diff --git a/Game/MyNat/Addition.lean b/Game/MyNat/Addition.lean index ae314ef..9cd4b23 100644 --- a/Game/MyNat/Addition.lean +++ b/Game/MyNat/Addition.lean @@ -22,9 +22,3 @@ If `a` and `d` are natural numbers, then `add_succ a d` is the proof that -/ @[MyNat_decide] axiom add_succ (a d : MyNat) : a + (succ d) = succ (a + d) - --- -- don't tell the viewers, we cheat with decide because --- -- we used axioms to define nat --- @[MyNat_decide] --- theorem toNat_add (m n : MyNat) : (m + n).toNat = m.toNat + n.toNat := by --- induction n <;> simp [MyNat_decide, Nat.add_succ, *];