forked from DeepLearnPhysics/Supera
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSuperaWire.cxx
328 lines (282 loc) · 12.9 KB
/
SuperaWire.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#ifndef __SUPERAWIRE_CXX__
#define __SUPERAWIRE_CXX__
#include "SuperaWire.h"
#include "larcv/core/DataFormat/EventVoxel2D.h"
#include "larcv/core/DataFormat/EventVoxel3D.h"
namespace larcv {
static SuperaWireProcessFactory __global_SuperaWireProcessFactory__;
SuperaWire::SuperaWire(const std::string name)
: SuperaBase(name)
{}
int SuperaWire::plane_index(unsigned int cryo_id, unsigned int tpc_id, unsigned int plane_id)
{
if(_scan.size() <= cryo_id)
return -1;
if(_scan[cryo_id].size() <= tpc_id)
return -1;
if(_scan[cryo_id][tpc_id].size() <= plane_id)
return -1;
return _scan[cryo_id][tpc_id][plane_id];
}
void SuperaWire::configure(const PSet& cfg)
{
SuperaBase::configure(cfg);
//_image_time_ticks = cfg.get<size_t> ("ImageTimeTicks",4);
_npx_rows = cfg.get<int>("RowCount");
_npx_columns = cfg.get<int>("ColumnCount");
_time_compression = cfg.get<int>("TimeCompression");
assert(_npx_rows>0 && _npx_columns>0 && _time_compression>0);
_output_producer = cfg.get<std::string> ("OutputProducer");
_ref_meta3d_cluster3d = cfg.get<std::string>("Meta3DFromCluster3D", "");
_ref_meta3d_tensor3d = cfg.get<std::string>("Meta3DFromTensor3D", "");
_adc_threshold = cfg.get<double>("ADCThreshold",0);
// construct _scan as 3d array of [#cryo][#tpc][#plane]
auto cryostat_v = cfg.get<std::vector<unsigned short> >("CryostatList");
auto tpc_v = cfg.get<std::vector<unsigned short> >("TPCList");
auto plane_v = cfg.get<std::vector<unsigned short> >("PlaneList");
auto geop = lar::providerFrom<geo::Geometry>();
_scan.resize(geop->Ncryostats());
for(size_t cryoid=0; cryoid<_scan.size(); ++cryoid) {
auto const& cryostat = geop->Cryostat(cryoid);
auto& scan_cryo = _scan[cryoid];
scan_cryo.resize(cryostat.NTPC());
for(size_t tpcid=0; tpcid<scan_cryo.size(); ++tpcid) {
auto const& tpc = cryostat.TPC(tpcid);
auto& scan_tpc = scan_cryo[tpcid];
scan_tpc.resize(tpc.Nplanes(),-1);
}
}
_valid_nplanes = 0;
for(auto const& cryo_id : cryostat_v) {
auto const& cryostat = geop->Cryostat(cryo_id);
if(_scan.size()<=cryo_id)
_scan.resize(cryo_id+1);
for(auto const& tpc_id : tpc_v) {
if(!cryostat.HasTPC(tpc_id)) continue;
auto const& tpc = cryostat.TPC(tpc_id);
if(_scan[cryo_id].size() <= tpc_id)
_scan[cryo_id].resize(tpc_id+1);
for(auto const& plane_id : plane_v) {
if(!tpc.HasPlane(plane_id)) continue;
if(_scan[cryo_id][tpc_id].size()<=plane_id)
_scan[cryo_id][tpc_id].resize(plane_id+1);
_scan[cryo_id][tpc_id][plane_id] = _valid_nplanes;
++_valid_nplanes;
}
}
}
}
void SuperaWire::initialize()
{ SuperaBase::initialize(); }
std::pair<size_t,size_t> SuperaWire::time_range(const geo::TPCGeo& tpc_geo,
const double x_min,
const double x_max)
{
LARCV_INFO() << "(xmin,xmax) = (" << x_min << "," << x_max << ")" << std::endl;
auto pt = tpc_geo.ReferencePlane().GetCenter();
pt.SetXYZ(x_min,pt.Y(),pt.Z());
double dist_min = tpc_geo.DistanceFromReferencePlane(pt);
pt.SetXYZ(x_max,pt.Y(),pt.Z());
double dist_max = tpc_geo.DistanceFromReferencePlane(pt);
if(dist_min > dist_max) std::swap(dist_min,dist_max);
double min_time = (dist_min/supera::DriftVelocity() - supera::TriggerOffsetTPC()) / supera::TPCTickPeriod();
double max_time = (dist_max/supera::DriftVelocity() - supera::TriggerOffsetTPC()) / supera::TPCTickPeriod();
assert(min_time < max_time);
LARCV_INFO() << "(tmin,tmax) = (" << min_time << "," << max_time << ")" << std::endl;
double mid_time = min_time + (max_time - min_time) / 2.;
double num_time_half = _npx_rows * _time_compression / 2;
size_t min_tick, max_tick;
if( (mid_time + num_time_half) > supera::NumberTimeSamples() ) {
max_tick = supera::NumberTimeSamples() - 1;
min_tick = max_tick - _npx_rows * _time_compression;
LARCV_INFO() << "mid_time + num_time_half (" << mid_time + num_time_half << ") abvoe max (" << supera::NumberTimeSamples() << ")"
<< " ... tick range " << min_tick << " => " << max_tick <<std::endl;
}
else if( (mid_time + 1) > num_time_half ) {
min_tick = 0;
max_tick = _npx_rows * _time_compression - 1;
LARCV_INFO() << "mid_time+1 (" << mid_time + 1 << ") too small"
<< " ... tick range " << min_tick << " => " << max_tick <<std::endl;
}else{
max_tick = (int)(mid_time + num_time_half) - 1;
min_tick = max_tick - _npx_rows + 1;
LARCV_INFO() << " ... tick range " << min_tick << " => " << max_tick <<std::endl;
}
return std::pair<size_t,size_t>(min_tick,max_tick);
}
std::pair<size_t,size_t> SuperaWire::wire_range(const geo::PlaneGeo& plane_geo,
const geo::Point_t& min_pt,
const geo::Point_t& max_pt)
{
LARCV_INFO() << "(ymin,ymax) = (" << min_pt.Y() << "," << max_pt.Y() << ")"
<< " ... (zmin,zmax) = (" << min_pt.Z() << "," << max_pt.Z() << ")" << std::endl;
static geo::Point_t pt0, pt1, pt2, pt3;
auto const bbox = plane_geo.BoundingBox();
/*
pt0.SetXYZ(min_pt.X(),std::max(bbox.MinY(),min_pt.Y()),std::max(bbox.MinZ(),min_pt.Z()));
pt1.SetXYZ(min_pt.X(),std::min(bbox.MaxY(),max_pt.Y()),std::max(bbox.MinZ(),min_pt.Z()));
pt2.SetXYZ(max_pt.X(),std::max(bbox.MinY(),min_pt.Y()),std::min(bbox.MaxZ(),max_pt.Z()));
pt3.SetXYZ(max_pt.X(),std::min(bbox.MaxY(),max_pt.Y()),std::min(bbox.MaxZ(),max_pt.Z()));
auto wid0 = plane_geo.NearestWireID(pt0);
auto wid1 = plane_geo.NearestWireID(pt1);
auto wid2 = plane_geo.NearestWireID(pt2);
auto wid3 = plane_geo.NearestWireID(pt3);
size_t min_wire = std::min(wid0.Wire,wid1.Wire);
min_wire = std::min(min_wire,(size_t)(wid2.Wire));
min_wire = std::min(min_wire,(size_t)(wid3.Wire));
size_t max_wire = std::max(wid0.Wire,wid1.Wire);
max_wire = std::max(max_wire,(size_t)(wid2.Wire));
max_wire = std::max(max_wire,(size_t)(wid3.Wire));
*/
pt0.SetXYZ(bbox.CenterX(),min_pt.Y(),min_pt.Z());
pt1.SetXYZ(bbox.CenterX(),max_pt.Y(),min_pt.Z());
pt2.SetXYZ(bbox.CenterX(),min_pt.Y(),max_pt.Z());
pt3.SetXYZ(bbox.CenterX(),max_pt.Y(),max_pt.Z());
int wid0 = int(0.5 + plane_geo.WireCoordinate(pt0));
int wid1 = int(0.5 + plane_geo.WireCoordinate(pt1));
int wid2 = int(0.5 + plane_geo.WireCoordinate(pt2));
int wid3 = int(0.5 + plane_geo.WireCoordinate(pt3));
if(wid0 < 0) {wid0 = 0;} if(wid0 >= (int)(plane_geo.Nwires())) {wid0 = plane_geo.Nwires() - 1;}
if(wid1 < 0) {wid1 = 0;} if(wid1 >= (int)(plane_geo.Nwires())) {wid1 = plane_geo.Nwires() - 1;}
if(wid2 < 0) {wid2 = 0;} if(wid2 >= (int)(plane_geo.Nwires())) {wid2 = plane_geo.Nwires() - 1;}
if(wid3 < 0) {wid3 = 0;} if(wid3 >= (int)(plane_geo.Nwires())) {wid3 = plane_geo.Nwires() - 1;}
size_t min_wire = std::min(std::min(std::min(wid0,wid1),wid2),wid3);
size_t max_wire = std::max(std::max(std::max(wid0,wid1),wid2),wid3);
LARCV_INFO() << "(min_wire,max_wire) = (" << min_wire << "," << max_wire << ")" << std::endl;
// Now define the range based on number of pixels requested + wire range
size_t mid_wire = min_wire + (size_t)(((double)max_wire - (double)min_wire) / 2. + 0.5);
size_t num_wire_half = _npx_columns / 2;
if( (mid_wire + num_wire_half) > plane_geo.Nwires() ) {
max_wire = plane_geo.Nwires()-1;
min_wire = max_wire - _npx_columns + 1;
LARCV_INFO() << "mid_wire + num_wire_half (" << mid_wire + num_wire_half << ") abvoe max (" << plane_geo.Nwires() << ")"
<< " ... wire range " << min_wire << " => " << max_wire <<std::endl;
}
else if( (mid_wire+1) < num_wire_half ) {
min_wire = 0;
max_wire = _npx_columns -1;
LARCV_INFO() << "mid_wire+1 (" << mid_wire + 1 << ") too small"
<< " ... wire range " << min_wire << " => " << max_wire <<std::endl;
}
else{
max_wire = (mid_wire + num_wire_half - 1);
min_wire = mid_wire - num_wire_half;
LARCV_INFO() << " ... wire range " << min_wire << " => " << max_wire <<std::endl;
}
return std::pair<size_t,size_t>(min_wire,max_wire);
}
bool SuperaWire::process(IOManager& mgr)
{
SuperaBase::process(mgr);
larcv::Voxel3DMeta meta3d;
if(!_ref_meta3d_cluster3d.empty()) {
auto const& ev_cluster3d = mgr.get_data<larcv::EventClusterVoxel3D>(_ref_meta3d_cluster3d);
meta3d = ev_cluster3d.meta();
}
else if(!_ref_meta3d_tensor3d.empty()) {
auto const& ev_tensor3d = mgr.get_data<larcv::EventSparseTensor3D>(_ref_meta3d_tensor3d);
meta3d = ev_tensor3d.meta();
}
//
// Define ImageMeta per plane, then store recob::Wire into VoxelSet per plane
//
// a) a list of voxel set to be filled
std::vector<larcv::VoxelSet> vs_v(_valid_nplanes);
// b) a list of meta2d
std::vector<larcv::ImageMeta> meta2d_v(_valid_nplanes);
// First loop over configured planes and set the valid meta2d attributes (i.e. data)
auto geop = lar::providerFrom<geo::Geometry>();
for(unsigned int cryo_id=0; cryo_id<_scan.size(); ++cryo_id) {
auto const& tpcs = _scan.at(cryo_id);
for(unsigned int tpc_id=0; tpc_id<tpcs.size(); ++tpc_id) {
auto const& planes = tpcs.at(tpc_id);
for(unsigned int plane_id=0; plane_id<planes.size(); ++plane_id) {
if(planes.at(plane_id)<0) continue;
LARCV_INFO() << "Creating meta: " << cryo_id << "-" << tpc_id << "_" << plane_id << std::endl;
// get the meta
auto& meta2d = meta2d_v.at(planes.at(plane_id));
// look up yz boundary
auto const& plane_geo = geop->Plane(plane_id,tpc_id,cryo_id);
geo::Point_t min_pt3d, max_pt3d;
min_pt3d.SetXYZ(meta3d.bottom_left().x,meta3d.bottom_left().y,meta3d.bottom_left().z);
max_pt3d.SetXYZ(meta3d.top_right().x,meta3d.top_right().y,meta3d.top_right().z);
// Find the wire range
auto wrange = this->wire_range(plane_geo,min_pt3d,max_pt3d);
// Next look up x boundary
auto const& tpc_geo = geop->TPC(tpc_id,cryo_id);
auto trange = this->time_range(tpc_geo,min_pt3d.X(),max_pt3d.X());
// Now you have x (wire) and y (time) range to store. Record in meta2d
meta2d = ImageMeta(wrange.first, trange.first, wrange.second+1, trange.second+1,
_npx_rows, _npx_columns, cryo_id*100+tpc_id*10+plane_id, larcv::kUnitCM);
LARCV_INFO() << meta2d.dump() << std::endl;
}
}
}
// Loop over wires to store actual image info
auto const& wire_v = LArData<supera::LArWire_t>();
for(auto const& wire : wire_v) {
// Need ID info (cryo,tpc,wire num) to find relevant meta & voxelset
auto ch = wire.Channel();
// To live with dumb detectors that use multiplex readout
auto wid_v = geop->ChannelToWire(ch);
assert(wid_v.size() == 1);
auto const& wid = wid_v[0];
// Check to whether or not to store this
auto const& idx = _scan.at(wid.Cryostat).at(wid.TPC).at(wid.Plane);
if(idx < 0) continue;
if(idx >= (int)(meta2d_v.size())) {
std::cout<<std::endl;
std::cout<<idx << "Unexpected: " << meta2d_v.size() << " " << vs_v.size() << std::endl;
throw larbys();
}
auto const& meta2d = meta2d_v.at(idx);
if(wid.Wire < meta2d.min_x() || wid.Wire >= meta2d.max_x()) continue;
auto& vs = vs_v.at(idx);
// Loop over stored sparse vectors (can be multiple!)
for (auto const& range : wire.SignalROI().get_ranges()) {
auto const& adcs = range.data(); // actual pixel values for this wire (=column)
int time_index = range.begin_index(); // start pixel time tick (=row)
for(auto const& adc : adcs) {
if(adc <= _adc_threshold) continue;
if(time_index > meta2d.max_y()) break;
if(time_index < meta2d.min_y())
{ time_index +=1; continue;}
vs.emplace(meta2d.id((double)wid.Wire,(double)(time_index)), adc, true);
time_index += 1;
}
}
}
// Store data
for(unsigned int cryo_id=0; cryo_id<_scan.size(); ++cryo_id) {
auto const& tpcs = _scan.at(cryo_id);
for(unsigned int tpc_id=0; tpc_id<tpcs.size(); ++tpc_id) {
auto const& planes = tpcs.at(tpc_id);
for(unsigned int plane_id=0; plane_id<planes.size(); ++plane_id) {
auto const& idx = planes.at(plane_id);
if(idx < 0) continue;
if(idx >= (int)(meta2d_v.size())) {
std::cout<<std::endl;
std::cout<<idx << "Unexpected: " << meta2d_v.size() << " " << vs_v.size() << std::endl;
throw larbys();
}
std::string output_name = _output_producer;
output_name = output_name + "_" + std::to_string(cryo_id);
output_name = output_name + "_" + std::to_string(tpc_id);
output_name = output_name + "_" + std::to_string(plane_id);
auto& output_event = mgr.get_data<larcv::EventSparseTensor2D>(output_name);
//output_event.emplace(std::move(vs_v.at(idx)),std::move(meta2d_v.at(idx)));
output_event.set(vs_v[idx],meta2d_v[idx]);
/*
std::cout<<cryo_id<<" "<<tpc_id<<" "<<plane_id
<<" ... " << output_event.as_vector().front().size()
<< " " << output_event.as_vector().front().meta().id() << std::endl;
*/
}
}
}
return true;
}
void SuperaWire::finalize()
{}
}
#endif