`, introduce `x = y`.) -Otherwise, for a propositional goal `P`, replace it with `¬ ¬ P` -(attempt to find a `Decidable` instance, but otherwise falling back to working classically) -and introduce `¬ P`. -For a non-propositional goal use `False.elim`. --/ -syntax (name := false_or_by_contra) "false_or_by_contra" : tactic - -open Meta Elab Tactic - -@[inherit_doc false_or_by_contra] -partial def falseOrByContra (g : MVarId) (useClassical : Option Bool := none) : MetaM MVarId := do - let ty ← whnfR (← g.getType) - match ty with - | .const ``False _ => pure g - | .forallE _ _ _ _ - | .app (.const ``Not _) _ => falseOrByContra (← g.intro1).2 - | _ => - let gs ← if ← isProp ty then - match useClassical with - | some true => some <$> g.applyConst ``Classical.byContradiction - | some false => - try some <$> g.applyConst ``Decidable.byContradiction - catch _ => pure none - | none => - try some <$> g.applyConst ``Decidable.byContradiction - catch _ => some <$> g.applyConst ``Classical.byContradiction - else - pure none - if let some gs := gs then - let [g] := gs | panic! "expected one subgoal" - pure (← g.intro1).2 - else - let [g] ← g.applyConst ``False.elim | panic! "expected one sugoal" - pure g - -@[inherit_doc falseOrByContra] -elab "false_or_by_contra" : tactic => liftMetaTactic1 (falseOrByContra ·) diff --git a/Std/Tactic/PrintPrefix.lean b/Std/Tactic/PrintPrefix.lean index 29fa51d834..b342b38b12 100644 --- a/Std/Tactic/PrintPrefix.lean +++ b/Std/Tactic/PrintPrefix.lean @@ -5,9 +5,11 @@ Authors: Shing Tak Lam, Daniel Selsam, Mario Carneiro -/ import Std.Lean.Name import Std.Lean.Util.EnvSearch +import Std.Lean.Delaborator import Lean.Elab.Tactic.Config -namespace Lean.Elab.Command +namespace Std.Tactic +open Lean Elab Command /-- Options to control `#print prefix` command and `getMatchingConstants`. @@ -29,35 +31,6 @@ structure PrintPrefixConfig where /-- Function elaborating `Config`. -/ declare_config_elab elabPrintPrefixConfig PrintPrefixConfig -/-- -The command `#print prefix foo` will print all definitions that start with -the namespace `foo`. - -For example, the command below will print out definitions in the `List` namespace: - -```lean -#print prefix List -``` - -`#print prefix` can be controlled by flags in `PrintPrefixConfig`. These provide -options for filtering names and formatting. For example, -`#print prefix` by default excludes internal names, but this can be controlled -via config: -```lean -#print prefix (config:={internals:=true}) List -``` - -By default, `#print prefix` prints the type after each name. This can be controlled -by setting `showTypes` to `false`: -```lean -#print prefix (config:={showTypes:=false}) List -``` - -The complete set of flags can be seen in the documentation -for `Lean.Elab.Command.PrintPrefixConfig`. --/ -syntax (name := printPrefix) "#print" "prefix" (Lean.Parser.Tactic.config)? ident : command - /-- `reverseName name` reverses the components of a name. -/ @@ -88,12 +61,9 @@ private def matchName (opts : PrintPrefixConfig) let (root, post) := takeNameSuffix (nameCnt - preCnt) name if root ≠ pre then return false if !opts.internals && post.isInternalDetail then return false + if opts.propositions != opts.propositionsOnly then return opts.propositions let isProp := (Expr.isProp <$> Lean.Meta.inferType cinfo.type) <|> pure false - if opts.propositions then do - if opts.propositionsOnly && !(←isProp) then return false - else do - if opts.propositionsOnly || (←isProp) then return false - pure true + pure <| opts.propositionsOnly == (← isProp) private def lexNameLt : Name -> Name -> Bool | _, .anonymous => false @@ -103,32 +73,53 @@ private def lexNameLt : Name -> Name -> Bool | .str _ _, .num _ _ => false | .str p m, .str q n => m < n || m == n && lexNameLt p q -private def appendMatchingConstants (msg : String) (opts : PrintPrefixConfig) (pre : Name) - : MetaM String := do +private def matchingConstants (opts : PrintPrefixConfig) (pre : Name) + : MetaM (Array MessageData) := do let cinfos ← getMatchingConstants (matchName opts pre) opts.imported let cinfos := cinfos.qsort fun p q => lexNameLt (reverseName p.name) (reverseName q.name) - let mut msg := msg - let ppInfo cinfo := - if opts.showTypes then do - pure s!"{cinfo.name} : {← Meta.ppExpr cinfo.type}\n" - else - pure s!"{cinfo.name}\n" - for cinfo in cinfos do - msg := msg ++ (← ppInfo cinfo) - pure msg + cinfos.mapM fun cinfo => do + if opts.showTypes then + pure <| .ofPPFormat { pp := fun + | some ctx => ctx.runMetaM <| + withOptions (pp.tagAppFns.set · true) <| PrettyPrinter.ppSignature cinfo.name + | none => return f!"{cinfo.name}" -- should never happen + } ++ "\n" + else + pure m!"{ppConst (← mkConstWithLevelParams cinfo.name)}\n" /-- -Implementation for #print prefix +The command `#print prefix foo` will print all definitions that start with +the namespace `foo`. + +For example, the command below will print out definitions in the `List` namespace: + +```lean +#print prefix List +``` + +`#print prefix` can be controlled by flags in `PrintPrefixConfig`. These provide +options for filtering names and formatting. For example, +`#print prefix` by default excludes internal names, but this can be controlled +via config: +```lean +#print prefix (config := {internals := true}) List +``` + +By default, `#print prefix` prints the type after each name. This can be controlled +by setting `showTypes` to `false`: +```lean +#print prefix (config := {showTypes := false}) List +``` + +The complete set of flags can be seen in the documentation +for `Lean.Elab.Command.PrintPrefixConfig`. -/ -@[command_elab printPrefix] def elabPrintPrefix : CommandElab -| `(#print prefix%$tk $[$cfg:config]? $name:ident) => do +elab (name := printPrefix) "#print" tk:"prefix" + cfg:(Lean.Parser.Tactic.config)? name:ident : command => liftTermElabM do let nameId := name.getId - liftTermElabM do - let opts ← elabPrintPrefixConfig (mkOptionalNode cfg) - let mut msg ← appendMatchingConstants "" opts nameId - if msg.isEmpty then - if let [name] ← resolveGlobalConst name then - msg ← appendMatchingConstants msg opts name - if !msg.isEmpty then - logInfoAt tk msg -| _ => throwUnsupportedSyntax + let opts ← elabPrintPrefixConfig (mkOptionalNode cfg) + let mut msgs ← matchingConstants opts nameId + if msgs.isEmpty then + if let [name] ← resolveGlobalConst name then + msgs ← matchingConstants opts name + logInfoAt tk (.joinSep msgs.toList "") diff --git a/Std/Tactic/ShowUnused.lean b/Std/Tactic/ShowUnused.lean new file mode 100644 index 0000000000..9efc6b7673 --- /dev/null +++ b/Std/Tactic/ShowUnused.lean @@ -0,0 +1,73 @@ +/- +Copyright (c) 2024 Mario Carneiro. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Mario Carneiro +-/ +import Lean.Util.FoldConsts +import Lean.Linter.UnusedVariables +import Std.Lean.Delaborator + +/-! +# The `#show_unused` command + +`#show_unused decl1 decl2 ..` will highlight every theorem or definition in the current file +not involved in the definition of declarations `decl1`, `decl2`, etc. The result is shown +both in the message on `#show_unused`, as well as on the declarations themselves. +-/ + +namespace Std.Tactic.ShowUnused +open Lean Elab Command + +variable (env : Environment) in +private partial def visit (n : Name) : StateM NameSet Unit := do + if (← get).contains n then + modify (·.erase n) + let rec visitExpr (e : Expr) : StateM NameSet Unit := e.getUsedConstants.forM visit + match env.find? n with + | some (ConstantInfo.axiomInfo v) => visitExpr v.type + | some (ConstantInfo.defnInfo v) => visitExpr v.type *> visitExpr v.value + | some (ConstantInfo.thmInfo v) => visitExpr v.type *> visitExpr v.value + | some (ConstantInfo.opaqueInfo v) => visitExpr v.type *> visitExpr v.value + | some (ConstantInfo.quotInfo _) => pure () + | some (ConstantInfo.ctorInfo v) => visitExpr v.type + | some (ConstantInfo.recInfo v) => visitExpr v.type + | some (ConstantInfo.inductInfo v) => visitExpr v.type *> v.ctors.forM visit + | none => pure () + +/-- +`#show_unused decl1 decl2 ..` will highlight every theorem or definition in the current file +not involved in the definition of declarations `decl1`, `decl2`, etc. The result is shown +both in the message on `#show_unused`, as well as on the declarations themselves. +``` +def foo := 1 +def baz := 2 +def bar := foo +#show_unused bar -- highlights `baz` +``` +-/ +elab tk:"#show_unused" ids:(ppSpace colGt ident)* : command => do + let ns ← ids.mapM fun s => liftCoreM <| realizeGlobalConstNoOverloadWithInfo s + let env ← getEnv + let decls := env.constants.map₂.foldl (fun m n _ => m.insert n) {} + let mut unused := #[] + let fileMap ← getFileMap + for c in ((ns.forM (visit env)).run decls).2 do + if let some { selectionRange := range, .. } := declRangeExt.find? env c then + unused := unused.push (c, { + start := fileMap.ofPosition range.pos + stop := fileMap.ofPosition range.endPos + }) + unused := unused.qsort (·.2.start < ·.2.start) + let pos := fileMap.toPosition <| (tk.getPos? <|> (← getRef).getPos?).getD 0 + let pfx := m!"#show_unused (line {pos.line}) says:\n" + let post := m!" is not used transitively by \ + {← ns.mapM (Lean.ppConst <$> mkConstWithLevelParams ·)}" + for (c, range) in unused do + logWarningAt (Syntax.ofRange range) <| + .tagged Linter.linter.unusedVariables.name <| + m!"{pfx}{Lean.ppConst (← mkConstWithLevelParams c)}{post}" + if unused.isEmpty then + logInfoAt tk "No unused definitions" + else + logWarningAt tk <| m!"unused definitions in this file:\n" ++ + m!"\n".joinSep (← unused.toList.mapM (toMessageData <$> mkConstWithLevelParams ·.1)) diff --git a/Std/Tactic/SqueezeScope.lean b/Std/Tactic/SqueezeScope.lean index 39fad08cfc..cfb0476a57 100644 --- a/Std/Tactic/SqueezeScope.lean +++ b/Std/Tactic/SqueezeScope.lean @@ -85,7 +85,7 @@ elab_rules : tactic throw e if let some new := new then for (_, stx, usedSimps) in new do - let usedSimps := usedSimps.foldl (fun s usedSimps => usedSimps.fold .insert s) {} + let usedSimps := usedSimps.foldl (fun s usedSimps => usedSimps.foldl .insert s) {} let stx' ← mkSimpCallStx stx usedSimps TryThis.addSuggestion stx[0] stx' (origSpan? := stx) diff --git a/lean-toolchain b/lean-toolchain index 4610193327..b96d89db4d 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-01 +leanprover/lean4:nightly-2024-04-22 diff --git a/test/case.lean b/test/case.lean index ab0b664218..2c0c5ff552 100644 --- a/test/case.lean +++ b/test/case.lean @@ -183,11 +183,14 @@ example : True ∧ ∀ x : Nat, x = x := by -- Test focusing by full match, suffix match, and prefix match /-- -warning: unused variable `x` [linter.unusedVariables] +warning: unused variable `x` +note: this linter can be disabled with `set_option linter.unusedVariables false` --- -warning: unused variable `y` [linter.unusedVariables] +warning: unused variable `y` +note: this linter can be disabled with `set_option linter.unusedVariables false` --- -warning: unused variable `z` [linter.unusedVariables] +warning: unused variable `z` +note: this linter can be disabled with `set_option linter.unusedVariables false` -/ #guard_msgs in example : True := by diff --git a/test/false_or_by_contra.lean b/test/false_or_by_contra.lean deleted file mode 100644 index 5d3e4669e3..0000000000 --- a/test/false_or_by_contra.lean +++ /dev/null @@ -1,53 +0,0 @@ -import Std.Tactic.FalseOrByContra - -example (w : False) : False := by - false_or_by_contra - guard_target = False - exact w - -example : False → Nat := by - false_or_by_contra <;> rename_i h - guard_target = False - guard_hyp h : False - simp_all - -example {P : Prop} (p : P) : Nat → Nat → P := by - false_or_by_contra <;> rename_i a b h - guard_target = False - guard_hyp a : Nat - guard_hyp b : Nat - guard_hyp h : ¬ P - simp_all - -example {P : Prop} : False → P := by - false_or_by_contra <;> rename_i h w - guard_target = False - guard_hyp h : False - guard_hyp w : ¬ P - simp_all - -example (_ : False) : x ≠ y := by - false_or_by_contra <;> rename_i h - guard_hyp h : x = y - guard_target = False - simp_all - -example (_ : False) : ¬ P := by - false_or_by_contra <;> rename_i h - guard_hyp h : P - guard_target = False - simp_all - -example {P : Prop} (_ : False) : P := by - false_or_by_contra <;> rename_i h - guard_hyp h : ¬ P - guard_target = False - simp_all - --- It doesn't make sense to use contradiction if the goal is a Type (rather than a Prop). -example {P : Type} (_ : False) : P := by - false_or_by_contra - fail_if_success - have : ¬ P := by assumption - guard_target = False - simp_all diff --git a/test/isIndependentOf.lean b/test/isIndependentOf.lean index 6ff9720bbf..bab7b9db86 100644 --- a/test/isIndependentOf.lean +++ b/test/isIndependentOf.lean @@ -19,7 +19,7 @@ elab "check_indep" : tactic => do pure () /-- warning: ?w : Nat is not independent of: -/ -#guard_msgs(warning) in +#guard_msgs(warning, drop info) in example : ∃ (n : Nat), ∀(x : Fin n), x.val = 0 := by apply Exists.intro intro x @@ -32,7 +32,7 @@ example : ∃ (n : Nat), ∀(x : Fin n), x.val = 0 := by -- This is a tricker one, where the dependency is via a hypothesis. /-- warning: ?w : Nat is not independent of: -/ -#guard_msgs(warning) in +#guard_msgs(warning, drop info) in example : ∃ (n : Nat), ∀(x : Fin n) (y : Nat), x.val = y → y = 0 := by apply Exists.intro intro x y p diff --git a/test/lintTC.lean b/test/lintTC.lean index deee02378c..74d8f861b1 100644 --- a/test/lintTC.lean +++ b/test/lintTC.lean @@ -5,7 +5,10 @@ open Std.Tactic.Lint namespace A -/-- warning: unused variable `β` [linter.unusedVariables] -/ +/-- +warning: unused variable `β` +note: this linter can be disabled with `set_option linter.unusedVariables false` +-/ #guard_msgs in local instance impossible {α β : Type} [Inhabited α] : Nonempty α := ⟨default⟩ diff --git a/test/lint_unreachableTactic.lean b/test/lint_unreachableTactic.lean index 86938a12f9..ec10da4a3a 100644 --- a/test/lint_unreachableTactic.lean +++ b/test/lint_unreachableTactic.lean @@ -1,6 +1,9 @@ import Std.Linter.UnreachableTactic -/-- warning: this tactic is never executed [linter.unreachableTactic] -/ +/-- +warning: this tactic is never executed +note: this linter can be disabled with `set_option linter.unreachableTactic false` +-/ #guard_msgs in example : 1 = 1 := by rfl <;> simp diff --git a/test/print_prefix.lean b/test/print_prefix.lean index a506e926c6..6677469882 100644 --- a/test/print_prefix.lean +++ b/test/print_prefix.lean @@ -3,19 +3,18 @@ import Std.Tactic.PrintPrefix inductive TEmpty : Type /-- info: TEmpty : Type -TEmpty.casesOn : (motive : TEmpty → Sort u) → (t : TEmpty) → motive t -TEmpty.noConfusion : {P : Sort u} → {v1 v2 : TEmpty} → v1 = v2 → TEmpty.noConfusionType P v1 v2 -TEmpty.noConfusionType : Sort u → TEmpty → TEmpty → Sort u -TEmpty.rec : (motive : TEmpty → Sort u) → (t : TEmpty) → motive t -TEmpty.recOn : (motive : TEmpty → Sort u) → (t : TEmpty) → motive t +TEmpty.casesOn.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t +TEmpty.noConfusion.{u} {P : Sort u} {v1 v2 : TEmpty} (h12 : v1 = v2) : TEmpty.noConfusionType P v1 v2 +TEmpty.noConfusionType.{u} (P : Sort u) (v1 v2 : TEmpty) : Sort u +TEmpty.rec.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t +TEmpty.recOn.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t -/ #guard_msgs in #print prefix TEmpty -- Test type that probably won't change much. -/-- --/ +/-- info: -/ #guard_msgs in -#print prefix (config:={imported:=false}) Empty +#print prefix (config := {imported := false}) Empty namespace EmptyPrefixTest @@ -35,9 +34,7 @@ def foo (_l:List String) : Int := 0 end Prefix.Test -/-- -info: Prefix.Test.foo : List String → Int --/ +/-- info: Prefix.Test.foo (_l : List String) : Int -/ #guard_msgs in #print prefix Prefix.Test @@ -50,44 +47,52 @@ structure TestStruct where /-- info: TestStruct : Type -TestStruct.bar : TestStruct → Int -TestStruct.casesOn : {motive : TestStruct → Sort u} → (t : TestStruct) → ((foo bar : Int) → motive { foo := foo, bar := bar }) → motive t -TestStruct.foo : TestStruct → Int -TestStruct.mk : Int → Int → TestStruct -TestStruct.mk.inj : ∀ {foo bar foo_1 bar_1 : Int}, { foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 } → foo = foo_1 ∧ bar = bar_1 -TestStruct.mk.injEq : ∀ (foo bar foo_1 bar_1 : Int), - ({ foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 }) = (foo = foo_1 ∧ bar = bar_1) -TestStruct.mk.sizeOf_spec : ∀ (foo bar : Int), sizeOf { foo := foo, bar := bar } = 1 + sizeOf foo + sizeOf bar -TestStruct.noConfusion : {P : Sort u} → {v1 v2 : TestStruct} → v1 = v2 → TestStruct.noConfusionType P v1 v2 -TestStruct.noConfusionType : Sort u → TestStruct → TestStruct → Sort u -TestStruct.rec : {motive : TestStruct → Sort u} → ((foo bar : Int) → motive { foo := foo, bar := bar }) → (t : TestStruct) → motive t -TestStruct.recOn : {motive : TestStruct → Sort u} → (t : TestStruct) → ((foo bar : Int) → motive { foo := foo, bar := bar }) → motive t +TestStruct.bar (self : TestStruct) : Int +TestStruct.casesOn.{u} {motive : TestStruct → Sort u} (t : TestStruct) + (mk : (foo bar : Int) → motive { foo := foo, bar := bar }) : motive t +TestStruct.foo (self : TestStruct) : Int +TestStruct.mk (foo bar : Int) : TestStruct +TestStruct.mk.inj {foo bar : Int} : + ∀ {foo_1 bar_1 : Int}, { foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 } → foo = foo_1 ∧ bar = bar_1 +TestStruct.mk.injEq (foo bar : Int) : + ∀ (foo_1 bar_1 : Int), ({ foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 }) = (foo = foo_1 ∧ bar = bar_1) +TestStruct.mk.sizeOf_spec (foo bar : Int) : sizeOf { foo := foo, bar := bar } = 1 + sizeOf foo + sizeOf bar +TestStruct.noConfusion.{u} {P : Sort u} {v1 v2 : TestStruct} (h12 : v1 = v2) : TestStruct.noConfusionType P v1 v2 +TestStruct.noConfusionType.{u} (P : Sort u) (v1 v2 : TestStruct) : Sort u +TestStruct.rec.{u} {motive : TestStruct → Sort u} (mk : (foo bar : Int) → motive { foo := foo, bar := bar }) + (t : TestStruct) : motive t +TestStruct.recOn.{u} {motive : TestStruct → Sort u} (t : TestStruct) + (mk : (foo bar : Int) → motive { foo := foo, bar := bar }) : motive t -/ #guard_msgs in #print prefix TestStruct /-- info: TestStruct : Type -TestStruct.bar : TestStruct → Int -TestStruct.casesOn : {motive : TestStruct → Sort u} → (t : TestStruct) → ((foo bar : Int) → motive { foo := foo, bar := bar }) → motive t -TestStruct.foo : TestStruct → Int -TestStruct.mk : Int → Int → TestStruct -TestStruct.noConfusion : {P : Sort u} → {v1 v2 : TestStruct} → v1 = v2 → TestStruct.noConfusionType P v1 v2 -TestStruct.noConfusionType : Sort u → TestStruct → TestStruct → Sort u -TestStruct.rec : {motive : TestStruct → Sort u} → ((foo bar : Int) → motive { foo := foo, bar := bar }) → (t : TestStruct) → motive t -TestStruct.recOn : {motive : TestStruct → Sort u} → (t : TestStruct) → ((foo bar : Int) → motive { foo := foo, bar := bar }) → motive t +TestStruct.bar (self : TestStruct) : Int +TestStruct.casesOn.{u} {motive : TestStruct → Sort u} (t : TestStruct) + (mk : (foo bar : Int) → motive { foo := foo, bar := bar }) : motive t +TestStruct.foo (self : TestStruct) : Int +TestStruct.mk (foo bar : Int) : TestStruct +TestStruct.noConfusion.{u} {P : Sort u} {v1 v2 : TestStruct} (h12 : v1 = v2) : TestStruct.noConfusionType P v1 v2 +TestStruct.noConfusionType.{u} (P : Sort u) (v1 v2 : TestStruct) : Sort u +TestStruct.rec.{u} {motive : TestStruct → Sort u} (mk : (foo bar : Int) → motive { foo := foo, bar := bar }) + (t : TestStruct) : motive t +TestStruct.recOn.{u} {motive : TestStruct → Sort u} (t : TestStruct) + (mk : (foo bar : Int) → motive { foo := foo, bar := bar }) : motive t -/ #guard_msgs in -#print prefix (config:={propositions:=false}) TestStruct +#print prefix (config := {propositions := false}) TestStruct /-- -info: TestStruct.mk.inj : ∀ {foo bar foo_1 bar_1 : Int}, { foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 } → foo = foo_1 ∧ bar = bar_1 -TestStruct.mk.injEq : ∀ (foo bar foo_1 bar_1 : Int), - ({ foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 }) = (foo = foo_1 ∧ bar = bar_1) -TestStruct.mk.sizeOf_spec : ∀ (foo bar : Int), sizeOf { foo := foo, bar := bar } = 1 + sizeOf foo + sizeOf bar +info: TestStruct.mk.inj {foo bar : Int} : + ∀ {foo_1 bar_1 : Int}, { foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 } → foo = foo_1 ∧ bar = bar_1 +TestStruct.mk.injEq (foo bar : Int) : + ∀ (foo_1 bar_1 : Int), ({ foo := foo, bar := bar } = { foo := foo_1, bar := bar_1 }) = (foo = foo_1 ∧ bar = bar_1) +TestStruct.mk.sizeOf_spec (foo bar : Int) : sizeOf { foo := foo, bar := bar } = 1 + sizeOf foo + sizeOf bar -/ #guard_msgs in -#print prefix (config:={propositionsOnly:=true}) TestStruct +#print prefix (config := {propositionsOnly := true}) TestStruct /-- info: TestStruct @@ -104,7 +109,7 @@ TestStruct.rec TestStruct.recOn -/ #guard_msgs in -#print prefix (config:={showTypes:=false}) TestStruct +#print prefix (config := {showTypes := false}) TestStruct /-- Artificial test function to show #print prefix filters out internals @@ -118,50 +123,51 @@ def testMatchProof : (n : Nat) → Fin n → Unit | _, ⟨0, _⟩ => () | Nat.succ as, ⟨Nat.succ i, h⟩ => testMatchProof as ⟨i, Nat.le_of_succ_le_succ h⟩ -/-- -info: testMatchProof : (n : Nat) → Fin n → Unit --/ +/-- info: testMatchProof (n : Nat) : Fin n → Unit -/ #guard_msgs in #print prefix testMatchProof /-- -info: testMatchProof : (n : Nat) → Fin n → Unit -testMatchProof._cstage1 : (n : Nat) → Fin n → Unit +info: testMatchProof (n : Nat) : Fin n → Unit +testMatchProof._cstage1 (n : Nat) : Fin n → Unit testMatchProof._cstage2 : _obj → _obj → _obj -testMatchProof._sunfold : (n : Nat) → Fin n → Unit -testMatchProof._unsafe_rec : (n : Nat) → Fin n → Unit -testMatchProof.match_1 : (motive : (x : Nat) → Fin x → Sort u_1) → +testMatchProof._sunfold (n : Nat) : Fin n → Unit +testMatchProof._unsafe_rec (n : Nat) : Fin n → Unit +testMatchProof.match_1.{u_1} (motive : (x : Nat) → Fin x → Sort u_1) : (x : Nat) → (x_1 : Fin x) → ((n : Nat) → (isLt : 0 < n) → motive n ⟨0, isLt⟩) → ((as i : Nat) → (h : i.succ < as.succ) → motive as.succ ⟨i.succ, h⟩) → motive x x_1 -testMatchProof.match_1._cstage1 : (motive : (x : Nat) → Fin x → Sort u_1) → +testMatchProof.match_1._cstage1.{u_1} (motive : (x : Nat) → Fin x → Sort u_1) : (x : Nat) → (x_1 : Fin x) → ((n : Nat) → (isLt : 0 < n) → motive n ⟨0, isLt⟩) → ((as i : Nat) → (h : i.succ < as.succ) → motive as.succ ⟨i.succ, h⟩) → motive x x_1 -testMatchProof.proof_1 : ∀ (as i : Nat), i.succ < as.succ → i.succ ≤ as -testMatchProof.proof_2 : ∀ (as i : Nat), i.succ < as.succ → i.succ ≤ as +testMatchProof.proof_1 (as i : Nat) (h : i.succ < as.succ) : i.succ ≤ as +testMatchProof.proof_2 (as i : Nat) (h : i.succ < as.succ) : i.succ ≤ as -/ #guard_msgs in -#print prefix (config:={internals:=true}) testMatchProof +#print prefix (config := {internals := true}) testMatchProof private inductive TestInd where | foo : TestInd | bar : TestInd /-- -info: _private.test.print_prefix.0.TestInd : Type -_private.test.print_prefix.0.TestInd.bar : TestInd -_private.test.print_prefix.0.TestInd.bar.sizeOf_spec : sizeOf TestInd.bar = 1 -_private.test.print_prefix.0.TestInd.casesOn : {motive : TestInd → Sort u} → (t : TestInd) → motive TestInd.foo → motive TestInd.bar → motive t -_private.test.print_prefix.0.TestInd.foo : TestInd -_private.test.print_prefix.0.TestInd.foo.sizeOf_spec : sizeOf TestInd.foo = 1 -_private.test.print_prefix.0.TestInd.noConfusion : {P : Sort v✝} → {x y : TestInd} → x = y → TestInd.noConfusionType P x y -_private.test.print_prefix.0.TestInd.noConfusionType : Sort v✝ → TestInd → TestInd → Sort v✝ -_private.test.print_prefix.0.TestInd.rec : {motive : TestInd → Sort u} → motive TestInd.foo → motive TestInd.bar → (t : TestInd) → motive t -_private.test.print_prefix.0.TestInd.recOn : {motive : TestInd → Sort u} → (t : TestInd) → motive TestInd.foo → motive TestInd.bar → motive t -_private.test.print_prefix.0.TestInd.toCtorIdx : TestInd → Nat +info: TestInd : Type +TestInd.bar : TestInd +TestInd.bar.sizeOf_spec : sizeOf TestInd.bar = 1 +TestInd.casesOn.{u} {motive : TestInd → Sort u} (t : TestInd) (foo : motive TestInd.foo) (bar : motive TestInd.bar) : + motive t +TestInd.foo : TestInd +TestInd.foo.sizeOf_spec : sizeOf TestInd.foo = 1 +TestInd.noConfusion.{v✝} {P : Sort v✝} {x y : TestInd} (h : x = y) : TestInd.noConfusionType P x y +TestInd.noConfusionType.{v✝} (P : Sort v✝) (x y : TestInd) : Sort v✝ +TestInd.rec.{u} {motive : TestInd → Sort u} (foo : motive TestInd.foo) (bar : motive TestInd.bar) (t : TestInd) : + motive t +TestInd.recOn.{u} {motive : TestInd → Sort u} (t : TestInd) (foo : motive TestInd.foo) (bar : motive TestInd.bar) : + motive t +TestInd.toCtorIdx : TestInd → Nat -/ #guard_msgs in #print prefix TestInd diff --git a/test/show_unused.lean b/test/show_unused.lean new file mode 100644 index 0000000000..0d05ced062 --- /dev/null +++ b/test/show_unused.lean @@ -0,0 +1,14 @@ +import Std.Tactic.ShowUnused + +def foo := 1 +def baz := 2 +def bar := foo + +/-- +warning: #show_unused (line 14) says: +baz is not used transitively by [bar] +--- +warning: unused definitions in this file: +baz +-/ +#guard_msgs in #show_unused bar diff --git a/test/simpa.lean b/test/simpa.lean index 0c2d7c6aea..9528b26382 100644 --- a/test/simpa.lean +++ b/test/simpa.lean @@ -14,12 +14,18 @@ def foo (n : α) := [n] section unnecessarySimpa -/-- warning: try 'simp' instead of 'simpa' [linter.unnecessarySimpa] -/ +/-- +warning: try 'simp' instead of 'simpa' +note: this linter can be disabled with `set_option linter.unnecessarySimpa false` +-/ #guard_msgs in example : foo n = [n] := by simpa only [foo] -/-- warning: try 'simp at h' instead of 'simpa using h' [linter.unnecessarySimpa] -/ +/-- +warning: try 'simp at h' instead of 'simpa using h' +note: this linter can be disabled with `set_option linter.unnecessarySimpa false` +-/ #guard_msgs in example (h : foo n ≠ [n]) : False := by simpa [foo] using h From 4cc72031342ffd83bf8d5ce296d6ab605b4cf1ce Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Tue, 23 Apr 2024 11:01:49 +1000 Subject: [PATCH 13/44] fix test --- test/print_prefix.lean | 1 - 1 file changed, 1 deletion(-) diff --git a/test/print_prefix.lean b/test/print_prefix.lean index 6677469882..625ba47b2e 100644 --- a/test/print_prefix.lean +++ b/test/print_prefix.lean @@ -12,7 +12,6 @@ TEmpty.recOn.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t #guard_msgs in #print prefix TEmpty -- Test type that probably won't change much. -/-- info: -/ #guard_msgs in #print prefix (config := {imported := false}) Empty From 91cba9bda68df58a72e5c770070f9c9d77ba561d Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Tue, 23 Apr 2024 11:09:25 +1000 Subject: [PATCH 14/44] fix test --- test/print_prefix.lean | 1 + 1 file changed, 1 insertion(+) diff --git a/test/print_prefix.lean b/test/print_prefix.lean index 625ba47b2e..6677469882 100644 --- a/test/print_prefix.lean +++ b/test/print_prefix.lean @@ -12,6 +12,7 @@ TEmpty.recOn.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t #guard_msgs in #print prefix TEmpty -- Test type that probably won't change much. +/-- info: -/ #guard_msgs in #print prefix (config := {imported := false}) Empty From 84e3acc30eeeb4be1da535afa1c54b9d5b341dc0 Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Tue, 23 Apr 2024 09:05:07 +0000 Subject: [PATCH 15/44] chore: bump to nightly-2024-04-23 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index b96d89db4d..021fc88cef 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-22 +leanprover/lean4:nightly-2024-04-23 From fbe1e069e018d012039ca15724fd6fd267c120bc Mon Sep 17 00:00:00 2001 From: Kim Morrison Date: Wed, 24 Apr 2024 13:26:12 +1000 Subject: [PATCH 16/44] chore: adaptations for nightly-2024-04-22 (#761) * chore: adaptations for nightly-2024-04-22 * fix test --- Std/Data/Array/Basic.lean | 8 ++++---- Std/Data/ByteArray.lean | 1 + Std/Data/List/Count.lean | 1 - Std/Data/List/Lemmas.lean | 1 - Std/Data/UInt.lean | 21 +++++++-------------- Std/Lean/PersistentHashMap.lean | 6 ------ Std/Tactic/ShowUnused.lean | 2 +- Std/Tactic/SqueezeScope.lean | 2 +- lean-toolchain | 2 +- test/case.lean | 9 ++++++--- test/lintTC.lean | 5 ++++- test/lint_unreachableTactic.lean | 5 ++++- test/print_prefix.lean | 2 -- test/simpa.lean | 10 ++++++++-- 14 files changed, 37 insertions(+), 38 deletions(-) diff --git a/Std/Data/Array/Basic.lean b/Std/Data/Array/Basic.lean index f1a940ae75..d0c937f1a9 100644 --- a/Std/Data/Array/Basic.lean +++ b/Std/Data/Array/Basic.lean @@ -161,11 +161,11 @@ namespace Subarray The empty subarray. -/ protected def empty : Subarray α where - as := #[] + array := #[] start := 0 stop := 0 - h₁ := Nat.le_refl 0 - h₂ := Nat.le_refl 0 + start_le_stop := Nat.le_refl 0 + stop_le_array_size := Nat.le_refl 0 instance : EmptyCollection (Subarray α) := ⟨Subarray.empty⟩ @@ -198,7 +198,7 @@ def popHead? (as : Subarray α) : Option (α × Subarray α) := let tail := { as with start := as.start + 1 - h₁ := Nat.le_of_lt_succ $ Nat.succ_lt_succ h } + start_le_stop := Nat.le_of_lt_succ $ Nat.succ_lt_succ h } some (head, tail) else none diff --git a/Std/Data/ByteArray.lean b/Std/Data/ByteArray.lean index 1a6d6b5df2..dcee0d4948 100644 --- a/Std/Data/ByteArray.lean +++ b/Std/Data/ByteArray.lean @@ -3,6 +3,7 @@ Copyright (c) 2023 François G. Dorais. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: François G. Dorais -/ +import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas namespace ByteArray diff --git a/Std/Data/List/Count.lean b/Std/Data/List/Count.lean index 4458c457dc..6611d032f6 100644 --- a/Std/Data/List/Count.lean +++ b/Std/Data/List/Count.lean @@ -116,7 +116,6 @@ theorem countP_mono_left (h : ∀ x ∈ l, p x → q x) : countP p l ≤ countP apply Nat.le_trans ?_ (Nat.le_add_right _ _) apply ihl hl . simp [ha h] - apply Nat.succ_le_succ apply ihl hl theorem countP_congr (h : ∀ x ∈ l, p x ↔ q x) : countP p l = countP q l := diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 9a032f99b3..545fd8f769 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro -/ import Std.Control.ForInStep.Lemmas -import Std.Data.Nat.Basic import Std.Data.List.Init.Lemmas import Std.Data.List.Basic import Std.Tactic.Init diff --git a/Std/Data/UInt.lean b/Std/Data/UInt.lean index d94c11ae26..a2f422f1a4 100644 --- a/Std/Data/UInt.lean +++ b/Std/Data/UInt.lean @@ -13,14 +13,11 @@ Authors: François G. Dorais theorem UInt8.toNat_lt (x : UInt8) : x.toNat < 2 ^ 8 := x.val.isLt -@[simp] theorem UInt8.toUInt16_toNat (x : UInt8) : x.toUInt16.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt8.toUInt16_toNat (x : UInt8) : x.toUInt16.toNat = x.toNat := rfl -@[simp] theorem UInt8.toUInt32_toNat (x : UInt8) : x.toUInt32.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt8.toUInt32_toNat (x : UInt8) : x.toUInt32.toNat = x.toNat := rfl -@[simp] theorem UInt8.toUInt64_toNat (x : UInt8) : x.toUInt64.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt8.toUInt64_toNat (x : UInt8) : x.toUInt64.toNat = x.toNat := rfl /-! ### UInt16 -/ @@ -33,11 +30,9 @@ theorem UInt16.toNat_lt (x : UInt16) : x.toNat < 2 ^ 16 := x.val.isLt @[simp] theorem UInt16.toUInt8_toNat (x : UInt16) : x.toUInt8.toNat = x.toNat % 2 ^ 8 := rfl -@[simp] theorem UInt16.toUInt32_toNat (x : UInt16) : x.toUInt32.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt16.toUInt32_toNat (x : UInt16) : x.toUInt32.toNat = x.toNat := rfl -@[simp] theorem UInt16.toUInt64_toNat (x : UInt16) : x.toUInt64.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt16.toUInt64_toNat (x : UInt16) : x.toUInt64.toNat = x.toNat := rfl /-! ### UInt32 -/ @@ -52,8 +47,7 @@ theorem UInt32.toNat_lt (x : UInt32) : x.toNat < 2 ^ 32 := x.val.isLt @[simp] theorem UInt32.toUInt16_toNat (x : UInt32) : x.toUInt16.toNat = x.toNat % 2 ^ 16 := rfl -@[simp] theorem UInt32.toUInt64_toNat (x : UInt32) : x.toUInt64.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +@[simp] theorem UInt32.toUInt64_toNat (x : UInt32) : x.toUInt64.toNat = x.toNat := rfl /-! ### UInt64 -/ @@ -97,5 +91,4 @@ theorem USize.toNat_lt (x : USize) : x.toNat < 2 ^ System.Platform.numBits := by @[simp] theorem USize.toUInt64_toNat (x : USize) : x.toUInt64.toNat = x.toNat := by simp only [USize.toUInt64, UInt64.toNat]; rfl -@[simp] theorem UInt32.toUSize_toNat (x : UInt32) : x.toUSize.toNat = x.toNat := - Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt USize.le_size) +@[simp] theorem UInt32.toUSize_toNat (x : UInt32) : x.toUSize.toNat = x.toNat := rfl diff --git a/Std/Lean/PersistentHashMap.lean b/Std/Lean/PersistentHashMap.lean index 4122f193b4..5054e15758 100644 --- a/Std/Lean/PersistentHashMap.lean +++ b/Std/Lean/PersistentHashMap.lean @@ -19,12 +19,6 @@ def insert' (m : PersistentHashMap α β) (a : α) (b : β) : PersistentHashMap let m := m.insert a b (m, m.size == oldSize) -/-- -Turns a `PersistentHashMap` into an array of key-value pairs. --/ -def toArray (m : PersistentHashMap α β) : Array (α × β) := - m.foldl (init := Array.mkEmpty m.size) fun xs k v => xs.push (k, v) - /-- Builds a `PersistentHashMap` from a list of key-value pairs. Values of duplicated keys are replaced by their respective last occurrences. diff --git a/Std/Tactic/ShowUnused.lean b/Std/Tactic/ShowUnused.lean index 26df62327d..9efc6b7673 100644 --- a/Std/Tactic/ShowUnused.lean +++ b/Std/Tactic/ShowUnused.lean @@ -46,7 +46,7 @@ def bar := foo ``` -/ elab tk:"#show_unused" ids:(ppSpace colGt ident)* : command => do - let ns ← ids.mapM fun n => do liftCoreM <| Elab.realizeGlobalConstNoOverloadWithInfo n + let ns ← ids.mapM fun s => liftCoreM <| realizeGlobalConstNoOverloadWithInfo s let env ← getEnv let decls := env.constants.map₂.foldl (fun m n _ => m.insert n) {} let mut unused := #[] diff --git a/Std/Tactic/SqueezeScope.lean b/Std/Tactic/SqueezeScope.lean index 39fad08cfc..cfb0476a57 100644 --- a/Std/Tactic/SqueezeScope.lean +++ b/Std/Tactic/SqueezeScope.lean @@ -85,7 +85,7 @@ elab_rules : tactic throw e if let some new := new then for (_, stx, usedSimps) in new do - let usedSimps := usedSimps.foldl (fun s usedSimps => usedSimps.fold .insert s) {} + let usedSimps := usedSimps.foldl (fun s usedSimps => usedSimps.foldl .insert s) {} let stx' ← mkSimpCallStx stx usedSimps TryThis.addSuggestion stx[0] stx' (origSpan? := stx) diff --git a/lean-toolchain b/lean-toolchain index 4610193327..b96d89db4d 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-01 +leanprover/lean4:nightly-2024-04-22 diff --git a/test/case.lean b/test/case.lean index ab0b664218..2c0c5ff552 100644 --- a/test/case.lean +++ b/test/case.lean @@ -183,11 +183,14 @@ example : True ∧ ∀ x : Nat, x = x := by -- Test focusing by full match, suffix match, and prefix match /-- -warning: unused variable `x` [linter.unusedVariables] +warning: unused variable `x` +note: this linter can be disabled with `set_option linter.unusedVariables false` --- -warning: unused variable `y` [linter.unusedVariables] +warning: unused variable `y` +note: this linter can be disabled with `set_option linter.unusedVariables false` --- -warning: unused variable `z` [linter.unusedVariables] +warning: unused variable `z` +note: this linter can be disabled with `set_option linter.unusedVariables false` -/ #guard_msgs in example : True := by diff --git a/test/lintTC.lean b/test/lintTC.lean index deee02378c..74d8f861b1 100644 --- a/test/lintTC.lean +++ b/test/lintTC.lean @@ -5,7 +5,10 @@ open Std.Tactic.Lint namespace A -/-- warning: unused variable `β` [linter.unusedVariables] -/ +/-- +warning: unused variable `β` +note: this linter can be disabled with `set_option linter.unusedVariables false` +-/ #guard_msgs in local instance impossible {α β : Type} [Inhabited α] : Nonempty α := ⟨default⟩ diff --git a/test/lint_unreachableTactic.lean b/test/lint_unreachableTactic.lean index 86938a12f9..ec10da4a3a 100644 --- a/test/lint_unreachableTactic.lean +++ b/test/lint_unreachableTactic.lean @@ -1,6 +1,9 @@ import Std.Linter.UnreachableTactic -/-- warning: this tactic is never executed [linter.unreachableTactic] -/ +/-- +warning: this tactic is never executed +note: this linter can be disabled with `set_option linter.unreachableTactic false` +-/ #guard_msgs in example : 1 = 1 := by rfl <;> simp diff --git a/test/print_prefix.lean b/test/print_prefix.lean index 7b9cdaada3..625ba47b2e 100644 --- a/test/print_prefix.lean +++ b/test/print_prefix.lean @@ -12,8 +12,6 @@ TEmpty.recOn.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t #guard_msgs in #print prefix TEmpty -- Test type that probably won't change much. -/-- --/ #guard_msgs in #print prefix (config := {imported := false}) Empty diff --git a/test/simpa.lean b/test/simpa.lean index 0c2d7c6aea..9528b26382 100644 --- a/test/simpa.lean +++ b/test/simpa.lean @@ -14,12 +14,18 @@ def foo (n : α) := [n] section unnecessarySimpa -/-- warning: try 'simp' instead of 'simpa' [linter.unnecessarySimpa] -/ +/-- +warning: try 'simp' instead of 'simpa' +note: this linter can be disabled with `set_option linter.unnecessarySimpa false` +-/ #guard_msgs in example : foo n = [n] := by simpa only [foo] -/-- warning: try 'simp at h' instead of 'simpa using h' [linter.unnecessarySimpa] -/ +/-- +warning: try 'simp at h' instead of 'simpa using h' +note: this linter can be disabled with `set_option linter.unnecessarySimpa false` +-/ #guard_msgs in example (h : foo n ≠ [n]) : False := by simpa [foo] using h From 0ad0ebc89713bdfbfe672d2a0f912541f510f4fe Mon Sep 17 00:00:00 2001 From: Mario Carneiro Date: Tue, 23 Apr 2024 23:34:14 -0400 Subject: [PATCH 17/44] chore: cleanup and shorten names in Array.Merge (#762) --- Std/Data/Array/Merge.lean | 137 ++++++++++++++--------------------- Std/Lean/Meta/DiscrTree.lean | 2 +- 2 files changed, 57 insertions(+), 82 deletions(-) diff --git a/Std/Data/Array/Merge.lean b/Std/Data/Array/Merge.lean index 35c5f4b4b0..60c706380d 100644 --- a/Std/Data/Array/Merge.lean +++ b/Std/Data/Array/Merge.lean @@ -9,140 +9,115 @@ import Std.Data.Nat.Lemmas namespace Array /-- -Merge arrays `xs` and `ys`, which must be sorted according to `compare`. The -result is sorted as well. If two (or more) elements are equal according to -`compare`, they are preserved. +`O(|xs| + |ys|)`. Merge arrays `xs` and `ys`. If the arrays are sorted according to `lt`, then the +result is sorted as well. If two (or more) elements are equal according to `lt`, they are preserved. -/ -def mergeSortedPreservingDuplicates [ord : Ord α] (xs ys : Array α) : - Array α := - let acc := Array.mkEmpty (xs.size + ys.size) - go acc 0 0 +def merge (lt : α → α → Bool) (xs ys : Array α) : Array α := + go (Array.mkEmpty (xs.size + ys.size)) 0 0 where - /-- Auxiliary definition for `mergeSortedPreservingDuplicates`. -/ + /-- Auxiliary definition for `merge`. -/ go (acc : Array α) (i j : Nat) : Array α := if hi : i ≥ xs.size then acc ++ ys[j:] else if hj : j ≥ ys.size then acc ++ xs[i:] else - have hi : i < xs.size := Nat.lt_of_not_le hi - have hj : j < ys.size := Nat.lt_of_not_le hj - have hij : i + j < xs.size + ys.size := Nat.add_lt_add hi hj let x := xs[i] let y := ys[j] - if compare x y |>.isLE then - have : xs.size + ys.size - (i + 1 + j) < xs.size + ys.size - (i + j) := by - rw [show i + 1 + j = i + j + 1 by simp_arith] - exact Nat.sub_succ_lt_self _ _ hij - go (acc.push x) (i + 1) j - else - have : xs.size + ys.size - (i + j + 1) < xs.size + ys.size - (i + j) := - Nat.sub_succ_lt_self _ _ hij - go (acc.push y) i (j + 1) + if lt x y then go (acc.push x) (i + 1) j else go (acc.push y) i (j + 1) termination_by xs.size + ys.size - (i + j) +set_option linter.unusedVariables false in +@[deprecated merge, inherit_doc merge] +def mergeSortedPreservingDuplicates [ord : Ord α] (xs ys : Array α) : Array α := + merge (compare · · |>.isLT) xs ys + /-- -Merge arrays `xs` and `ys`, which must be sorted according to `compare` and must -not contain duplicates. Equal elements are merged using `merge`. If `merge` -respects the order (i.e. for all `x`, `y`, `y'`, `z`, if `x < y < z` and -`x < y' < z` then `x < merge y y' < z`) then the resulting array is again -sorted. +`O(|xs| + |ys|)`. Merge arrays `xs` and `ys`, which must be sorted according to `compare` and must +not contain duplicates. Equal elements are merged using `merge`. If `merge` respects the order +(i.e. for all `x`, `y`, `y'`, `z`, if `x < y < z` and `x < y' < z` then `x < merge y y' < z`) +then the resulting array is again sorted. -/ -def mergeSortedMergingDuplicates [ord : Ord α] (xs ys : Array α) - (merge : α → α → α) : Array α := - let acc := Array.mkEmpty (xs.size + ys.size) - go acc 0 0 +def mergeDedupWith [ord : Ord α] (xs ys : Array α) (merge : α → α → α) : Array α := + go (Array.mkEmpty (xs.size + ys.size)) 0 0 where - /-- Auxiliary definition for `mergeSortedMergingDuplicates`. -/ + /-- Auxiliary definition for `mergeDedupWith`. -/ go (acc : Array α) (i j : Nat) : Array α := if hi : i ≥ xs.size then acc ++ ys[j:] else if hj : j ≥ ys.size then acc ++ xs[i:] else - have hi : i < xs.size := Nat.lt_of_not_le hi - have hj : j < ys.size := Nat.lt_of_not_le hj - have hij : i + j < xs.size + ys.size := Nat.add_lt_add hi hj let x := xs[i] let y := ys[j] match compare x y with - | Ordering.lt => - have : xs.size + ys.size - (i + 1 + j) < xs.size + ys.size - (i + j) := by - rw [show i + 1 + j = i + j + 1 by simp_arith] - exact Nat.sub_succ_lt_self _ _ hij - go (acc.push x) (i + 1) j - | Ordering.gt => - have : xs.size + ys.size - (i + j + 1) < xs.size + ys.size - (i + j) := - Nat.sub_succ_lt_self _ _ hij - go (acc.push y) i (j + 1) - | Ordering.eq => - have : xs.size + ys.size - (i + 1 + (j + 1)) < xs.size + ys.size - (i + j) := by - rw [show i + 1 + (j + 1) = i + j + 2 by simp_arith] - apply Nat.sub_add_lt_sub _ (by decide) - rw [show i + j + 2 = (i + 1) + (j + 1) by simp_arith] - exact Nat.add_le_add hi hj - go (acc.push (merge x y)) (i + 1) (j + 1) - termination_by xs.size + ys.size - (i + j) + | .lt => go (acc.push x) (i + 1) j + | .gt => go (acc.push y) i (j + 1) + | .eq => go (acc.push (merge x y)) (i + 1) (j + 1) + termination_by xs.size + ys.size - (i + j) + +@[deprecated] alias mergeSortedMergingDuplicates := mergeDedupWith /-- -Merge arrays `xs` and `ys`, which must be sorted according to `compare` and must -not contain duplicates. If an element appears in both `xs` and `ys`, only one -copy is kept. +`O(|xs| + |ys|)`. Merge arrays `xs` and `ys`, which must be sorted according to `compare` and must +not contain duplicates. If an element appears in both `xs` and `ys`, only one copy is kept. -/ -@[inline] -def mergeSortedDeduplicating [ord : Ord α] (xs ys : Array α) : Array α := - mergeSortedMergingDuplicates (ord := ord) xs ys fun x _ => x +@[inline] def mergeDedup [ord : Ord α] (xs ys : Array α) : Array α := + mergeDedupWith (ord := ord) xs ys fun x _ => x + +@[deprecated] alias mergeSortedDeduplicating := mergeDedup set_option linter.unusedVariables false in /-- -Merge `xs` and `ys`, which do not need to be sorted. Elements which occur in -both `xs` and `ys` are only added once. If `xs` and `ys` do not contain -duplicates, then neither does the result. O(n*m)! +`O(|xs| * |ys|)`. Merge `xs` and `ys`, which do not need to be sorted. Elements which occur in +both `xs` and `ys` are only added once. If `xs` and `ys` do not contain duplicates, then neither +does the result. -/ -def mergeUnsortedDeduplicating [eq : BEq α] (xs ys : Array α) : Array α := +def mergeUnsortedDedup [eq : BEq α] (xs ys : Array α) : Array α := -- Ideally we would check whether `xs` or `ys` have spare capacity, to prevent -- copying if possible. But Lean arrays don't expose their capacity. if xs.size < ys.size then go ys xs else go xs ys where - /-- Auxiliary definition for `mergeUnsortedDeduplicating`. -/ - @[inline] - go (xs ys : Array α) := + /-- Auxiliary definition for `mergeUnsortedDedup`. -/ + @[inline] go (xs ys : Array α) := let xsSize := xs.size ys.foldl (init := xs) fun xs y => if xs.any (· == y) (stop := xsSize) then xs else xs.push y +@[deprecated] alias mergeUnsortedDeduplicating := mergeUnsortedDedup + /-- -Replace each run `[x₁, ⋯, xₙ]` of equal elements in `xs` with +`O(|xs|)`. Replace each run `[x₁, ⋯, xₙ]` of equal elements in `xs` with `f ⋯ (f (f x₁ x₂) x₃) ⋯ xₙ`. -/ -def mergeAdjacentDuplicates [eq : BEq α] (f : α → α → α) (xs : Array α) : - Array α := - if h : 0 < xs.size then go #[] 1 (xs.get ⟨0, h⟩) else xs +def mergeAdjacentDups [eq : BEq α] (f : α → α → α) (xs : Array α) : Array α := + if h : 0 < xs.size then go (mkEmpty xs.size) 1 (xs.get ⟨0, h⟩) else xs where - /-- Auxiliary definition for `mergeAdjacentDuplicates`. -/ + /-- Auxiliary definition for `mergeAdjacentDups`. -/ go (acc : Array α) (i : Nat) (hd : α) := if h : i < xs.size then let x := xs[i] - if x == hd then - go acc (i + 1) (f hd x) - else - go (acc.push hd) (i + 1) x + if x == hd then go acc (i + 1) (f hd x) else go (acc.push hd) (i + 1) x else acc.push hd termination_by xs.size - i -/-- -Deduplicate a sorted array. The array must be sorted with to an order which -agrees with `==`, i.e. whenever `x == y` then `compare x y == .eq`. --/ -def deduplicateSorted [eq : BEq α] (xs : Array α) : Array α := - xs.mergeAdjacentDuplicates (eq := eq) fun x _ => x +@[deprecated] alias mergeAdjacentDuplicates := mergeAdjacentDups /-- -Sort and deduplicate an array. +`O(|xs|)`. Deduplicate a sorted array. The array must be sorted with to an order which agrees with +`==`, i.e. whenever `x == y` then `compare x y == .eq`. -/ -def sortAndDeduplicate [ord : Ord α] (xs : Array α) : Array α := +def dedupSorted [eq : BEq α] (xs : Array α) : Array α := + xs.mergeAdjacentDups (eq := eq) fun x _ => x + +@[deprecated] alias deduplicateSorted := dedupSorted + +/-- `O(|xs| log |xs|)`. Sort and deduplicate an array. -/ +def sortDedup [ord : Ord α] (xs : Array α) : Array α := have := ord.toBEq - deduplicateSorted <| xs.qsort (compare · · |>.isLT) + dedupSorted <| xs.qsort (compare · · |>.isLT) + +@[deprecated] alias sortAndDeduplicate := sortDedup end Array diff --git a/Std/Lean/Meta/DiscrTree.lean b/Std/Lean/Meta/DiscrTree.lean index 1984950963..abc95a3dd2 100644 --- a/Std/Lean/Meta/DiscrTree.lean +++ b/Std/Lean/Meta/DiscrTree.lean @@ -42,7 +42,7 @@ where /-- Auxiliary definition for `mergePreservingDuplicates`. -/ mergeChildren (cs₁ cs₂ : Array (Key × Trie α)) : Array (Key × Trie α) := - Array.mergeSortedMergingDuplicates + Array.mergeDedupWith (ord := ⟨compareOn (·.fst)⟩) cs₁ cs₂ (fun (k₁, t₁) (_, t₂) => (k₁, mergePreservingDuplicates t₁ t₂)) From 4a54f26203f47428c389297a2448d6348bb97484 Mon Sep 17 00:00:00 2001 From: Kim Morrison Date: Wed, 24 Apr 2024 13:37:10 +1000 Subject: [PATCH 18/44] feat: propose removing classical! (#752) * feat: propose removing classical! * update test * deprecation --- Std/Tactic/Classical.lean | 34 +++++++--------------------------- test/classical.lean | 12 ++---------- 2 files changed, 9 insertions(+), 37 deletions(-) diff --git a/Std/Tactic/Classical.lean b/Std/Tactic/Classical.lean index cf05a4d59f..48417290c1 100644 --- a/Std/Tactic/Classical.lean +++ b/Std/Tactic/Classical.lean @@ -5,25 +5,11 @@ Authors: Mario Carneiro -/ import Lean.Elab.ElabRules -/-! # `classical` and `classical!` tactics -/ +/-! # `classical` tactic -/ namespace Std.Tactic open Lean Meta Elab.Tactic -/-- -`classical!` adds a proof of `Classical.propDecidable` as a local variable, which makes it -available for instance search and effectively makes all propositions decidable. -``` -noncomputable def foo : Bool := by - classical! - have := ∀ p, decide p -- uses the classical instance - exact decide (0 < 1) -- uses the classical instance even though `0 < 1` is decidable -``` -Consider using `classical` instead if you want to use the decidable instance when available. --/ -macro (name := classical!) "classical!" : tactic => - `(tactic| have em := Classical.propDecidable) - /-- `classical t` runs `t` in a scope where `Classical.propDecidable` is a low priority local instance. @@ -37,21 +23,15 @@ def classical [Monad m] [MonadEnv m] [MonadFinally m] [MonadLiftT MetaM m] (t : finally modifyEnv Meta.instanceExtension.popScope +/-- `classical!` has been removed; use `classical` instead -/ +-- Deprecated 2024-04-19 +elab "classical!" : tactic => do + throwError "`classical!` has been removed; use `classical` instead" + /-- `classical tacs` runs `tacs` in a scope where `Classical.propDecidable` is a low priority -local instance. It differs from `classical!` in that `classical!` uses a local variable, -which has high priority: -``` -noncomputable def foo : Bool := by - classical! - have := ∀ p, decide p -- uses the classical instance - exact decide (0 < 1) -- uses the classical instance even though `0 < 1` is decidable +local instance. -def bar : Bool := by - classical - have := ∀ p, decide p -- uses the classical instance - exact decide (0 < 1) -- uses the decidable instance -``` Note that (unlike lean 3) `classical` is a scoping tactic - it adds the instance only within the scope of the tactic. -/ diff --git a/test/classical.lean b/test/classical.lean index b65762ae7b..6af8ca3bb8 100644 --- a/test/classical.lean +++ b/test/classical.lean @@ -1,20 +1,12 @@ import Std.Tactic.Classical import Std.Tactic.PermuteGoals -noncomputable example : Bool := by - fail_if_success have := ∀ p, decide p -- no classical in scope - classical! - have := ∀ p, decide p -- uses the classical instance - -- uses the classical instance even though `0 < 1` is decidable - guard_expr decide (0 < 1) = @decide (0 < 1) (‹(a : Prop) → Decidable a› _) - exact decide (0 < 1) - example : Bool := by fail_if_success have := ∀ p, decide p -- no classical in scope classical have := ∀ p, decide p -- uses the classical instance guard_expr decide (0 < 1) = @decide (0 < 1) (Nat.decLt 0 1) - exact decide (0 < 1) -- uses the decidable instance + exact decide (0 < 1) -- will use the decidable instance -- double check no leakage example : Bool := by @@ -28,4 +20,4 @@ example : Bool := by classical have := ∀ p, decide p -- uses the classical instance fail_if_success have := ∀ p, decide p -- no classical in scope again - exact decide (0 < 1) -- uses the decidable instance + exact decide (0 < 1) -- will use the decidable instance From 48643957cb394f0740a292b14954747c96bcd00e Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 24 Apr 2024 13:39:03 +1000 Subject: [PATCH 19/44] fix --- Std/Data/Array/Merge.lean | 1 + 1 file changed, 1 insertion(+) diff --git a/Std/Data/Array/Merge.lean b/Std/Data/Array/Merge.lean index 2c71ea6eaf..250ab760e1 100644 --- a/Std/Data/Array/Merge.lean +++ b/Std/Data/Array/Merge.lean @@ -3,6 +3,7 @@ Copyright (c) 2022 Jannis Limperg. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jannis Limperg -/ +import Std.Tactic.Alias namespace Array From 34391b136575f81080c39a0cd94b38297c584549 Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Thu, 25 Apr 2024 09:05:21 +0000 Subject: [PATCH 20/44] chore: bump to nightly-2024-04-25 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index 021fc88cef..3755ac0777 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-23 +leanprover/lean4:nightly-2024-04-25 From d9822056f5ae3579acbd9af5c8d0ee5fd06c85dc Mon Sep 17 00:00:00 2001 From: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Date: Thu, 25 Apr 2024 18:30:27 +0200 Subject: [PATCH 21/44] fix: link in nightly_detect_failure.yml (#766) --- .github/workflows/nightly_detect_failure.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/nightly_detect_failure.yml b/.github/workflows/nightly_detect_failure.yml index 41d2a5be36..95580d9309 100644 --- a/.github/workflows/nightly_detect_failure.yml +++ b/.github/workflows/nightly_detect_failure.yml @@ -77,13 +77,13 @@ jobs: } response = client.get_messages(request) messages = response['messages'] - if not messages or messages[0]['content'] != "✅ The latest CI for Std's branch#nightly-testing has succeeded!": + if not messages or messages[0]['content'] != "✅ The latest CI for Std's [`nightly-testing`](https://github.com/leanprover/std4/tree/nightly-testing) branch has succeeded!": # Post the success message request = { 'type': 'stream', 'to': 'nightly-testing', 'topic': 'Std status updates', - 'content': "✅ The latest CI for Std's branch#nightly-testing has succeeded!" + 'content': "✅ The latest CI for Std's [`nightly-testing`](https://github.com/leanprover/std4/tree/nightly-testing) branch has succeeded!" } result = client.send_message(request) print(result) From 9180a682050d29b9e1fd703e4818cbeb9eff978a Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Sat, 27 Apr 2024 19:15:32 +1000 Subject: [PATCH 22/44] chore: List/Init/Lemmas upstreamed --- Std/Data/Fin/Lemmas.lean | 1 - Std/Data/List.lean | 1 - Std/Data/List/Init/Lemmas.lean | 39 ---------------------------------- Std/Data/List/Lemmas.lean | 1 - 4 files changed, 42 deletions(-) delete mode 100644 Std/Data/List/Init/Lemmas.lean diff --git a/Std/Data/Fin/Lemmas.lean b/Std/Data/Fin/Lemmas.lean index 244fd5ef3a..f0801cd02c 100644 --- a/Std/Data/Fin/Lemmas.lean +++ b/Std/Data/Fin/Lemmas.lean @@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Std.Data.Fin.Basic -import Std.Data.List.Init.Lemmas import Std.Data.Array.Init.Lemmas namespace Fin diff --git a/Std/Data/List.lean b/Std/Data/List.lean index 137c762db9..4165ebcfe7 100644 --- a/Std/Data/List.lean +++ b/Std/Data/List.lean @@ -1,7 +1,6 @@ import Std.Data.List.Basic import Std.Data.List.Count import Std.Data.List.Init.Attach -import Std.Data.List.Init.Lemmas import Std.Data.List.Lemmas import Std.Data.List.Pairwise import Std.Data.List.Perm diff --git a/Std/Data/List/Init/Lemmas.lean b/Std/Data/List/Init/Lemmas.lean deleted file mode 100644 index 8770f6c2ee..0000000000 --- a/Std/Data/List/Init/Lemmas.lean +++ /dev/null @@ -1,39 +0,0 @@ -/- -Copyright (c) 2014 Parikshit Khanna. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. -Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro --/ - -/-! # Bootstrapping properties of Lists -/ - -namespace List - -@[ext] theorem ext : ∀ {l₁ l₂ : List α}, (∀ n, l₁.get? n = l₂.get? n) → l₁ = l₂ - | [], [], _ => rfl - | a :: l₁, [], h => nomatch h 0 - | [], a' :: l₂, h => nomatch h 0 - | a :: l₁, a' :: l₂, h => by - have h0 : some a = some a' := h 0 - injection h0 with aa; simp only [aa, ext fun n => h (n+1)] - -theorem ext_get {l₁ l₂ : List α} (hl : length l₁ = length l₂) - (h : ∀ n h₁ h₂, get l₁ ⟨n, h₁⟩ = get l₂ ⟨n, h₂⟩) : l₁ = l₂ := - ext fun n => - if h₁ : n < length l₁ then by - rw [get?_eq_get, get?_eq_get, h n h₁ (by rwa [← hl])] - else by - have h₁ := Nat.le_of_not_lt h₁ - rw [get?_len_le h₁, get?_len_le]; rwa [← hl] - -@[simp] theorem get_map (f : α → β) {l n} : get (map f l) n = f (get l ⟨n, length_map l f ▸ n.2⟩) := - Option.some.inj <| by rw [← get?_eq_get, get?_map, get?_eq_get]; rfl - -/-! ### foldl / foldr -/ - -theorem foldl_map (f : β₁ → β₂) (g : α → β₂ → α) (l : List β₁) (init : α) : - (l.map f).foldl g init = l.foldl (fun x y => g x (f y)) init := by - induction l generalizing init <;> simp [*] - -theorem foldr_map (f : α₁ → α₂) (g : α₂ → β → β) (l : List α₁) (init : β) : - (l.map f).foldr g init = l.foldr (fun x y => g (f x) y) init := by - induction l generalizing init <;> simp [*] diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 545fd8f769..f25d9c911d 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro -/ import Std.Control.ForInStep.Lemmas -import Std.Data.List.Init.Lemmas import Std.Data.List.Basic import Std.Tactic.Init import Std.Tactic.Alias From f4a2ca438993e922a94adfe1a3804749f87d6679 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Sat, 27 Apr 2024 19:16:30 +1000 Subject: [PATCH 23/44] chore: Array.Init.Lemmas upstreamed --- Std/Data/Array.lean | 1 - Std/Data/Array/Init/Lemmas.lean | 47 --------------------------------- Std/Data/ByteArray.lean | 1 - Std/Data/Fin/Lemmas.lean | 1 - 4 files changed, 50 deletions(-) delete mode 100644 Std/Data/Array/Init/Lemmas.lean diff --git a/Std/Data/Array.lean b/Std/Data/Array.lean index 3291a67387..22f2f38305 100644 --- a/Std/Data/Array.lean +++ b/Std/Data/Array.lean @@ -1,5 +1,4 @@ import Std.Data.Array.Basic -import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas import Std.Data.Array.Match import Std.Data.Array.Merge diff --git a/Std/Data/Array/Init/Lemmas.lean b/Std/Data/Array/Init/Lemmas.lean deleted file mode 100644 index 443254f4d4..0000000000 --- a/Std/Data/Array/Init/Lemmas.lean +++ /dev/null @@ -1,47 +0,0 @@ -/- -Copyright (c) 2021 Mario Carneiro. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. - -Authors: Mario Carneiro, Gabriel Ebner --/ - -/-! # Bootstrapping properties of Arrays -/ - -namespace Array - -@[simp] theorem size_ofFn_go {n} (f : Fin n → α) (i acc) : - (ofFn.go f i acc).size = acc.size + (n - i) := by - if hin : i < n then - unfold ofFn.go - have : 1 + (n - (i + 1)) = n - i := - Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) - rw [dif_pos hin, size_ofFn_go f (i+1), size_push, Nat.add_assoc, this] - else - have : n - i = 0 := Nat.sub_eq_zero_of_le (Nat.le_of_not_lt hin) - unfold ofFn.go - simp [hin, this] -termination_by n - i - -@[simp] theorem size_ofFn (f : Fin n → α) : (ofFn f).size = n := by simp [ofFn] - -theorem getElem_ofFn_go (f : Fin n → α) (i) {acc k} - (hki : k < n) (hin : i ≤ n) (hi : i = acc.size) - (hacc : ∀ j, ∀ hj : j < acc.size, acc[j] = f ⟨j, Nat.lt_of_lt_of_le hj (hi ▸ hin)⟩) : - haveI : acc.size + (n - acc.size) = n := Nat.add_sub_cancel' (hi ▸ hin) - (ofFn.go f i acc)[k]'(by simp [*]) = f ⟨k, hki⟩ := by - unfold ofFn.go - if hin : i < n then - have : 1 + (n - (i + 1)) = n - i := - Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) - simp only [dif_pos hin] - rw [getElem_ofFn_go f (i+1) _ hin (by simp [*]) (fun j hj => ?hacc)] - cases (Nat.lt_or_eq_of_le <| Nat.le_of_lt_succ (by simpa using hj)) with - | inl hj => simp [get_push, hj, hacc j hj] - | inr hj => simp [get_push, *] - else - simp [hin, hacc k (Nat.lt_of_lt_of_le hki (Nat.le_of_not_lt (hi ▸ hin)))] -termination_by n - i - -@[simp] theorem getElem_ofFn (f : Fin n → α) (i : Nat) (h) : - (ofFn f)[i] = f ⟨i, size_ofFn f ▸ h⟩ := - getElem_ofFn_go _ _ _ (by simp) (by simp) nofun diff --git a/Std/Data/ByteArray.lean b/Std/Data/ByteArray.lean index dcee0d4948..1a6d6b5df2 100644 --- a/Std/Data/ByteArray.lean +++ b/Std/Data/ByteArray.lean @@ -3,7 +3,6 @@ Copyright (c) 2023 François G. Dorais. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: François G. Dorais -/ -import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas namespace ByteArray diff --git a/Std/Data/Fin/Lemmas.lean b/Std/Data/Fin/Lemmas.lean index f0801cd02c..e2ecd09bbc 100644 --- a/Std/Data/Fin/Lemmas.lean +++ b/Std/Data/Fin/Lemmas.lean @@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Std.Data.Fin.Basic -import Std.Data.Array.Init.Lemmas namespace Fin From 37cffa232ddb099a17ee707cac8cf8db1203128c Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Sat, 27 Apr 2024 19:46:28 +1000 Subject: [PATCH 24/44] comment out bad tests --- test/congr.lean | 27 ++++++++++++++++----------- 1 file changed, 16 insertions(+), 11 deletions(-) diff --git a/test/congr.lean b/test/congr.lean index 517c216efd..1f2737bc4f 100644 --- a/test/congr.lean +++ b/test/congr.lean @@ -33,19 +33,24 @@ example {α β : Type _} {F : _ → β} {f g : { f : α → β // f = f }} guard_target = type_of% h exact h -private opaque List.sum : List Nat → Nat +-- Adaptation note: the next two examples have always failed if `List.ext` was in scope, +-- but until nightly-2024-04-24 (when `List.ext` was upstreamed), it wasn't in scope. +-- For now these are commented out, +-- but if anyone would like to replace these tests that would be great! -example {ls : List Nat} : - (ls.map fun x => (ls.map fun y => 1 + y).sum + 1) = - (ls.map fun x => (ls.map fun y => Nat.succ y).sum + 1) := by - rcongr (_x y) - guard_target =ₐ 1 + y = y.succ - rw [Nat.add_comm] +-- private opaque List.sum : List Nat → Nat -example {ls : List Nat} {f g : Nat → Nat} {h : ∀ x, f x = g x} : - (ls.map fun x => f x + 3) = ls.map fun x => g x + 3 := by - rcongr x - exact h x +-- example {ls : List Nat} : +-- (ls.map fun x => (ls.map fun y => 1 + y).sum + 1) = +-- (ls.map fun x => (ls.map fun y => Nat.succ y).sum + 1) := by +-- rcongr (_x y) +-- guard_target =ₐ 1 + y = y.succ +-- rw [Nat.add_comm] + +-- example {ls : List Nat} {f g : Nat → Nat} {h : ∀ x, f x = g x} : +-- (ls.map fun x => f x + 3) = ls.map fun x => g x + 3 := by +-- rcongr x +-- exact h x -- succeed when either `ext` or `congr` can close the goal example : () = () := by rcongr From f8e0ffe2039656b9e4f5f8c7d95f0e65b318e52e Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Sun, 28 Apr 2024 09:05:08 +0000 Subject: [PATCH 25/44] chore: bump to nightly-2024-04-28 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index 3755ac0777..80e4ae904c 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-25 +leanprover/lean4:nightly-2024-04-28 From fc4998d125382c49dc77f51d30525a066e0c1f56 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Mon, 29 Apr 2024 18:08:21 +1000 Subject: [PATCH 26/44] bump toolchain --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index 80e4ae904c..489b9b464c 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-28 +leanprover/lean4:nightly-2024-04-29 From 20a48c9c02e135138d8281c50f772269d78eb1fc Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Mon, 29 Apr 2024 18:10:36 +1000 Subject: [PATCH 27/44] heartbeats moved --- Std/Util/Cache.lean | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Std/Util/Cache.lean b/Std/Util/Cache.lean index 1aa9979b1f..c846d4d52e 100644 --- a/Std/Util/Cache.lean +++ b/Std/Util/Cache.lean @@ -62,8 +62,8 @@ def Cache.get [Monad m] [MonadEnv m] [MonadLog m] [MonadOptions m] [MonadLiftT B -- Default heartbeats to a reasonable value. -- otherwise exact? times out on mathlib -- TODO: add customization option - let options := Core.maxHeartbeats.set options <| - options.get? Core.maxHeartbeats.name |>.getD 1000000 + let options := maxHeartbeats.set options <| + options.get? maxHeartbeats.name |>.getD 1000000 let res ← EIO.asTask <| init {} |>.run' {} { options, fileName, fileMap } |>.run' { env } cache.set (m := BaseIO) (.inr res) From 07f87dc25fdfc0842a696a9c675ede9a8d6fbaf7 Mon Sep 17 00:00:00 2001 From: "Yury G. Kudryashov" Date: Tue, 30 Apr 2024 01:39:44 -0500 Subject: [PATCH 28/44] feat(Nat/Gcd): drop an unneeded assumption (#767) Lemma `Nat.exists_coprime` does not need to assume `gcd m n > 0`. --- Std/Data/Nat/Gcd.lean | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/Std/Data/Nat/Gcd.lean b/Std/Data/Nat/Gcd.lean index 27842c51ad..a3e265d6f0 100644 --- a/Std/Data/Nat/Gcd.lean +++ b/Std/Data/Nat/Gcd.lean @@ -258,15 +258,21 @@ theorem not_coprime_of_dvd_of_dvd (dgt1 : 1 < d) (Hm : d ∣ m) (Hn : d ∣ n) : fun co => Nat.not_le_of_gt dgt1 <| Nat.le_of_dvd Nat.zero_lt_one <| by rw [← co.gcd_eq_one]; exact dvd_gcd Hm Hn -theorem exists_coprime (H : 0 < gcd m n) : - ∃ m' n', Coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n := - ⟨_, _, coprime_div_gcd_div_gcd H, - (Nat.div_mul_cancel (gcd_dvd_left m n)).symm, - (Nat.div_mul_cancel (gcd_dvd_right m n)).symm⟩ +theorem exists_coprime (m n : Nat) : + ∃ m' n', Coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n := by + cases eq_zero_or_pos (gcd m n) with + | inl h0 => + rw [gcd_eq_zero_iff] at h0 + refine ⟨1, 1, gcd_one_left 1, ?_⟩ + simp [h0] + | inr hpos => + exact ⟨_, _, coprime_div_gcd_div_gcd hpos, + (Nat.div_mul_cancel (gcd_dvd_left m n)).symm, + (Nat.div_mul_cancel (gcd_dvd_right m n)).symm⟩ theorem exists_coprime' (H : 0 < gcd m n) : ∃ g m' n', 0 < g ∧ Coprime m' n' ∧ m = m' * g ∧ n = n' * g := - let ⟨m', n', h⟩ := exists_coprime H; ⟨_, m', n', H, h⟩ + let ⟨m', n', h⟩ := exists_coprime m n; ⟨_, m', n', H, h⟩ theorem Coprime.mul (H1 : Coprime m k) (H2 : Coprime n k) : Coprime (m * n) k := (H1.gcd_mul_left_cancel n).trans H2 From 93ef8a70e36e5cd5c9682e270752fb494dbd5ffa Mon Sep 17 00:00:00 2001 From: "Yury G. Kudryashov" Date: Tue, 30 Apr 2024 01:41:34 -0500 Subject: [PATCH 29/44] feat: add `List.mem_merge` (#768) --- Std/Data/List/Lemmas.lean | 41 +++++++++++++-------------------------- 1 file changed, 13 insertions(+), 28 deletions(-) diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 514ed09dbc..63eb7e3a69 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -2743,34 +2743,19 @@ theorem cons_merge_cons (s : α → α → Bool) (a b l r) : · simp_arith [length_merge s l (b::r)] · simp_arith [length_merge s (a::l) r] -theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r := by +@[simp] +theorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r := by match l, r with - | l, [] => simp [h] + | l, [] => simp + | [], l => simp | a::l, b::r => - match mem_cons.1 h with - | .inl rfl => - rw [cons_merge_cons] - split - · exact mem_cons_self .. - · apply mem_cons_of_mem; exact mem_merge_left s h - | .inr h' => - rw [cons_merge_cons] - split - · apply mem_cons_of_mem; exact mem_merge_left s h' - · apply mem_cons_of_mem; exact mem_merge_left s h + rw [cons_merge_cons] + split + · simp [mem_merge (l := l) (r := b::r), or_assoc] + · simp [mem_merge (l := a::l) (r := r), or_assoc, or_left_comm] -theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r := by - match l, r with - | [], r => simp [h] - | a::l, b::r => - match mem_cons.1 h with - | .inl rfl => - rw [cons_merge_cons] - split - · apply mem_cons_of_mem; exact mem_merge_right s h - · exact mem_cons_self .. - | .inr h' => - rw [cons_merge_cons] - split - · apply mem_cons_of_mem; exact mem_merge_right s h - · apply mem_cons_of_mem; exact mem_merge_right s h' +theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r := + mem_merge.2 <| .inl h + +theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r := + mem_merge.2 <| .inr h From e1ed6c8bb71b2f97e298b1d90b7045403ee29884 Mon Sep 17 00:00:00 2001 From: "Yury G. Kudryashov" Date: Tue, 30 Apr 2024 01:42:16 -0500 Subject: [PATCH 30/44] fix: don't cast to `Option` in `List.get_zero` (#758) Also rename to `List.get_mk_zero` to leave room for a version about `(0 : Fin l.length)`. --- Std/Data/List/Lemmas.lean | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 63eb7e3a69..62a2c24e81 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -797,7 +797,7 @@ theorem get_of_eq {l l' : List α} (h : l = l') (i : Fin l.length) : @[simp] theorem get_singleton (a : α) : (n : Fin 1) → get [a] n = a | ⟨0, _⟩ => rfl -theorem get_zero : ∀ {l : List α} (h : 0 < l.length), l.get ⟨0, h⟩ = l.head? +theorem get_mk_zero : ∀ {l : List α} (h : 0 < l.length), l.get ⟨0, h⟩ = l.head (length_pos.mp h) | _::_, _ => rfl theorem get_append_right_aux {l₁ l₂ : List α} {n : Nat} From e9ae52fdd30e0829e79bffbac9f97e6d50e3e5d3 Mon Sep 17 00:00:00 2001 From: Mario Carneiro Date: Tue, 30 Apr 2024 02:57:49 -0400 Subject: [PATCH 31/44] feat: more RBSet lemmas (#738) --- Std/Data/RBMap/Lemmas.lean | 81 +++++++++++++++++++++++++++++++------- 1 file changed, 67 insertions(+), 14 deletions(-) diff --git a/Std/Data/RBMap/Lemmas.lean b/Std/Data/RBMap/Lemmas.lean index 43224459f1..dc302ceeb3 100644 --- a/Std/Data/RBMap/Lemmas.lean +++ b/Std/Data/RBMap/Lemmas.lean @@ -475,6 +475,27 @@ theorem ordered_iff {t : RBNode α} : theorem Ordered.toList_sorted {t : RBNode α} : t.Ordered cmp → t.toList.Pairwise (cmpLT cmp) := ordered_iff.1 +theorem min?_mem {t : RBNode α} (h : t.min? = some a) : a ∈ t := by + rw [min?_eq_toList_head?] at h + rw [← mem_toList] + revert h; cases toList t <;> rintro ⟨⟩; constructor + +theorem Ordered.min?_le {t : RBNode α} [TransCmp cmp] (ht : t.Ordered cmp) (h : t.min? = some a) + (x) (hx : x ∈ t) : cmp a x ≠ .gt := by + rw [min?_eq_toList_head?] at h + rw [← mem_toList] at hx + have := ht.toList_sorted + revert h hx this; cases toList t <;> rintro ⟨⟩ (_ | ⟨_, hx⟩) (_ | ⟨h1,h2⟩) + · rw [OrientedCmp.cmp_refl (cmp := cmp)]; decide + · rw [(h1 _ hx).1]; decide + +theorem max?_mem {t : RBNode α} (h : t.max? = some a) : a ∈ t := by + simpa using min?_mem ((min?_reverse _).trans h) + +theorem Ordered.le_max? {t : RBNode α} [TransCmp cmp] (ht : t.Ordered cmp) (h : t.max? = some a) + (x) (hx : x ∈ t) : cmp x a ≠ .gt := + ht.reverse.min?_le ((min?_reverse _).trans h) _ (by simpa using hx) + @[simp] theorem setBlack_toList {t : RBNode α} : t.setBlack.toList = t.toList := by cases t <;> simp [setBlack] @@ -755,6 +776,8 @@ theorem mem_insert [@TransCmp α cmp] {t : RBNode α} (ht : Balanced t c n) (ht end RBNode +open RBNode (IsCut IsStrictCut) + namespace RBSet @[simp] theorem val_toList {t : RBSet α cmp} : t.1.toList = t.toList := rfl @@ -785,6 +808,9 @@ theorem foldr_eq_foldr_toList {t : RBSet α cmp} : t.foldr f init = t.toList.fol theorem foldlM_eq_foldlM_toList [Monad m] [LawfulMonad m] {t : RBSet α cmp} : t.foldlM (m := m) f init = t.toList.foldlM f init := RBNode.foldlM_eq_foldlM_toList +theorem forM_eq_forM_toList [Monad m] [LawfulMonad m] {t : RBSet α cmp} : + t.forM (m := m) f = t.toList.forM f := RBNode.forM_eq_forM_toList + theorem forIn_eq_forIn_toList [Monad m] [LawfulMonad m] {t : RBSet α cmp} : forIn (m := m) t init f = forIn t.toList init f := RBNode.forIn_eq_forIn_toList @@ -793,28 +819,46 @@ theorem toStream_eq {t : RBSet α cmp} : toStream t = t.1.toStream .nil := rfl @[simp] theorem toStream_toList {t : RBSet α cmp} : (toStream t).toList = t.toList := by simp [toStream_eq] +theorem isEmpty_iff_toList_eq_nil {t : RBSet α cmp} : + t.isEmpty ↔ t.toList = [] := by obtain ⟨⟨⟩, _⟩ := t <;> simp [toList, isEmpty] + theorem toList_sorted {t : RBSet α cmp} : t.toList.Pairwise (RBNode.cmpLT cmp) := t.2.out.1.toList_sorted -theorem find?_some_eq_eq {t : RBSet α cmp} : t.find? x = some y → cmp x y = .eq := +theorem findP?_some_eq_eq {t : RBSet α cmp} : t.findP? cut = some y → cut y = .eq := RBNode.find?_some_eq_eq -theorem find?_some_mem_toList {t : RBSet α cmp} (h : t.find? x = some y) : y ∈ toList t := +theorem find?_some_eq_eq {t : RBSet α cmp} : t.find? x = some y → cmp x y = .eq := + findP?_some_eq_eq + +theorem findP?_some_mem_toList {t : RBSet α cmp} (h : t.findP? cut = some y) : y ∈ toList t := mem_toList.2 <| RBNode.find?_some_mem h -theorem find?_some_mem {t : RBSet α cmp} (h : t.find? x = some y) : x ∈ t := +theorem find?_some_mem_toList {t : RBSet α cmp} (h : t.find? x = some y) : y ∈ toList t := + findP?_some_mem_toList h + +theorem findP?_some_memP {t : RBSet α cmp} (h : t.findP? cut = some y) : t.MemP cut := RBNode.find?_some_memP h +theorem find?_some_mem {t : RBSet α cmp} (h : t.find? x = some y) : x ∈ t := + findP?_some_memP h + theorem mem_toList_unique [@TransCmp α cmp] {t : RBSet α cmp} (hx : x ∈ toList t) (hy : y ∈ toList t) (e : cmp x y = .eq) : x = y := t.2.out.1.unique (mem_toList.1 hx) (mem_toList.1 hy) e -theorem find?_some [@TransCmp α cmp] {t : RBSet α cmp} : - t.find? x = some y ↔ y ∈ toList t ∧ cmp x y = .eq := +theorem findP?_some [@TransCmp α cmp] [IsStrictCut cmp cut] {t : RBSet α cmp} : + t.findP? cut = some y ↔ y ∈ toList t ∧ cut y = .eq := t.2.out.1.find?_some.trans <| by simp [mem_toList] +theorem find?_some [@TransCmp α cmp] {t : RBSet α cmp} : + t.find? x = some y ↔ y ∈ toList t ∧ cmp x y = .eq := findP?_some + +theorem memP_iff_findP? [@TransCmp α cmp] [IsCut cmp cut] {t : RBSet α cmp} : + MemP cut t ↔ ∃ y, t.findP? cut = some y := t.2.out.1.memP_iff_find? + theorem mem_iff_find? [@TransCmp α cmp] {t : RBSet α cmp} : - x ∈ t ↔ ∃ y, t.find? x = some y := t.2.out.1.memP_iff_find? + x ∈ t ↔ ∃ y, t.find? x = some y := memP_iff_findP? @[simp] theorem contains_iff [@TransCmp α cmp] {t : RBSet α cmp} : t.contains x ↔ x ∈ t := Option.isSome_iff_exists.trans mem_iff_find?.symm @@ -863,20 +907,29 @@ theorem mem_insert [@TransCmp α cmp] {t : RBSet α cmp} : theorem find?_congr [@TransCmp α cmp] (t : RBSet α cmp) (h : cmp v₁ v₂ = .eq) : t.find? v₁ = t.find? v₂ := by simp [find?, TransCmp.cmp_congr_left' h] +theorem findP?_insert_of_eq [@TransCmp α cmp] [IsStrictCut cmp cut] + (t : RBSet α cmp) (h : cut v = .eq) : (t.insert v).findP? cut = some v := + findP?_some.2 ⟨mem_toList_insert_self .., h⟩ + theorem find?_insert_of_eq [@TransCmp α cmp] (t : RBSet α cmp) (h : cmp v' v = .eq) : - (t.insert v).find? v' = some v := - find?_some.2 ⟨mem_toList_insert_self .., h⟩ + (t.insert v).find? v' = some v := findP?_insert_of_eq t h -theorem find?_insert_of_ne [@TransCmp α cmp] (t : RBSet α cmp) (h : cmp v' v ≠ .eq) : - (t.insert v).find? v' = t.find? v' := by +theorem findP?_insert_of_ne [@TransCmp α cmp] [IsStrictCut cmp cut] + (t : RBSet α cmp) (h : cut v ≠ .eq) : (t.insert v).findP? cut = t.findP? cut := by refine Option.ext fun u => - find?_some.trans <| .trans (and_congr_left fun h' => ?_) find?_some.symm + findP?_some.trans <| .trans (and_congr_left fun h' => ?_) findP?_some.symm rw [mem_toList_insert, or_iff_left, and_iff_left] - · exact mt (fun h => by rwa [TransCmp.cmp_congr_right (find?_some_eq_eq h)]) h + · exact mt (fun h => by rwa [IsCut.congr (cut := cut) (find?_some_eq_eq h)]) h · rintro rfl; contradiction +theorem find?_insert_of_ne [@TransCmp α cmp] (t : RBSet α cmp) (h : cmp v' v ≠ .eq) : + (t.insert v).find? v' = t.find? v' := findP?_insert_of_ne t h + +theorem findP?_insert [@TransCmp α cmp] (t : RBSet α cmp) (v cut) [IsStrictCut cmp cut] : + (t.insert v).findP? cut = if cut v = .eq then some v else t.findP? cut := by + split <;> [exact findP?_insert_of_eq t ‹_›; exact findP?_insert_of_ne t ‹_›] + theorem find?_insert [@TransCmp α cmp] (t : RBSet α cmp) (v v') : - (t.insert v).find? v' = if cmp v' v = .eq then some v else t.find? v' := by - split <;> [exact find?_insert_of_eq t ‹_›; exact find?_insert_of_ne t ‹_›] + (t.insert v).find? v' = if cmp v' v = .eq then some v else t.find? v' := findP?_insert .. end RBSet From 1a6710eae717373a34bc0f1d5a372ae126168b94 Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Tue, 30 Apr 2024 09:05:18 +0000 Subject: [PATCH 32/44] chore: bump to nightly-2024-04-30 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index 489b9b464c..df30ca3418 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-29 +leanprover/lean4:nightly-2024-04-30 From f58165d3d6e0b048d89e56944e98d9054b223d9b Mon Sep 17 00:00:00 2001 From: "Yury G. Kudryashov" Date: Tue, 30 Apr 2024 18:12:22 -0500 Subject: [PATCH 33/44] chore: add `@[simp]` attrs (#769) * Update * Moved to another PR * Change 1 assumption * Update Std/Data/List/Count.lean --- Std/Data/List/Count.lean | 5 ++-- Std/Data/List/Lemmas.lean | 54 +++++++++++++++++++++++++------------ Std/Data/List/Pairwise.lean | 3 ++- 3 files changed, 42 insertions(+), 20 deletions(-) diff --git a/Std/Data/List/Count.lean b/Std/Data/List/Count.lean index 0087e86007..c821c20b1c 100644 --- a/Std/Data/List/Count.lean +++ b/Std/Data/List/Count.lean @@ -144,8 +144,8 @@ theorem count_cons (a b : α) (l : List α) : @[simp] theorem count_cons_of_ne (h : a ≠ b) (l : List α) : count a (b :: l) = count a l := by simp [count_cons, h] -theorem count_tail : ∀ (l : List α) (a : α) (h : 0 < l.length), - l.tail.count a = l.count a - if a = get l ⟨0, h⟩ then 1 else 0 +theorem count_tail : ∀ (l : List α) (a : α) (h : l ≠ []), + l.tail.count a = l.count a - if a = l.head h then 1 else 0 | head :: tail, a, h => by simp [count_cons] theorem count_le_length (a : α) (l : List α) : count a l ≤ l.length := countP_le_length _ @@ -164,6 +164,7 @@ theorem count_singleton' (a b : α) : count a [b] = if a = b then 1 else 0 := by theorem count_concat (a : α) (l : List α) : count a (concat l a) = succ (count a l) := by simp +@[simp] theorem count_pos_iff_mem {a : α} {l : List α} : 0 < count a l ↔ a ∈ l := by simp only [count, countP_pos, beq_iff_eq, exists_eq_right] diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 62a2c24e81..d43b92be18 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -20,6 +20,7 @@ open Nat theorem cons_ne_nil (a : α) (l : List α) : a :: l ≠ [] := nofun +@[simp] theorem cons_ne_self (a : α) (l : List α) : a :: l ≠ l := mt (congrArg length) (Nat.succ_ne_self _) theorem head_eq_of_cons_eq (H : h₁ :: t₁ = h₂ :: t₂) : h₁ = h₂ := (cons.inj H).1 @@ -59,6 +60,9 @@ theorem exists_cons_of_length_succ : ∀ {l : List α}, l.length = n + 1 → ∃ h t, l = h :: t | _::_, _ => ⟨_, _, rfl⟩ +attribute [simp] length_eq_zero -- TODO: suggest to core + +@[simp] theorem length_pos {l : List α} : 0 < length l ↔ l ≠ [] := Nat.pos_iff_ne_zero.trans (not_congr length_eq_zero) @@ -536,6 +540,7 @@ theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂ := theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂ := s.trans <| sublist_append_right .. +@[simp] theorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂ := ⟨fun | .cons _ s => sublist_of_cons_sublist s | .cons₂ _ s => s, .cons₂ _⟩ @@ -851,13 +856,8 @@ theorem length_take_le' (n) (l : List α) : length (take n l) ≤ l.length := theorem length_take_of_le (h : n ≤ length l) : length (take n l) = n := by simp [Nat.min_eq_left h] -theorem take_all_of_le : ∀ {n} {l : List α}, length l ≤ n → take n l = l - | 0, [], _ => rfl - | 0, a :: l, h => absurd h (Nat.not_le_of_gt (zero_lt_succ _)) - | n + 1, [], _ => rfl - | n + 1, a :: l, h => by - show a :: take n l = a :: l - rw [take_all_of_le (le_of_succ_le_succ h)] +theorem take_all_of_le {n} {l : List α} (h : length l ≤ n) : take n l = l := + take_length_le h @[simp] theorem take_left : ∀ l₁ l₂ : List α, take (length l₁) (l₁ ++ l₂) = l₁ @@ -955,6 +955,7 @@ theorem take_succ {l : List α} {n : Nat} : l.take (n + 1) = l.take n ++ (l.get? theorem take_eq_nil_iff {l : List α} {k : Nat} : l.take k = [] ↔ l = [] ∨ k = 0 := by cases l <;> cases k <;> simp [Nat.succ_ne_zero] +@[simp] theorem take_eq_take : ∀ {l : List α} {m n : Nat}, l.take m = l.take n ↔ min m l.length = min n l.length | [], m, n => by simp [Nat.min_zero] @@ -969,10 +970,7 @@ theorem take_add (l : List α) (m n : Nat) : l.take (m + n) = l.take m ++ (l.dro assumption rw [take_append_eq_append_take, take_all_of_le, append_right_inj] · simp only [take_eq_take, length_take, length_drop] - generalize l.length = k; by_cases h : m ≤ k - · rw [Nat.min_eq_left h, Nat.add_sub_cancel_left] - · simp at h - simp [Nat.sub_eq_zero_of_le (Nat.le_of_lt h), Nat.min_zero] + omega apply Nat.le_trans (m := m) · apply length_take_le · apply Nat.le_add_right @@ -1007,6 +1005,7 @@ theorem map_eq_append_split {f : α → β} {l : List α} {s₁ s₂ : List β} /-! ### drop -/ +@[simp] theorem drop_eq_nil_iff_le {l : List α} {k : Nat} : l.drop k = [] ↔ l.length ≤ k := by refine' ⟨fun h => _, drop_eq_nil_of_le⟩ induction k generalizing l with @@ -1053,6 +1052,7 @@ theorem drop_append_of_le_length {l₁ l₂ : List α} {n : Nat} (h : n ≤ l₁ /-- Dropping the elements up to `l₁.length + i` in `l₁ + l₂` is the same as dropping the elements up to `i` in `l₂`. -/ +@[simp] theorem drop_append {l₁ l₂ : List α} (i : Nat) : drop (l₁.length + i) (l₁ ++ l₂) = drop i l₂ := by rw [drop_append_eq_append_drop, drop_eq_nil_of_le] <;> simp [Nat.add_sub_cancel_left, Nat.le_add_right] @@ -1088,6 +1088,7 @@ theorem get_drop' (L : List α) {i j} : exact Nat.add_lt_of_lt_sub (length_drop i L ▸ j.2)⟩ := by rw [get_drop] +@[simp] theorem get?_drop (L : List α) (i j : Nat) : get? (L.drop i) j = get? L (i + j) := by ext simp only [get?_eq_some, get_drop', Option.mem_def] @@ -1146,6 +1147,7 @@ theorem reverse_take {α} {xs : List α} (n : Nat) (h : n ≤ xs.length) : rw [length_append, length_reverse] rfl +@[simp] theorem get_cons_drop : ∀ (l : List α) i, get l i :: drop (i + 1) l = drop i l | _::_, ⟨0, _⟩ => rfl | _::_, ⟨i+1, _⟩ => get_cons_drop _ ⟨i, _⟩ @@ -1258,12 +1260,14 @@ theorem exists_of_set' {l : List α} (h : n < l.length) : ∃ l₁ l₂, l = l₁ ++ l.get ⟨n, h⟩ :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂ := have ⟨_, _, _, h₁, h₂, h₃⟩ := exists_of_set h; ⟨_, _, get_of_append h₁ h₂ ▸ h₁, h₂, h₃⟩ +@[simp] theorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n := by simp only [set_eq_modifyNth, get?_modifyNth_eq] theorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) : (set l n a).get? n = some a := by rw [get?_set_eq, get?_eq_get h]; rfl +@[simp] theorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n := by simp only [set_eq_modifyNth, get?_modifyNth_ne _ _ h] @@ -1290,6 +1294,7 @@ theorem set_comm (a b : α) : ∀ {n m : Nat} (l : List α), n ≠ m → | n+1, m+1, x :: t, h => congrArg _ <| set_comm a b t fun h' => h <| Nat.succ_inj'.mpr h' +@[simp] theorem set_set (a b : α) : ∀ (l : List α) (n : Nat), (l.set n a).set n b = l.set n b | [], _ => by simp | _ :: _, 0 => by simp [set] @@ -1480,14 +1485,14 @@ theorem eraseP_sublist (l : List α) : l.eraseP p <+ l := by theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l := (eraseP_sublist l).subset -theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p +protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p | .slnil => Sublist.refl _ | .cons a s => by by_cases h : p a <;> simp [h] exacts [s.eraseP.trans (eraseP_sublist _), s.eraseP.cons _] | .cons₂ a s => by by_cases h : p a <;> simp [h] - exacts [s, s.eraseP.cons₂ _] + exacts [s, s.eraseP] theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l := (eraseP_subset _ ·) @@ -1647,9 +1652,11 @@ theorem filterMap_append {α β : Type _} (l l' : List α) (f : α → Option β filterMap f (l ++ l') = filterMap f l ++ filterMap f l' := by induction l <;> simp; split <;> simp [*] +@[simp] theorem filterMap_eq_map (f : α → β) : filterMap (some ∘ f) = map f := by funext l; induction l <;> simp [*] +@[simp] theorem filterMap_eq_filter (p : α → Bool) : filterMap (Option.guard (p ·)) = filter p := by funext l @@ -1667,6 +1674,7 @@ theorem map_filterMap (f : α → Option β) (g : β → γ) (l : List α) : map g (filterMap f l) = filterMap (fun x => (f x).map g) l := by simp only [← filterMap_eq_map, filterMap_filterMap, Option.map_eq_bind] +@[simp] theorem filterMap_map (f : α → β) (g : β → Option γ) (l : List α) : filterMap g (map f l) = filterMap (g ∘ f) l := by rw [← filterMap_eq_map, filterMap_filterMap]; rfl @@ -1707,7 +1715,8 @@ theorem length_filterMap_le (f : α → Option β) (l : List α) : rw [← length_map _ some, map_filterMap_some_eq_filter_map_is_some, ← length_map _ f] apply length_filter_le -theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) : filterMap f l₁ <+ filterMap f l₂ := by +protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) : + filterMap f l₁ <+ filterMap f l₂ := by induction s <;> simp <;> split <;> simp [*, cons, cons₂] theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂ := by @@ -1720,12 +1729,14 @@ theorem map_filter (f : β → α) (l : List β) : filter p (map f l) = map f (f | [] => rfl | a :: l => by by_cases hp : p a <;> by_cases hq : q a <;> simp [hp, hq, filter_filter _ l] +@[simp] theorem filter_eq_self {l} : filter p l = l ↔ ∀ a ∈ l, p a := by induction l with simp | cons a l ih => cases h : p a <;> simp [*] intro h; exact Nat.lt_irrefl _ (h ▸ length_filter_le p l) +@[simp] theorem filter_length_eq_length {l} : (filter p l).length = l.length ↔ ∀ a ∈ l, p a := Iff.trans ⟨l.filter_sublist.eq_of_length, congrArg length⟩ filter_eq_self @@ -2037,25 +2048,27 @@ theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem /-! ### product -/ /-- List.prod satisfies a specification of cartesian product on lists. -/ +@[simp] theorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} : (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys := by - simp only [product, and_imp, exists_prop, mem_map, Prod.mk.injEq, + simp only [product, and_imp, mem_map, Prod.mk.injEq, exists_eq_right_right, mem_bind, iff_self] /-! ### leftpad -/ /-- The length of the List returned by `List.leftpad n a l` is equal to the larger of `n` and `l.length` -/ +@[simp] theorem leftpad_length (n : Nat) (a : α) (l : List α) : (leftpad n a l).length = max n l.length := by simp only [leftpad, length_append, length_replicate, Nat.sub_add_eq_max] theorem leftpad_prefix (n : Nat) (a : α) (l : List α) : - IsPrefix (replicate (n - length l) a) (leftpad n a l) := by + replicate (n - length l) a <+: leftpad n a l := by simp only [IsPrefix, leftpad] exact Exists.intro l rfl -theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : IsSuffix l (leftpad n a l) := by +theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l) := by simp only [IsSuffix, leftpad] exact Exists.intro (replicate (n - length l) a) rfl @@ -2304,6 +2317,7 @@ theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂ := exists_congr fun r => by rw [append_assoc, append_right_inj] +@[simp] theorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂ := prefix_append_right_inj [a] @@ -2431,6 +2445,7 @@ theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * fun ⟨i, h, e⟩ => e ▸ ⟨Nat.le_add_right .., Nat.add_lt_add_left h _⟩, fun ⟨h₁, h₂⟩ => ⟨m - s, Nat.sub_lt_left_of_lt_add h₁ h₂, (Nat.add_sub_cancel' h₁).symm⟩⟩ +@[simp] theorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step | _, 0, _ => rfl | s, n + 1, step => by simp [range', map_add_range' _ (s + step) n step, Nat.add_assoc] @@ -2509,9 +2524,11 @@ theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n) := @[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0 := by rw [← length_eq_zero, length_range] +@[simp] theorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n := by simp only [range_eq_range', range'_sublist_right] +@[simp] theorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n := by simp only [range_eq_range', range'_subset_right, lt_succ_self] @@ -2541,6 +2558,7 @@ theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n) @[simp] theorem length_iota (n : Nat) : length (iota n) = n := by simp [iota_eq_reverse_range'] +@[simp] theorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n := by simp [iota_eq_reverse_range', Nat.add_comm, Nat.lt_succ] @@ -2660,11 +2678,13 @@ theorem findIdxs_cons : apply findIdxs_cons_aux @[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = [] := rfl + theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y = bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1) := by simp [indexesOf, findIdxs_cons] @[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0 := rfl + theorem indexOf_cons [BEq α] : (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1 := by dsimp [indexOf] diff --git a/Std/Data/List/Pairwise.lean b/Std/Data/List/Pairwise.lean index 2a1b2b4854..a775e545f1 100644 --- a/Std/Data/List/Pairwise.lean +++ b/Std/Data/List/Pairwise.lean @@ -148,7 +148,8 @@ theorem Pairwise.filter_map {S : β → β → Prop} (f : α → Option β) theorem pairwise_filter (p : α → Prop) [DecidablePred p] {l : List α} : Pairwise R (filter p l) ↔ Pairwise (fun x y => p x → p y → R x y) l := by - simp [← filterMap_eq_filter, pairwise_filterMap] + rw [← filterMap_eq_filter, pairwise_filterMap] + simp theorem Pairwise.filter (p : α → Bool) : Pairwise R l → Pairwise R (filter p l) := Pairwise.sublist (filter_sublist _) From c97808968be8de9d3fadea498637e25cd9cfd963 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 1 May 2024 09:16:55 +1000 Subject: [PATCH 34/44] fix --- Std/Data/Array/Merge.lean | 1 + 1 file changed, 1 insertion(+) diff --git a/Std/Data/Array/Merge.lean b/Std/Data/Array/Merge.lean index 2c71ea6eaf..250ab760e1 100644 --- a/Std/Data/Array/Merge.lean +++ b/Std/Data/Array/Merge.lean @@ -3,6 +3,7 @@ Copyright (c) 2022 Jannis Limperg. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jannis Limperg -/ +import Std.Tactic.Alias namespace Array From 1e4bd54ed2c317a411993a01b8a115fffc829e78 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 1 May 2024 09:19:01 +1000 Subject: [PATCH 35/44] chore: adaptations for nightly-2024-04-30 --- Std/Data/Array.lean | 1 - Std/Data/Array/Init/Lemmas.lean | 47 --------------------------------- Std/Data/Array/Lemmas.lean | 1 - Std/Data/ByteArray.lean | 1 - Std/Data/Fin/Lemmas.lean | 2 -- Std/Data/List.lean | 1 - Std/Data/List/Init/Lemmas.lean | 39 --------------------------- Std/Data/List/Lemmas.lean | 1 - Std/Tactic/PrintPrefix.lean | 19 +++++-------- Std/Util/Cache.lean | 4 +-- lean-toolchain | 2 +- test/congr.lean | 27 +++++++++++-------- 12 files changed, 26 insertions(+), 119 deletions(-) delete mode 100644 Std/Data/Array/Init/Lemmas.lean delete mode 100644 Std/Data/List/Init/Lemmas.lean diff --git a/Std/Data/Array.lean b/Std/Data/Array.lean index 3291a67387..22f2f38305 100644 --- a/Std/Data/Array.lean +++ b/Std/Data/Array.lean @@ -1,5 +1,4 @@ import Std.Data.Array.Basic -import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas import Std.Data.Array.Match import Std.Data.Array.Merge diff --git a/Std/Data/Array/Init/Lemmas.lean b/Std/Data/Array/Init/Lemmas.lean deleted file mode 100644 index 443254f4d4..0000000000 --- a/Std/Data/Array/Init/Lemmas.lean +++ /dev/null @@ -1,47 +0,0 @@ -/- -Copyright (c) 2021 Mario Carneiro. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. - -Authors: Mario Carneiro, Gabriel Ebner --/ - -/-! # Bootstrapping properties of Arrays -/ - -namespace Array - -@[simp] theorem size_ofFn_go {n} (f : Fin n → α) (i acc) : - (ofFn.go f i acc).size = acc.size + (n - i) := by - if hin : i < n then - unfold ofFn.go - have : 1 + (n - (i + 1)) = n - i := - Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) - rw [dif_pos hin, size_ofFn_go f (i+1), size_push, Nat.add_assoc, this] - else - have : n - i = 0 := Nat.sub_eq_zero_of_le (Nat.le_of_not_lt hin) - unfold ofFn.go - simp [hin, this] -termination_by n - i - -@[simp] theorem size_ofFn (f : Fin n → α) : (ofFn f).size = n := by simp [ofFn] - -theorem getElem_ofFn_go (f : Fin n → α) (i) {acc k} - (hki : k < n) (hin : i ≤ n) (hi : i = acc.size) - (hacc : ∀ j, ∀ hj : j < acc.size, acc[j] = f ⟨j, Nat.lt_of_lt_of_le hj (hi ▸ hin)⟩) : - haveI : acc.size + (n - acc.size) = n := Nat.add_sub_cancel' (hi ▸ hin) - (ofFn.go f i acc)[k]'(by simp [*]) = f ⟨k, hki⟩ := by - unfold ofFn.go - if hin : i < n then - have : 1 + (n - (i + 1)) = n - i := - Nat.sub_sub .. ▸ Nat.add_sub_cancel' (Nat.le_sub_of_add_le (Nat.add_comm .. ▸ hin)) - simp only [dif_pos hin] - rw [getElem_ofFn_go f (i+1) _ hin (by simp [*]) (fun j hj => ?hacc)] - cases (Nat.lt_or_eq_of_le <| Nat.le_of_lt_succ (by simpa using hj)) with - | inl hj => simp [get_push, hj, hacc j hj] - | inr hj => simp [get_push, *] - else - simp [hin, hacc k (Nat.lt_of_lt_of_le hki (Nat.le_of_not_lt (hi ▸ hin)))] -termination_by n - i - -@[simp] theorem getElem_ofFn (f : Fin n → α) (i : Nat) (h) : - (ofFn f)[i] = f ⟨i, size_ofFn f ▸ h⟩ := - getElem_ofFn_go _ _ _ (by simp) (by simp) nofun diff --git a/Std/Data/Array/Lemmas.lean b/Std/Data/Array/Lemmas.lean index 421589709b..f6a82f2e47 100644 --- a/Std/Data/Array/Lemmas.lean +++ b/Std/Data/Array/Lemmas.lean @@ -5,7 +5,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Gabriel Ebner -/ import Std.Data.List.Lemmas -import Std.Data.Array.Init.Lemmas import Std.Data.Array.Basic import Std.Tactic.SeqFocus import Std.Util.ProofWanted diff --git a/Std/Data/ByteArray.lean b/Std/Data/ByteArray.lean index dcee0d4948..1a6d6b5df2 100644 --- a/Std/Data/ByteArray.lean +++ b/Std/Data/ByteArray.lean @@ -3,7 +3,6 @@ Copyright (c) 2023 François G. Dorais. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: François G. Dorais -/ -import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas namespace ByteArray diff --git a/Std/Data/Fin/Lemmas.lean b/Std/Data/Fin/Lemmas.lean index 244fd5ef3a..e2ecd09bbc 100644 --- a/Std/Data/Fin/Lemmas.lean +++ b/Std/Data/Fin/Lemmas.lean @@ -4,8 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Std.Data.Fin.Basic -import Std.Data.List.Init.Lemmas -import Std.Data.Array.Init.Lemmas namespace Fin diff --git a/Std/Data/List.lean b/Std/Data/List.lean index 137c762db9..4165ebcfe7 100644 --- a/Std/Data/List.lean +++ b/Std/Data/List.lean @@ -1,7 +1,6 @@ import Std.Data.List.Basic import Std.Data.List.Count import Std.Data.List.Init.Attach -import Std.Data.List.Init.Lemmas import Std.Data.List.Lemmas import Std.Data.List.Pairwise import Std.Data.List.Perm diff --git a/Std/Data/List/Init/Lemmas.lean b/Std/Data/List/Init/Lemmas.lean deleted file mode 100644 index 8770f6c2ee..0000000000 --- a/Std/Data/List/Init/Lemmas.lean +++ /dev/null @@ -1,39 +0,0 @@ -/- -Copyright (c) 2014 Parikshit Khanna. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. -Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro --/ - -/-! # Bootstrapping properties of Lists -/ - -namespace List - -@[ext] theorem ext : ∀ {l₁ l₂ : List α}, (∀ n, l₁.get? n = l₂.get? n) → l₁ = l₂ - | [], [], _ => rfl - | a :: l₁, [], h => nomatch h 0 - | [], a' :: l₂, h => nomatch h 0 - | a :: l₁, a' :: l₂, h => by - have h0 : some a = some a' := h 0 - injection h0 with aa; simp only [aa, ext fun n => h (n+1)] - -theorem ext_get {l₁ l₂ : List α} (hl : length l₁ = length l₂) - (h : ∀ n h₁ h₂, get l₁ ⟨n, h₁⟩ = get l₂ ⟨n, h₂⟩) : l₁ = l₂ := - ext fun n => - if h₁ : n < length l₁ then by - rw [get?_eq_get, get?_eq_get, h n h₁ (by rwa [← hl])] - else by - have h₁ := Nat.le_of_not_lt h₁ - rw [get?_len_le h₁, get?_len_le]; rwa [← hl] - -@[simp] theorem get_map (f : α → β) {l n} : get (map f l) n = f (get l ⟨n, length_map l f ▸ n.2⟩) := - Option.some.inj <| by rw [← get?_eq_get, get?_map, get?_eq_get]; rfl - -/-! ### foldl / foldr -/ - -theorem foldl_map (f : β₁ → β₂) (g : α → β₂ → α) (l : List β₁) (init : α) : - (l.map f).foldl g init = l.foldl (fun x y => g x (f y)) init := by - induction l generalizing init <;> simp [*] - -theorem foldr_map (f : α₁ → α₂) (g : α₂ → β → β) (l : List α₁) (init : β) : - (l.map f).foldr g init = l.foldr (fun x y => g (f x) y) init := by - induction l generalizing init <;> simp [*] diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 566c1cae95..7b75935380 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro -/ import Std.Control.ForInStep.Lemmas -import Std.Data.List.Init.Lemmas import Std.Data.List.Basic import Std.Tactic.Init import Std.Tactic.Alias diff --git a/Std/Tactic/PrintPrefix.lean b/Std/Tactic/PrintPrefix.lean index ca757c8e15..b342b38b12 100644 --- a/Std/Tactic/PrintPrefix.lean +++ b/Std/Tactic/PrintPrefix.lean @@ -73,12 +73,11 @@ private def lexNameLt : Name -> Name -> Bool | .str _ _, .num _ _ => false | .str p m, .str q n => m < n || m == n && lexNameLt p q -private def appendMatchingConstants (msg : MessageData) (opts : PrintPrefixConfig) (pre : Name) - : MetaM MessageData := do +private def matchingConstants (opts : PrintPrefixConfig) (pre : Name) + : MetaM (Array MessageData) := do let cinfos ← getMatchingConstants (matchName opts pre) opts.imported let cinfos := cinfos.qsort fun p q => lexNameLt (reverseName p.name) (reverseName q.name) - let mut msg := msg - let ppInfo cinfo : MetaM MessageData := do + cinfos.mapM fun cinfo => do if opts.showTypes then pure <| .ofPPFormat { pp := fun | some ctx => ctx.runMetaM <| @@ -87,9 +86,6 @@ private def appendMatchingConstants (msg : MessageData) (opts : PrintPrefixConfi } ++ "\n" else pure m!"{ppConst (← mkConstWithLevelParams cinfo.name)}\n" - for cinfo in cinfos do - msg := msg ++ (← ppInfo cinfo) - pure msg /-- The command `#print prefix foo` will print all definitions that start with @@ -122,9 +118,8 @@ elab (name := printPrefix) "#print" tk:"prefix" cfg:(Lean.Parser.Tactic.config)? name:ident : command => liftTermElabM do let nameId := name.getId let opts ← elabPrintPrefixConfig (mkOptionalNode cfg) - let mut msg ← appendMatchingConstants "" opts nameId - if msg.isEmpty then + let mut msgs ← matchingConstants opts nameId + if msgs.isEmpty then if let [name] ← resolveGlobalConst name then - msg ← appendMatchingConstants msg opts name - if !msg.isEmpty then - logInfoAt tk msg + msgs ← matchingConstants opts name + logInfoAt tk (.joinSep msgs.toList "") diff --git a/Std/Util/Cache.lean b/Std/Util/Cache.lean index 1aa9979b1f..c846d4d52e 100644 --- a/Std/Util/Cache.lean +++ b/Std/Util/Cache.lean @@ -62,8 +62,8 @@ def Cache.get [Monad m] [MonadEnv m] [MonadLog m] [MonadOptions m] [MonadLiftT B -- Default heartbeats to a reasonable value. -- otherwise exact? times out on mathlib -- TODO: add customization option - let options := Core.maxHeartbeats.set options <| - options.get? Core.maxHeartbeats.name |>.getD 1000000 + let options := maxHeartbeats.set options <| + options.get? maxHeartbeats.name |>.getD 1000000 let res ← EIO.asTask <| init {} |>.run' {} { options, fileName, fileMap } |>.run' { env } cache.set (m := BaseIO) (.inr res) diff --git a/lean-toolchain b/lean-toolchain index b96d89db4d..df30ca3418 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-22 +leanprover/lean4:nightly-2024-04-30 diff --git a/test/congr.lean b/test/congr.lean index 517c216efd..1f2737bc4f 100644 --- a/test/congr.lean +++ b/test/congr.lean @@ -33,19 +33,24 @@ example {α β : Type _} {F : _ → β} {f g : { f : α → β // f = f }} guard_target = type_of% h exact h -private opaque List.sum : List Nat → Nat +-- Adaptation note: the next two examples have always failed if `List.ext` was in scope, +-- but until nightly-2024-04-24 (when `List.ext` was upstreamed), it wasn't in scope. +-- For now these are commented out, +-- but if anyone would like to replace these tests that would be great! -example {ls : List Nat} : - (ls.map fun x => (ls.map fun y => 1 + y).sum + 1) = - (ls.map fun x => (ls.map fun y => Nat.succ y).sum + 1) := by - rcongr (_x y) - guard_target =ₐ 1 + y = y.succ - rw [Nat.add_comm] +-- private opaque List.sum : List Nat → Nat -example {ls : List Nat} {f g : Nat → Nat} {h : ∀ x, f x = g x} : - (ls.map fun x => f x + 3) = ls.map fun x => g x + 3 := by - rcongr x - exact h x +-- example {ls : List Nat} : +-- (ls.map fun x => (ls.map fun y => 1 + y).sum + 1) = +-- (ls.map fun x => (ls.map fun y => Nat.succ y).sum + 1) := by +-- rcongr (_x y) +-- guard_target =ₐ 1 + y = y.succ +-- rw [Nat.add_comm] + +-- example {ls : List Nat} {f g : Nat → Nat} {h : ∀ x, f x = g x} : +-- (ls.map fun x => f x + 3) = ls.map fun x => g x + 3 := by +-- rcongr x +-- exact h x -- succeed when either `ext` or `congr` can close the goal example : () = () := by rcongr From 8f9cc275396cf480e136a3ba2a69e32f0f595a28 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 1 May 2024 09:20:26 +1000 Subject: [PATCH 36/44] fix merge --- test/print_prefix.lean | 1 + 1 file changed, 1 insertion(+) diff --git a/test/print_prefix.lean b/test/print_prefix.lean index 625ba47b2e..6677469882 100644 --- a/test/print_prefix.lean +++ b/test/print_prefix.lean @@ -12,6 +12,7 @@ TEmpty.recOn.{u} (motive : TEmpty → Sort u) (t : TEmpty) : motive t #guard_msgs in #print prefix TEmpty -- Test type that probably won't change much. +/-- info: -/ #guard_msgs in #print prefix (config := {imported := false}) Empty From b79e7e777791ed8a4b318a37fe5b282ad0f7c154 Mon Sep 17 00:00:00 2001 From: Mario Carneiro Date: Tue, 30 Apr 2024 19:46:31 -0400 Subject: [PATCH 37/44] feat: `TransOrd`, `LawfulOrd`, `BEqOrd` + instances (#730) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: François G. Dorais --- Std/Classes/Order.lean | 267 +++++++++++++++++++++++++++++++++++- Std/Data/Char.lean | 12 ++ Std/Data/Fin/Lemmas.lean | 6 + Std/Data/List/Lemmas.lean | 43 ++++++ Std/Data/String/Lemmas.lean | 18 +++ Std/Data/UInt.lean | 58 +++++++- 6 files changed, 398 insertions(+), 6 deletions(-) diff --git a/Std/Classes/Order.lean b/Std/Classes/Order.lean index b3024c4bcd..ce7bd4def1 100644 --- a/Std/Classes/Order.lean +++ b/Std/Classes/Order.lean @@ -3,14 +3,31 @@ Copyright (c) 2022 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ +import Std.Tactic.SeqFocus /-! ## Ordering -/ -@[simp] theorem Ordering.swap_swap {o : Ordering} : o.swap.swap = o := by cases o <;> rfl +namespace Ordering + +@[simp] theorem swap_swap {o : Ordering} : o.swap.swap = o := by cases o <;> rfl -@[simp] theorem Ordering.swap_inj {o₁ o₂ : Ordering} : o₁.swap = o₂.swap ↔ o₁ = o₂ := +@[simp] theorem swap_inj {o₁ o₂ : Ordering} : o₁.swap = o₂.swap ↔ o₁ = o₂ := ⟨fun h => by simpa using congrArg swap h, congrArg _⟩ +theorem swap_then (o₁ o₂ : Ordering) : (o₁.then o₂).swap = o₁.swap.then o₂.swap := by + cases o₁ <;> rfl + +theorem then_eq_lt {o₁ o₂ : Ordering} : o₁.then o₂ = lt ↔ o₁ = lt ∨ o₁ = eq ∧ o₂ = lt := by + cases o₁ <;> cases o₂ <;> decide + +theorem then_eq_eq {o₁ o₂ : Ordering} : o₁.then o₂ = eq ↔ o₁ = eq ∧ o₂ = eq := by + cases o₁ <;> simp [«then»] + +theorem then_eq_gt {o₁ o₂ : Ordering} : o₁.then o₂ = gt ↔ o₁ = gt ∨ o₁ = eq ∧ o₂ = gt := by + cases o₁ <;> cases o₂ <;> decide + +end Ordering + namespace Std /-- `TotalBLE le` asserts that `le` has a total order, that is, `le a b ∨ le b a`. -/ @@ -29,6 +46,8 @@ namespace OrientedCmp theorem cmp_eq_gt [OrientedCmp cmp] : cmp x y = .gt ↔ cmp y x = .lt := by rw [← Ordering.swap_inj, symm]; exact .rfl +theorem cmp_ne_gt [OrientedCmp cmp] : cmp x y ≠ .gt ↔ cmp y x ≠ .lt := not_congr cmp_eq_gt + theorem cmp_eq_eq_symm [OrientedCmp cmp] : cmp x y = .eq ↔ cmp y x = .eq := by rw [← Ordering.swap_inj, symm]; exact .rfl @@ -94,6 +113,247 @@ instance [inst : OrientedCmp cmp] : OrientedCmp (flip cmp) where instance [inst : TransCmp cmp] : TransCmp (flip cmp) where le_trans h1 h2 := inst.le_trans h2 h1 +/-- `BEqCmp cmp` asserts that `cmp x y = .eq` and `x == y` coincide. -/ +class BEqCmp [BEq α] (cmp : α → α → Ordering) : Prop where + /-- `cmp x y = .eq` holds iff `x == y` is true. -/ + cmp_iff_beq : cmp x y = .eq ↔ x == y + +theorem BEqCmp.cmp_iff_eq [BEq α] [LawfulBEq α] [BEqCmp (α := α) cmp] : cmp x y = .eq ↔ x = y := by + simp [BEqCmp.cmp_iff_beq] + +/-- `LTCmp cmp` asserts that `cmp x y = .lt` and `x < y` coincide. -/ +class LTCmp [LT α] (cmp : α → α → Ordering) extends OrientedCmp cmp : Prop where + /-- `cmp x y = .lt` holds iff `x < y` is true. -/ + cmp_iff_lt : cmp x y = .lt ↔ x < y + +theorem LTCmp.cmp_iff_gt [LT α] [LTCmp (α := α) cmp] : cmp x y = .gt ↔ y < x := by + rw [OrientedCmp.cmp_eq_gt, LTCmp.cmp_iff_lt] + +/-- `LECmp cmp` asserts that `cmp x y ≠ .gt` and `x ≤ y` coincide. -/ +class LECmp [LE α] (cmp : α → α → Ordering) extends OrientedCmp cmp : Prop where + /-- `cmp x y ≠ .gt` holds iff `x ≤ y` is true. -/ + cmp_iff_le : cmp x y ≠ .gt ↔ x ≤ y + +theorem LTCmp.cmp_iff_ge [LE α] [LECmp (α := α) cmp] : cmp x y ≠ .lt ↔ y ≤ x := by + rw [← OrientedCmp.cmp_ne_gt, LECmp.cmp_iff_le] + +/-- `LawfulCmp cmp` asserts that the `LE`, `LT`, `BEq` instances are all coherent with each other +and with `cmp`, describing a strict weak order (a linear order except for antisymmetry). -/ +class LawfulCmp [LE α] [LT α] [BEq α] (cmp : α → α → Ordering) extends + TransCmp cmp, BEqCmp cmp, LTCmp cmp, LECmp cmp : Prop + +/-- `OrientedOrd α` asserts that the `Ord` instance satisfies `OrientedCmp`. -/ +abbrev OrientedOrd (α) [Ord α] := OrientedCmp (α := α) compare + +/-- `TransOrd α` asserts that the `Ord` instance satisfies `TransCmp`. -/ +abbrev TransOrd (α) [Ord α] := TransCmp (α := α) compare + +/-- `BEqOrd α` asserts that the `Ord` and `BEq` instances are coherent via `BEqCmp`. -/ +abbrev BEqOrd (α) [BEq α] [Ord α] := BEqCmp (α := α) compare + +/-- `LTOrd α` asserts that the `Ord` instance satisfies `LTCmp`. -/ +abbrev LTOrd (α) [LT α] [Ord α] := LTCmp (α := α) compare + +/-- `LEOrd α` asserts that the `Ord` instance satisfies `LECmp`. -/ +abbrev LEOrd (α) [LE α] [Ord α] := LECmp (α := α) compare + +/-- `LawfulOrd α` asserts that the `Ord` instance satisfies `LawfulCmp`. -/ +abbrev LawfulOrd (α) [LE α] [LT α] [BEq α] [Ord α] := LawfulCmp (α := α) compare + +theorem compareOfLessAndEq_eq_lt {x y : α} [LT α] [Decidable (x < y)] [DecidableEq α] : + compareOfLessAndEq x y = .lt ↔ x < y := by + simp [compareOfLessAndEq] + split <;> simpa using Decidable.not_not + +protected theorem TransCmp.compareOfLessAndEq + [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] + (lt_irrefl : ∀ x : α, ¬x < x) + (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) + (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : + TransCmp (α := α) (compareOfLessAndEq · ·) := by + have : OrientedCmp (α := α) (compareOfLessAndEq · ·) := by + refine { symm := fun x y => ?_ } + simp [compareOfLessAndEq]; split <;> [rename_i xy; split <;> [subst y; rename_i xy ne]] + · rw [if_neg, if_neg]; rfl + · rintro rfl; exact lt_irrefl _ xy + · exact fun yx => lt_irrefl _ (lt_trans xy yx) + · rw [if_neg ‹_›, if_pos rfl]; rfl + · split <;> [rfl; rename_i yx] + cases ne (lt_antisymm xy yx) + refine { this with le_trans := fun {x y z} yx zy => ?_ } + rw [Ne, this.cmp_eq_gt, compareOfLessAndEq_eq_lt] at yx zy ⊢ + intro zx + if xy : x < y then exact zy (lt_trans zx xy) + else exact zy (lt_antisymm yx xy ▸ zx) + +protected theorem TransCmp.compareOfLessAndEq_of_le + [LT α] [LE α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] + (lt_irrefl : ∀ x : α, ¬x < x) + (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) + (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) + (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : + TransCmp (α := α) (compareOfLessAndEq · ·) := + .compareOfLessAndEq lt_irrefl lt_trans fun xy yx => le_antisymm (not_lt yx) (not_lt xy) + +protected theorem BEqCmp.compareOfLessAndEq + [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [BEq α] [LawfulBEq α] + (lt_irrefl : ∀ x : α, ¬x < x) : + BEqCmp (α := α) (compareOfLessAndEq · ·) where + cmp_iff_beq {x y} := by + simp [compareOfLessAndEq] + split <;> [skip; split] <;> simp [*] + rintro rfl; exact lt_irrefl _ ‹_› + +protected theorem LTCmp.compareOfLessAndEq + [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] + (lt_irrefl : ∀ x : α, ¬x < x) + (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) + (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : + LTCmp (α := α) (compareOfLessAndEq · ·) := + { TransCmp.compareOfLessAndEq lt_irrefl lt_trans lt_antisymm with + cmp_iff_lt := compareOfLessAndEq_eq_lt } + +protected theorem LTCmp.compareOfLessAndEq_of_le + [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [LE α] + (lt_irrefl : ∀ x : α, ¬x < x) + (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) + (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) + (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : + LTCmp (α := α) (compareOfLessAndEq · ·) := + { TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt le_antisymm with + cmp_iff_lt := compareOfLessAndEq_eq_lt } + +protected theorem LECmp.compareOfLessAndEq + [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [LE α] + (lt_irrefl : ∀ x : α, ¬x < x) + (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) + (not_lt : ∀ {x y : α}, ¬x < y ↔ y ≤ x) + (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : + LECmp (α := α) (compareOfLessAndEq · ·) := + have := TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm + { this with + cmp_iff_le := (this.cmp_ne_gt).trans <| (not_congr compareOfLessAndEq_eq_lt).trans not_lt } + +protected theorem LawfulCmp.compareOfLessAndEq + [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [BEq α] [LawfulBEq α] [LE α] + (lt_irrefl : ∀ x : α, ¬x < x) + (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) + (not_lt : ∀ {x y : α}, ¬x < y ↔ y ≤ x) + (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : + LawfulCmp (α := α) (compareOfLessAndEq · ·) := + { TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm, + LTCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm, + LECmp.compareOfLessAndEq lt_irrefl lt_trans not_lt le_antisymm, + BEqCmp.compareOfLessAndEq lt_irrefl with } + +theorem LTCmp.eq_compareOfLessAndEq + [LT α] [DecidableEq α] [BEq α] [LawfulBEq α] [BEqCmp cmp] [LTCmp cmp] + (x y : α) [Decidable (x < y)] : cmp x y = compareOfLessAndEq x y := by + simp [compareOfLessAndEq] + split <;> rename_i h1 <;> [skip; split <;> rename_i h2] + · exact LTCmp.cmp_iff_lt.2 h1 + · exact BEqCmp.cmp_iff_eq.2 h2 + · cases e : cmp x y + · cases h1 (LTCmp.cmp_iff_lt.1 e) + · cases h2 (BEqCmp.cmp_iff_eq.1 e) + · rfl + +instance [inst₁ : OrientedCmp cmp₁] [inst₂ : OrientedCmp cmp₂] : + OrientedCmp (compareLex cmp₁ cmp₂) where + symm _ _ := by simp [compareLex, Ordering.swap_then]; rw [inst₁.symm, inst₂.symm] + +instance [inst₁ : TransCmp cmp₁] [inst₂ : TransCmp cmp₂] : + TransCmp (compareLex cmp₁ cmp₂) where + le_trans {a b c} h1 h2 := by + simp only [compareLex, ne_eq, Ordering.then_eq_gt, not_or, not_and] at h1 h2 ⊢ + refine ⟨inst₁.le_trans h1.1 h2.1, fun e1 e2 => ?_⟩ + match ab : cmp₁ a b with + | .gt => exact h1.1 ab + | .eq => exact inst₂.le_trans (h1.2 ab) (h2.2 (inst₁.cmp_congr_left ab ▸ e1)) e2 + | .lt => exact h2.1 <| (inst₁.cmp_eq_gt).2 (inst₁.cmp_congr_left e1 ▸ ab) + +instance [Ord β] [inst : OrientedOrd β] (f : α → β) : OrientedCmp (compareOn f) where + symm _ _ := OrientedCmp.symm (α := β) .. + +instance [Ord β] [inst : TransOrd β] (f : α → β) : TransCmp (compareOn f) where + le_trans := TransCmp.le_trans (α := β) + +-- FIXME: remove after lean4#3882 is merged +theorem _root_.lexOrd_def [Ord α] [Ord β] : + (lexOrd : Ord (α × β)).compare = compareLex (compareOn (·.1)) (compareOn (·.2)) := by + funext a b + simp [lexOrd, compareLex, compareOn]; cases compare a.1 b.1 <;> simp [Ordering.then] + +section «non-canonical instances» +-- Note: the following instances seem to cause lean to fail, see: +-- https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Typeclass.20inference.20crashes/near/432836360 + +/-- Local instance for `OrientedOrd lexOrd`. -/ +theorem OrientedOrd.instLexOrd [Ord α] [Ord β] + [OrientedOrd α] [OrientedOrd β] : @OrientedOrd (α × β) lexOrd := by + rw [OrientedOrd, lexOrd_def]; infer_instance + +/-- Local instance for `TransOrd lexOrd`. -/ +theorem TransOrd.instLexOrd [Ord α] [Ord β] + [TransOrd α] [TransOrd β] : @TransOrd (α × β) lexOrd := by + rw [TransOrd, lexOrd_def]; infer_instance + +/-- Local instance for `OrientedOrd ord.opposite`. -/ +theorem OrientedOrd.instOpposite [ord : Ord α] [inst : OrientedOrd α] : + @OrientedOrd _ ord.opposite where symm _ _ := inst.symm .. + +/-- Local instance for `TransOrd ord.opposite`. -/ +theorem TransOrd.instOpposite [ord : Ord α] [inst : TransOrd α] : @TransOrd _ ord.opposite := + { OrientedOrd.instOpposite with le_trans := fun h1 h2 => inst.le_trans h2 h1 } + +/-- Local instance for `OrientedOrd (ord.on f)`. -/ +theorem OrientedOrd.instOn [ord : Ord β] [OrientedOrd β] (f : α → β) : @OrientedOrd _ (ord.on f) := + inferInstanceAs (@OrientedCmp _ (compareOn f)) + +/-- Local instance for `TransOrd (ord.on f)`. -/ +theorem TransOrd.instOn [ord : Ord β] [TransOrd β] (f : α → β) : @TransOrd _ (ord.on f) := + inferInstanceAs (@TransCmp _ (compareOn f)) + +/-- Local instance for `OrientedOrd (oα.lex oβ)`. -/ +theorem OrientedOrd.instOrdLex [oα : Ord α] [oβ : Ord β] [OrientedOrd α] [OrientedOrd β] : + @OrientedOrd _ (oα.lex oβ) := OrientedOrd.instLexOrd + +/-- Local instance for `TransOrd (oα.lex oβ)`. -/ +theorem TransOrd.instOrdLex [oα : Ord α] [oβ : Ord β] [TransOrd α] [TransOrd β] : + @TransOrd _ (oα.lex oβ) := TransOrd.instLexOrd + +/-- Local instance for `OrientedOrd (oα.lex' oβ)`. -/ +theorem OrientedOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@OrientedOrd _ ord₁] [@OrientedOrd _ ord₂] : + @OrientedOrd _ (ord₁.lex' ord₂) := + inferInstanceAs (OrientedCmp (compareLex ord₁.compare ord₂.compare)) + +/-- Local instance for `TransOrd (oα.lex' oβ)`. -/ +theorem TransOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@TransOrd _ ord₁] [@TransOrd _ ord₂] : + @TransOrd _ (ord₁.lex' ord₂) := + inferInstanceAs (TransCmp (compareLex ord₁.compare ord₂.compare)) + +end «non-canonical instances» + +instance : LawfulOrd Nat := .compareOfLessAndEq + Nat.lt_irrefl Nat.lt_trans Nat.not_lt Nat.le_antisymm + +instance : LawfulOrd (Fin n) where + symm _ _ := OrientedCmp.symm (α := Nat) (cmp := compare) .. + le_trans := TransCmp.le_trans (α := Nat) (cmp := compare) + cmp_iff_beq := (BEqCmp.cmp_iff_beq (α := Nat) (cmp := compare)).trans (by simp [Fin.ext_iff]) + cmp_iff_lt := LTCmp.cmp_iff_lt (α := Nat) (cmp := compare) + cmp_iff_le := LECmp.cmp_iff_le (α := Nat) (cmp := compare) + +instance : LawfulOrd Bool where + symm := by decide + le_trans := by decide + cmp_iff_beq := by decide + cmp_iff_lt := by decide + cmp_iff_le := by decide + +instance : LawfulOrd Int := .compareOfLessAndEq + Int.lt_irrefl Int.lt_trans Int.not_lt Int.le_antisymm + end Std namespace Ordering @@ -109,7 +369,4 @@ instance (f : α → β) (cmp : β → β → Ordering) [OrientedCmp cmp] : Orie instance (f : α → β) (cmp : β → β → Ordering) [TransCmp cmp] : TransCmp (byKey f cmp) where le_trans h₁ h₂ := TransCmp.le_trans (α := β) h₁ h₂ -instance (f : α → β) (cmp : β → β → Ordering) [TransCmp cmp] : TransCmp (byKey f cmp) where - le_trans h₁ h₂ := TransCmp.le_trans (α := β) h₁ h₂ - end Ordering diff --git a/Std/Data/Char.lean b/Std/Data/Char.lean index 5ee22c51b4..8980f418e2 100644 --- a/Std/Data/Char.lean +++ b/Std/Data/Char.lean @@ -3,10 +3,22 @@ Copyright (c) 2022 Jannis Limperg. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jannis Limperg -/ +import Std.Data.UInt @[ext] theorem Char.ext : {a b : Char} → a.val = b.val → a = b | ⟨_,_⟩, ⟨_,_⟩, rfl => rfl +theorem Char.ext_iff {x y : Char} : x = y ↔ x.val = y.val := ⟨congrArg _, Char.ext⟩ + +theorem Char.le_antisymm_iff {x y : Char} : x = y ↔ x ≤ y ∧ y ≤ x := + Char.ext_iff.trans UInt32.le_antisymm_iff + +theorem Char.le_antisymm {x y : Char} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := + Char.le_antisymm_iff.2 ⟨h1, h2⟩ + +instance : Std.LawfulOrd Char := .compareOfLessAndEq + (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt Char.le_antisymm + namespace String private theorem csize_eq (c) : diff --git a/Std/Data/Fin/Lemmas.lean b/Std/Data/Fin/Lemmas.lean index 244fd5ef3a..b8143ca101 100644 --- a/Std/Data/Fin/Lemmas.lean +++ b/Std/Data/Fin/Lemmas.lean @@ -11,6 +11,12 @@ namespace Fin attribute [norm_cast] val_last +protected theorem le_antisymm_iff {x y : Fin n} : x = y ↔ x ≤ y ∧ y ≤ x := + Fin.ext_iff.trans Nat.le_antisymm_iff + +protected theorem le_antisymm {x y : Fin n} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := + Fin.le_antisymm_iff.2 ⟨h1, h2⟩ + /-! ### clamp -/ @[simp] theorem coe_clamp (n m : Nat) : (clamp n m : Nat) = min n m := rfl diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index d43b92be18..6ee9f1697a 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -2779,3 +2779,46 @@ theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r := mem_merge.2 <| .inr h + +/-! ### lt -/ + +theorem lt_irrefl' [LT α] (lt_irrefl : ∀ x : α, ¬x < x) (l : List α) : ¬l < l := by + induction l with + | nil => nofun + | cons a l ih => intro + | .head _ _ h => exact lt_irrefl _ h + | .tail _ _ h => exact ih h + +theorem lt_trans' [LT α] [DecidableRel (@LT.lt α _)] + (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) + (le_trans : ∀ {x y z : α}, ¬x < y → ¬y < z → ¬x < z) + {l₁ l₂ l₃ : List α} (h₁ : l₁ < l₂) (h₂ : l₂ < l₃) : l₁ < l₃ := by + induction h₁ generalizing l₃ with + | nil => let _::_ := l₃; exact List.lt.nil .. + | @head a l₁ b l₂ ab => + match h₂ with + | .head l₂ l₃ bc => exact List.lt.head _ _ (lt_trans ab bc) + | .tail _ cb ih => + exact List.lt.head _ _ <| Decidable.by_contra (le_trans · cb ab) + | @tail a l₁ b l₂ ab ba h₁ ih2 => + match h₂ with + | .head l₂ l₃ bc => + exact List.lt.head _ _ <| Decidable.by_contra (le_trans ba · bc) + | .tail bc cb ih => + exact List.lt.tail (le_trans ab bc) (le_trans cb ba) (ih2 ih) + +theorem lt_antisymm' [LT α] + (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) + {l₁ l₂ : List α} (h₁ : ¬l₁ < l₂) (h₂ : ¬l₂ < l₁) : l₁ = l₂ := by + induction l₁ generalizing l₂ with + | nil => + cases l₂ with + | nil => rfl + | cons b l₂ => cases h₁ (.nil ..) + | cons a l₁ ih => + cases l₂ with + | nil => cases h₂ (.nil ..) + | cons b l₂ => + have ab : ¬a < b := fun ab => h₁ (.head _ _ ab) + cases lt_antisymm ab (fun ba => h₂ (.head _ _ ba)) + rw [ih (fun ll => h₁ (.tail ab ab ll)) (fun ll => h₂ (.tail ab ab ll))] diff --git a/Std/Data/String/Lemmas.lean b/Std/Data/String/Lemmas.lean index e87013574d..6bd6e5932e 100644 --- a/Std/Data/String/Lemmas.lean +++ b/Std/Data/String/Lemmas.lean @@ -19,6 +19,24 @@ namespace String theorem ext_iff {s₁ s₂ : String} : s₁ = s₂ ↔ s₁.data = s₂.data := ⟨fun h => h ▸ rfl, ext⟩ +theorem lt_irrefl (s : String) : ¬s < s := List.lt_irrefl' (α := Char) (fun _ => Nat.lt_irrefl _) _ + +theorem lt_trans {s₁ s₂ s₃ : String} : s₁ < s₂ → s₂ < s₃ → s₁ < s₃ := + List.lt_trans' (α := Char) Nat.lt_trans + (fun h1 h2 => Nat.not_lt.2 <| Nat.le_trans (Nat.not_lt.1 h2) (Nat.not_lt.1 h1)) + +theorem lt_antisymm {s₁ s₂ : String} (h₁ : ¬s₁ < s₂) (h₂ : ¬s₂ < s₁) : s₁ = s₂ := + ext <| List.lt_antisymm' (α := Char) + (fun h1 h2 => Char.le_antisymm (Nat.not_lt.1 h2) (Nat.not_lt.1 h1)) h₁ h₂ + +instance : Std.TransOrd String := .compareOfLessAndEq + String.lt_irrefl String.lt_trans String.lt_antisymm + +instance : Std.LTOrd String := .compareOfLessAndEq + String.lt_irrefl String.lt_trans String.lt_antisymm + +instance : Std.BEqOrd String := .compareOfLessAndEq String.lt_irrefl + @[simp] theorem default_eq : default = "" := rfl @[simp] theorem str_eq : str = push := rfl diff --git a/Std/Data/UInt.lean b/Std/Data/UInt.lean index 04929fa84e..3092e2f9eb 100644 --- a/Std/Data/UInt.lean +++ b/Std/Data/UInt.lean @@ -1,14 +1,17 @@ /- Copyright (c) 2023 François G. Dorais. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. -Authors: François G. Dorais +Authors: François G. Dorais, Mario Carneiro -/ +import Std.Classes.Order /-! ### UInt8 -/ @[ext] theorem UInt8.ext : {x y : UInt8} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl +theorem UInt8.ext_iff {x y : UInt8} : x = y ↔ x.toNat = y.toNat := ⟨congrArg _, UInt8.ext⟩ + @[simp] theorem UInt8.val_val_eq_toNat (x : UInt8) : x.val.val = x.toNat := rfl theorem UInt8.toNat_lt (x : UInt8) : x.toNat < 2 ^ 8 := x.val.isLt @@ -22,11 +25,22 @@ theorem UInt8.toNat_lt (x : UInt8) : x.toNat < 2 ^ 8 := x.val.isLt @[simp] theorem UInt8.toUInt64_toNat (x : UInt8) : x.toUInt64.toNat = x.toNat := Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +theorem UInt8.le_antisymm_iff {x y : UInt8} : x = y ↔ x ≤ y ∧ y ≤ x := + UInt8.ext_iff.trans Nat.le_antisymm_iff + +theorem UInt8.le_antisymm {x y : UInt8} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := + UInt8.le_antisymm_iff.2 ⟨h1, h2⟩ + +instance : Std.LawfulOrd UInt8 := .compareOfLessAndEq + (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt8.le_antisymm + /-! ### UInt16 -/ @[ext] theorem UInt16.ext : {x y : UInt16} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl +theorem UInt16.ext_iff {x y : UInt16} : x = y ↔ x.toNat = y.toNat := ⟨congrArg _, UInt16.ext⟩ + theorem UInt16.toNat_lt (x : UInt16) : x.toNat < 2 ^ 16 := x.val.isLt @[simp] theorem UInt16.val_val_eq_toNat (x : UInt16) : x.val.val = x.toNat := rfl @@ -39,11 +53,22 @@ theorem UInt16.toNat_lt (x : UInt16) : x.toNat < 2 ^ 16 := x.val.isLt @[simp] theorem UInt16.toUInt64_toNat (x : UInt16) : x.toUInt64.toNat = x.toNat := Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +theorem UInt16.le_antisymm_iff {x y : UInt16} : x = y ↔ x ≤ y ∧ y ≤ x := + UInt16.ext_iff.trans Nat.le_antisymm_iff + +theorem UInt16.le_antisymm {x y : UInt16} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := + UInt16.le_antisymm_iff.2 ⟨h1, h2⟩ + +instance : Std.LawfulOrd UInt16 := .compareOfLessAndEq + (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt16.le_antisymm + /-! ### UInt32 -/ @[ext] theorem UInt32.ext : {x y : UInt32} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl +theorem UInt32.ext_iff {x y : UInt32} : x = y ↔ x.toNat = y.toNat := ⟨congrArg _, UInt32.ext⟩ + @[simp] theorem UInt32.val_val_eq_toNat (x : UInt32) : x.val.val = x.toNat := rfl theorem UInt32.toNat_lt (x : UInt32) : x.toNat < 2 ^ 32 := x.val.isLt @@ -55,11 +80,22 @@ theorem UInt32.toNat_lt (x : UInt32) : x.toNat < 2 ^ 32 := x.val.isLt @[simp] theorem UInt32.toUInt64_toNat (x : UInt32) : x.toUInt64.toNat = x.toNat := Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt (by decide)) +theorem UInt32.le_antisymm_iff {x y : UInt32} : x = y ↔ x ≤ y ∧ y ≤ x := + UInt32.ext_iff.trans Nat.le_antisymm_iff + +theorem UInt32.le_antisymm {x y : UInt32} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := + UInt32.le_antisymm_iff.2 ⟨h1, h2⟩ + +instance : Std.LawfulOrd UInt32 := .compareOfLessAndEq + (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt32.le_antisymm + /-! ### UInt64 -/ @[ext] theorem UInt64.ext : {x y : UInt64} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl +theorem UInt64.ext_iff {x y : UInt64} : x = y ↔ x.toNat = y.toNat := ⟨congrArg _, UInt64.ext⟩ + @[simp] theorem UInt64.val_val_eq_toNat (x : UInt64) : x.val.val = x.toNat := rfl theorem UInt64.toNat_lt (x : UInt64) : x.toNat < 2 ^ 64 := x.val.isLt @@ -70,11 +106,22 @@ theorem UInt64.toNat_lt (x : UInt64) : x.toNat < 2 ^ 64 := x.val.isLt @[simp] theorem UInt64.toUInt32_toNat (x : UInt64) : x.toUInt32.toNat = x.toNat % 2 ^ 32 := rfl +theorem UInt64.le_antisymm_iff {x y : UInt64} : x = y ↔ x ≤ y ∧ y ≤ x := + UInt64.ext_iff.trans Nat.le_antisymm_iff + +theorem UInt64.le_antisymm {x y : UInt64} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := + UInt64.le_antisymm_iff.2 ⟨h1, h2⟩ + +instance : Std.LawfulOrd UInt64 := .compareOfLessAndEq + (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt64.le_antisymm + /-! ### USize -/ @[ext] theorem USize.ext : {x y : USize} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl +theorem USize.ext_iff {x y : USize} : x = y ↔ x.toNat = y.toNat := ⟨congrArg _, USize.ext⟩ + @[simp] theorem USize.val_val_eq_toNat (x : USize) : x.val.val = x.toNat := rfl theorem USize.size_eq : USize.size = 2 ^ System.Platform.numBits := by @@ -99,3 +146,12 @@ theorem USize.toNat_lt (x : USize) : x.toNat < 2 ^ System.Platform.numBits := by @[simp] theorem UInt32.toUSize_toNat (x : UInt32) : x.toUSize.toNat = x.toNat := Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.toNat_lt USize.le_size) + +theorem USize.le_antisymm_iff {x y : USize} : x = y ↔ x ≤ y ∧ y ≤ x := + USize.ext_iff.trans Nat.le_antisymm_iff + +theorem USize.le_antisymm {x y : USize} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := + USize.le_antisymm_iff.2 ⟨h1, h2⟩ + +instance : Std.LawfulOrd USize := .compareOfLessAndEq + (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt USize.le_antisymm From d427e2f35915043c1616e7157cf69398b79ff081 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 1 May 2024 13:11:00 +1000 Subject: [PATCH 38/44] restore congr test --- test/congr.lean | 36 ++++++++++++++++++++---------------- 1 file changed, 20 insertions(+), 16 deletions(-) diff --git a/test/congr.lean b/test/congr.lean index 1f2737bc4f..33d59da53c 100644 --- a/test/congr.lean +++ b/test/congr.lean @@ -33,24 +33,28 @@ example {α β : Type _} {F : _ → β} {f g : { f : α → β // f = f }} guard_target = type_of% h exact h +section + -- Adaptation note: the next two examples have always failed if `List.ext` was in scope, -- but until nightly-2024-04-24 (when `List.ext` was upstreamed), it wasn't in scope. --- For now these are commented out, --- but if anyone would like to replace these tests that would be great! - --- private opaque List.sum : List Nat → Nat - --- example {ls : List Nat} : --- (ls.map fun x => (ls.map fun y => 1 + y).sum + 1) = --- (ls.map fun x => (ls.map fun y => Nat.succ y).sum + 1) := by --- rcongr (_x y) --- guard_target =ₐ 1 + y = y.succ --- rw [Nat.add_comm] - --- example {ls : List Nat} {f g : Nat → Nat} {h : ∀ x, f x = g x} : --- (ls.map fun x => f x + 3) = ls.map fun x => g x + 3 := by --- rcongr x --- exact h x +-- In order to preserve the test behaviour we locally remove the `ext` attribute. +attribute [-ext] List.ext + +private opaque List.sum : List Nat → Nat + +example {ls : List Nat} : + (ls.map fun x => (ls.map fun y => 1 + y).sum + 1) = + (ls.map fun x => (ls.map fun y => Nat.succ y).sum + 1) := by + rcongr (_x y) + guard_target =ₐ 1 + y = y.succ + rw [Nat.add_comm] + +example {ls : List Nat} {f g : Nat → Nat} {h : ∀ x, f x = g x} : + (ls.map fun x => f x + 3) = ls.map fun x => g x + 3 := by + rcongr x + exact h x + +end -- succeed when either `ext` or `congr` can close the goal example : () = () := by rcongr From 2ce03722c32f6648db054c71a4df4cccbc60ef77 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 1 May 2024 13:14:43 +1000 Subject: [PATCH 39/44] fixes --- Std/Classes/Order.lean | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/Std/Classes/Order.lean b/Std/Classes/Order.lean index ce7bd4def1..c3448de248 100644 --- a/Std/Classes/Order.lean +++ b/Std/Classes/Order.lean @@ -163,7 +163,7 @@ abbrev LawfulOrd (α) [LE α] [LT α] [BEq α] [Ord α] := LawfulCmp (α := α) theorem compareOfLessAndEq_eq_lt {x y : α} [LT α] [Decidable (x < y)] [DecidableEq α] : compareOfLessAndEq x y = .lt ↔ x < y := by simp [compareOfLessAndEq] - split <;> simpa using Decidable.not_not + split <;> simp protected theorem TransCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] @@ -272,17 +272,17 @@ instance [inst₁ : TransCmp cmp₁] [inst₂ : TransCmp cmp₂] : | .eq => exact inst₂.le_trans (h1.2 ab) (h2.2 (inst₁.cmp_congr_left ab ▸ e1)) e2 | .lt => exact h2.1 <| (inst₁.cmp_eq_gt).2 (inst₁.cmp_congr_left e1 ▸ ab) -instance [Ord β] [inst : OrientedOrd β] (f : α → β) : OrientedCmp (compareOn f) where +instance [Ord β] [OrientedOrd β] (f : α → β) : OrientedCmp (compareOn f) where symm _ _ := OrientedCmp.symm (α := β) .. -instance [Ord β] [inst : TransOrd β] (f : α → β) : TransCmp (compareOn f) where +instance [Ord β] [TransOrd β] (f : α → β) : TransCmp (compareOn f) where le_trans := TransCmp.le_trans (α := β) -- FIXME: remove after lean4#3882 is merged theorem _root_.lexOrd_def [Ord α] [Ord β] : (lexOrd : Ord (α × β)).compare = compareLex (compareOn (·.1)) (compareOn (·.2)) := by funext a b - simp [lexOrd, compareLex, compareOn]; cases compare a.1 b.1 <;> simp [Ordering.then] + simp [lexOrd, compareLex, compareOn] section «non-canonical instances» -- Note: the following instances seem to cause lean to fail, see: From 77901c7aa6466c07702457b6c4319d7415ffbbee Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 1 May 2024 13:20:38 +1000 Subject: [PATCH 40/44] add empty init files --- Std/Data/Array.lean | 1 + Std/Data/Array/Basic.lean | 1 + Std/Data/List.lean | 1 + Std/Data/List/Basic.lean | 1 + 4 files changed, 4 insertions(+) diff --git a/Std/Data/Array.lean b/Std/Data/Array.lean index 22f2f38305..3291a67387 100644 --- a/Std/Data/Array.lean +++ b/Std/Data/Array.lean @@ -1,4 +1,5 @@ import Std.Data.Array.Basic +import Std.Data.Array.Init.Lemmas import Std.Data.Array.Lemmas import Std.Data.Array.Match import Std.Data.Array.Merge diff --git a/Std/Data/Array/Basic.lean b/Std/Data/Array/Basic.lean index d0c937f1a9..838b1df160 100644 --- a/Std/Data/Array/Basic.lean +++ b/Std/Data/Array/Basic.lean @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Arthur Paulino, Floris van Doorn, Jannis Limperg -/ import Std.Data.List.Init.Attach +import Std.Data.Array.Init.Lemmas /-! ## Definitions on Arrays diff --git a/Std/Data/List.lean b/Std/Data/List.lean index 4165ebcfe7..137c762db9 100644 --- a/Std/Data/List.lean +++ b/Std/Data/List.lean @@ -1,6 +1,7 @@ import Std.Data.List.Basic import Std.Data.List.Count import Std.Data.List.Init.Attach +import Std.Data.List.Init.Lemmas import Std.Data.List.Lemmas import Std.Data.List.Pairwise import Std.Data.List.Perm diff --git a/Std/Data/List/Basic.lean b/Std/Data/List/Basic.lean index 01db611d70..c2df4429c3 100644 --- a/Std/Data/List/Basic.lean +++ b/Std/Data/List/Basic.lean @@ -3,6 +3,7 @@ Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ +import Std.Data.List.Init.Lemmas namespace List From 6c44a4000ae9468ca0191d640293d7bd3c84090e Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Wed, 1 May 2024 13:24:29 +1000 Subject: [PATCH 41/44] oops, add files --- Std/Data/Array/Init/Lemmas.lean | 11 +++++++++++ Std/Data/List/Init/Lemmas.lean | 11 +++++++++++ 2 files changed, 22 insertions(+) create mode 100644 Std/Data/Array/Init/Lemmas.lean create mode 100644 Std/Data/List/Init/Lemmas.lean diff --git a/Std/Data/Array/Init/Lemmas.lean b/Std/Data/Array/Init/Lemmas.lean new file mode 100644 index 0000000000..50a88865e6 --- /dev/null +++ b/Std/Data/Array/Init/Lemmas.lean @@ -0,0 +1,11 @@ +/- +Copyright (c) 2024 Kim Morrison. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. + +Authors: Kim Morrison +-/ + +/-! +While this file is currently empty, it is intended as a home for any lemmas which are required for +definitions in `Std.Data.Array.Basic`, but which are not provided by Lean. +-/ diff --git a/Std/Data/List/Init/Lemmas.lean b/Std/Data/List/Init/Lemmas.lean new file mode 100644 index 0000000000..fc6fd4aecd --- /dev/null +++ b/Std/Data/List/Init/Lemmas.lean @@ -0,0 +1,11 @@ +/- +Copyright (c) 2024 Kim Morrison. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. + +Authors: Kim Morrison +-/ + +/-! +While this file is currently empty, it is intended as a home for any lemmas which are required for +definitions in `Std.Data.List.Basic`, but which are not provided by Lean. +-/ From acdfd8d18d76b61a81d9282ca6bcabd73d8bb8c0 Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Wed, 1 May 2024 09:05:04 +0000 Subject: [PATCH 42/44] chore: bump to nightly-2024-05-01 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index df30ca3418..53ec711c7d 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-04-30 +leanprover/lean4:nightly-2024-05-01 From 13bfe96f34970d111227083cca076445aa88857b Mon Sep 17 00:00:00 2001 From: Kim Morrison Date: Wed, 1 May 2024 19:58:10 +1000 Subject: [PATCH 43/44] chore: pre-emptive fixes for nightly-2024-05-01 (#773) * chore: pre-emptive fixes for nightly-2024-05-01 * toolchain --- Std/Tactic/Lint/Simp.lean | 12 ++++++------ Std/Tactic/SqueezeScope.lean | 10 +++++----- 2 files changed, 11 insertions(+), 11 deletions(-) diff --git a/Std/Tactic/Lint/Simp.lean b/Std/Tactic/Lint/Simp.lean index b467032f0c..97ee75b50b 100644 --- a/Std/Tactic/Lint/Simp.lean +++ b/Std/Tactic/Lint/Simp.lean @@ -112,17 +112,17 @@ https://leanprover-community.github.io/mathlib_docs/notes.html#simp-normal%20for unless ← isSimpTheorem declName do return none let ctx := { ← Simp.Context.mkDefault with config.decide := false } checkAllSimpTheoremInfos (← getConstInfo declName).type fun {lhs, rhs, isConditional, ..} => do - let ({ expr := lhs', proof? := prf1, .. }, prf1Lems) ← + let ({ expr := lhs', proof? := prf1, .. }, prf1Stats) ← decorateError "simplify fails on left-hand side:" <| simp lhs ctx - if prf1Lems.contains (.decl declName) then return none - let ({ expr := rhs', .. }, used_lemmas) ← - decorateError "simplify fails on right-hand side:" <| simp rhs ctx (usedSimps := prf1Lems) + if prf1Stats.usedTheorems.contains (.decl declName) then return none + let ({ expr := rhs', .. }, stats) ← + decorateError "simplify fails on right-hand side:" <| simp rhs ctx (stats := prf1Stats) let lhs'EqRhs' ← isSimpEq lhs' rhs' (whnfFirst := false) let lhsInNF ← isSimpEq lhs' lhs if lhs'EqRhs' then if prf1.isNone then return none -- TODO: FP rewriting foo.eq_2 using `simp only [foo]` return m!"simp can prove this: - by {← formatLemmas used_lemmas} + by {← formatLemmas stats.usedTheorems} One of the lemmas above could be a duplicate. If that's not the case try reordering lemmas or adding @[priority]. " @@ -132,7 +132,7 @@ If that's not the case try reordering lemmas or adding @[priority]. to {lhs'} using - {← formatLemmas prf1Lems} + {← formatLemmas prf1Stats.usedTheorems} Try to change the left-hand side to the simplified term! " else if !isConditional && lhs == lhs' then diff --git a/Std/Tactic/SqueezeScope.lean b/Std/Tactic/SqueezeScope.lean index cfb0476a57..47a51aefff 100644 --- a/Std/Tactic/SqueezeScope.lean +++ b/Std/Tactic/SqueezeScope.lean @@ -92,7 +92,7 @@ elab_rules : tactic elab_rules : tactic | `(tactic| squeeze_wrap $a $x => $tac) => do let stx := tac.raw - let usedSimps ← match stx.getKind with + let stats ← match stx.getKind with | ``Parser.Tactic.simp => do let { ctx, simprocs, dischargeWrapper } ← withMainContext <| mkSimpContext stx (eraseLocal := false) @@ -101,11 +101,11 @@ elab_rules : tactic | ``Parser.Tactic.simpAll => do let { ctx, simprocs, .. } ← mkSimpContext stx (eraseLocal := true) (kind := .simpAll) (ignoreStarArg := true) - let (result?, usedSimps) ← simpAll (← getMainGoal) ctx simprocs + let (result?, stats) ← simpAll (← getMainGoal) ctx simprocs match result? with | none => replaceMainGoal [] | some mvarId => replaceMainGoal [mvarId] - pure usedSimps + pure stats | ``Parser.Tactic.dsimp => do let { ctx, simprocs, .. } ← withMainContext <| mkSimpContext stx (eraseLocal := false) (kind := .dsimp) @@ -115,6 +115,6 @@ elab_rules : tactic squeezeScopes.modify fun map => Id.run do let some map1 := map.find? a | return map let newSimps := match map1.find? x with - | some (stx, oldSimps) => (stx, usedSimps :: oldSimps) - | none => (stx, [usedSimps]) + | some (stx, oldSimps) => (stx, stats.usedTheorems :: oldSimps) + | none => (stx, [stats.usedTheorems]) map.insert a (map1.insert x newSimps) From 02db99d5701b5bc1ea15b7bdd655e2864ce6fa12 Mon Sep 17 00:00:00 2001 From: leanprover-community-mathlib4-bot Date: Thu, 2 May 2024 09:04:57 +0000 Subject: [PATCH 44/44] chore: bump to nightly-2024-05-02 --- lean-toolchain | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lean-toolchain b/lean-toolchain index 53ec711c7d..278688b08d 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2024-05-01 +leanprover/lean4:nightly-2024-05-02