-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
330 lines (268 loc) · 11.5 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import math
import os
import colossalai
import colossalai.nn as col_nn
import numpy as np
import torch
from colossalai.amp import AMP_TYPE
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import FusedAdam, HybridAdam
from colossalai.utils import get_current_device, get_dataloader
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import TensorShardStrategy
from datasets import load_from_disk
from torch.cuda import reset_peak_memory_stats
from torch.optim.lr_scheduler import LambdaLR
from transformers import BertConfig, BertTokenizer, DataCollatorForLanguageModeling
from model import BertForMaskedLM, BertMaskedLMLoss, bias_dropout_add, bias_gelu
from utils import ModelFromHF, get_args, get_config, get_model_size, print_log
_bert_base = dict(
seq_length=512,
hidden_size=768,
num_heads=12,
depth=12,
ff_size=3072,
)
_bert_large = dict(
seq_length=512,
hidden_size=1024,
num_heads=16,
depth=24,
ff_size=4096,
)
_bert_oppo = dict(
seq_length=512,
hidden_size=2048,
num_heads=32,
depth=36,
ff_size=4096,
)
_bert_oppo_10b = dict(
seq_length=512,
hidden_size=4096,
num_heads=32,
depth=50,
ff_size=16384,
)
_bert_24b = dict(
seq_length=512,
hidden_size=6144,
num_heads=48,
depth=52,
ff_size=24576,
)
_bert_configurations = dict(
bert=_bert_base,
bert_base=_bert_base,
bert_large=_bert_large,
bert_oppo=_bert_oppo,
bert_oppo_10b=_bert_oppo_10b,
bert_24b=_bert_24b,
)
_default_hyperparameters = dict(
batch_size=8,
learning_rate=5e-5,
weight_decay=1e-2,
mlm_prob=0.15,
num_epochs=20,
)
def load_bert_config():
config = get_config()
model_type = config['model']['type']
if model_type in _bert_configurations:
for k, v in _bert_configurations[model_type].items():
if k not in config['model']:
config['model'][k] = v
if 'hyperparameter' in config:
for k, v in _default_hyperparameters.items():
if k not in config['hyperparameter']:
config['hyperparameter'][k] = v
else:
config['hyperparameter'] = _default_hyperparameters
if 'zero' in config:
config['zero']['model_config']['shard_strategy'] = TensorShardStrategy()
if 'fp16' in config:
config['fp16']['mode'] = AMP_TYPE.NAIVE
if 'global_batch_size' in config['hyperparameter'] and 'batch_size' in config['hyperparameter']:
global_bs = config['hyperparameter']['global_batch_size']
micro_bs = config['hyperparameter']['batch_size']
accum_size = global_bs // (micro_bs * gpc.data_parallel_size)
config['gradient_accumulation'] = accum_size
gpc.load_config(config=config)
def build_data():
args = get_args()
config = get_config()
dataset = load_from_disk(args.data_path)
tokenizer = BertTokenizer(vocab_file=args.vocab_file)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer,
mlm=True,
mlm_probability=config['hyperparameter']['mlm_prob'])
global_batch_size = config['hyperparameter'].get('global_batch_size', config['hyperparameter']['batch_size'])
total_samples = max(global_batch_size * config['hyperparameter'].get('steps_per_epoch', 1), len(dataset['train']))
multiple = math.ceil(total_samples / len(dataset['train']))
def repeat(examples):
result = dict()
for k, v in examples.items():
result[k] = np.repeat(v, multiple, axis=0)
return result
train_data = dataset['train'].map(repeat, batched=True, load_from_cache_file=False,
keep_in_memory=True).with_format("torch")
print_log(f'Train dataset loaded:\n{train_data}')
train_data = get_dataloader(train_data,
shuffle=True,
drop_last=True,
batch_size=config['hyperparameter']['batch_size'],
collate_fn=data_collator,
num_workers=2,
pin_memory=True)
test_data = None
if args.do_eval:
test_data = dataset['test'].with_format("torch")
print_log(f'Test dataset loaded:\n{test_data}')
test_data = get_dataloader(dataset['test'],
shuffle=False,
drop_last=True,
batch_size=config['hyperparameter']['batch_size'],
collate_fn=data_collator,
num_workers=2,
pin_memory=True)
vocab_multiple = gpc.get_world_size(ParallelMode.TENSOR) * 128
config['model']['vocab_size'] = math.ceil(len(tokenizer) / vocab_multiple) * vocab_multiple
return train_data, test_data
def build_model():
config = get_config()
model_cfg = config['model']
bert_cfg = BertConfig(
vocab_size=model_cfg['vocab_size'],
hidden_size=model_cfg['hidden_size'],
num_hidden_layers=model_cfg['depth'],
num_attention_heads=model_cfg['num_heads'],
intermediate_size=model_cfg['ff_size'],
max_position_embeddings=model_cfg['seq_length'],
flash_attention=model_cfg.get('flash_attention', False),
checkpoint=config.get('gradient_checkpoint', False),
# use_cache=not config['model'].get('checkpoint', False),
)
if 'zero' in config:
with ZeroInitContext(target_device=get_current_device(), shard_strategy=TensorShardStrategy(), shard_param=True):
model = ModelFromHF(bert_cfg, BertForMaskedLM)
if 'numel' not in config['model']:
config['model']['numel'] = get_model_size(model)
else:
model = ModelFromHF(bert_cfg, BertForMaskedLM)
if 'numel' not in config['model']:
config['model']['numel'] = get_model_size(model)
numel = config['model']['numel']
if numel < 1e9:
msg = f'{numel / 1e6:.3f} M'
else:
msg = f'{numel / 1e9:.3f} B'
print_log(f'Model is built (parameter size = {msg}).')
return model
def build_loss():
return BertMaskedLMLoss()
def build_optimizer(model):
config = get_config()
params = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm']
# configure the weight decay for bert models
grouped_params = [{
'params': [p for n, p in params if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01
}, {
'params': [p for n, p in params if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optim_cls = HybridAdam if 'zero' in config else FusedAdam
optimizer = optim_cls(grouped_params, lr=config['hyperparameter']['learning_rate'])
return optimizer
def build_scheduler(dataloader, optimizer):
config = get_config()
num_steps = config['hyperparameter'].get('steps_per_epoch', len(dataloader))
max_steps = config['hyperparameter']['num_epochs'] * num_steps
warmup_steps = config['hyperparameter'].get('warmup_steps', 0)
min_lr = config['hyperparameter'].get('min_lr', 0.0)
def lr_lambda(current_step: int):
if current_step < warmup_steps:
return float(current_step) / float(max(1, warmup_steps))
return max(min_lr, float(max_steps - current_step) / float(max(1, max_steps - warmup_steps)))
return LambdaLR(optimizer, lr_lambda, -1)
def setup_jit_fusion():
"""Set PyTorch JIT layer fusion options."""
# flags required to enable jit fusion kernels
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(True)
torch._C._debug_set_autodiff_subgraph_inlining(False)
""" Compilie JIT functions before the main training steps """
config = get_config()
if 'fp16' in config:
dtype = torch.float16
else:
dtype = torch.float32
model_cfg = config['model']
vocab_size = 32768
hidden_size = model_cfg['hidden_size']
intermediate_size = model_cfg['ff_size']
seq_length = model_cfg['seq_length']
micro_batch_size = config['hyperparameter']['batch_size']
embed = col_nn.Embedding(vocab_size, hidden_size).to(dtype).to(get_current_device())
linear_1 = col_nn.Linear(hidden_size, intermediate_size, skip_bias_add=True).to(dtype).to(get_current_device())
linear_2 = col_nn.Linear(intermediate_size, hidden_size, skip_bias_add=True).to(dtype).to(get_current_device())
x = torch.randint(vocab_size, (micro_batch_size, seq_length), dtype=torch.long, device=get_current_device())
x = embed(x)
y, y_bias = linear_1(x)
z, z_bias = linear_2(y)
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for bias_grad, input_grad in zip([True, True], [False, True]):
for _ in range(10):
bias = torch.rand_like(y_bias, dtype=dtype, device=get_current_device())
input_ = torch.rand_like(y, dtype=dtype, device=get_current_device())
bias.requires_grad, input_.requires_grad = bias_grad, input_grad
bias_gelu(bias, input_)
# Warmup fused bias+dropout+add
dropout_rate = 0.1
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
for _ in range(10):
input_ = torch.rand_like(z, dtype=dtype, device=get_current_device())
residual = torch.rand_like(x, dtype=dtype, device=get_current_device())
bias = torch.rand_like(z_bias, dtype=dtype, device=get_current_device())
input_.requires_grad = input_grad
bias.requires_grad = bias_grad
residual.requires_grad = residual_grad
bias_dropout_add(input_, bias, residual, dropout_rate, True)
torch.cuda.empty_cache()
def init_w_col():
disable_existing_loggers()
args = get_args()
config = get_config()
colossalai.launch_from_torch(config=config)
logger = get_dist_logger()
if args.log_path:
if not os.path.exists(args.log_path):
os.makedirs(args.log_path, exist_ok=True)
logger.log_to_file(args.log_path)
load_bert_config()
setup_jit_fusion()
print_log('Building data')
train_data, test_data = build_data()
reset_peak_memory_stats()
print_log('Building model')
model = build_model()
criterion = build_loss()
optimizer = build_optimizer(model)
lr_scheduler = build_scheduler(train_data, optimizer)
engine, train_data, test_data, lr_scheduler = colossalai.initialize(model, optimizer, criterion, train_data, test_data,
lr_scheduler)
model = engine.model
criterion = engine.criterion
optimizer = engine.optimizer
return model, train_data, test_data, criterion, optimizer, lr_scheduler