-
Notifications
You must be signed in to change notification settings - Fork 914
/
Copy pathflux_train_control_net.py
877 lines (731 loc) · 39.1 KB
/
flux_train_control_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
# training with captions
# Swap blocks between CPU and GPU:
# This implementation is inspired by and based on the work of 2kpr.
# Many thanks to 2kpr for the original concept and implementation of memory-efficient offloading.
# The original idea has been adapted and extended to fit the current project's needs.
# Key features:
# - CPU offloading during forward and backward passes
# - Use of fused optimizer and grad_hook for efficient gradient processing
# - Per-block fused optimizer instances
import argparse
import copy
import math
import os
import time
from concurrent.futures import ThreadPoolExecutor
from multiprocessing import Value
from typing import List, Optional, Tuple, Union
import toml
import torch
import torch.nn as nn
from tqdm import tqdm
from library import utils
from library.device_utils import clean_memory_on_device, init_ipex
init_ipex()
from accelerate.utils import set_seed
import library.train_util as train_util
from library import (
deepspeed_utils,
flux_train_utils,
flux_utils,
strategy_base,
strategy_flux,
)
from library.sd3_train_utils import FlowMatchEulerDiscreteScheduler
from library.utils import add_logging_arguments, setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
import library.config_util as config_util
# import library.sdxl_train_util as sdxl_train_util
from library.config_util import (
BlueprintGenerator,
ConfigSanitizer,
)
from library.custom_train_functions import add_custom_train_arguments, apply_masked_loss
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
# sdxl_train_util.verify_sdxl_training_args(args)
deepspeed_utils.prepare_deepspeed_args(args)
setup_logging(args, reset=True)
# temporary: backward compatibility for deprecated options. remove in the future
if not args.skip_cache_check:
args.skip_cache_check = args.skip_latents_validity_check
# assert (
# not args.weighted_captions
# ), "weighted_captions is not supported currently / weighted_captionsは現在サポートされていません"
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
logger.warning(
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled / cache_text_encoder_outputs_to_diskが有効になっているため、cache_text_encoder_outputsも有効になります"
)
args.cache_text_encoder_outputs = True
if args.cpu_offload_checkpointing and not args.gradient_checkpointing:
logger.warning(
"cpu_offload_checkpointing is enabled, so gradient_checkpointing is also enabled / cpu_offload_checkpointingが有効になっているため、gradient_checkpointingも有効になります"
)
args.gradient_checkpointing = True
assert (
args.blocks_to_swap is None or args.blocks_to_swap == 0
) or not args.cpu_offload_checkpointing, (
"blocks_to_swap is not supported with cpu_offload_checkpointing / blocks_to_swapはcpu_offload_checkpointingと併用できません"
)
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
# prepare caching strategy: this must be set before preparing dataset. because dataset may use this strategy for initialization.
if args.cache_latents:
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy(
args.cache_latents_to_disk, args.vae_batch_size, args.skip_cache_check
)
strategy_base.LatentsCachingStrategy.set_strategy(latents_caching_strategy)
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True))
if args.dataset_config is not None:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "conditioning_data_dir"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
user_config = {
"datasets": [
{
"subsets": config_util.generate_controlnet_subsets_config_by_subdirs(
args.train_data_dir, args.conditioning_data_dir, args.caption_extension
)
}
]
}
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
train_dataset_group.verify_bucket_reso_steps(16) # TODO これでいいか確認
_, is_schnell, _, _ = flux_utils.analyze_checkpoint_state(args.pretrained_model_name_or_path)
if args.debug_dataset:
if args.cache_text_encoder_outputs:
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(
strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk, args.text_encoder_batch_size, args.skip_cache_check, False
)
)
t5xxl_max_token_length = (
args.t5xxl_max_token_length if args.t5xxl_max_token_length is not None else (256 if is_schnell else 512)
)
strategy_base.TokenizeStrategy.set_strategy(strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length))
train_dataset_group.set_current_strategies()
train_util.debug_dataset(train_dataset_group, True)
return
if len(train_dataset_group) == 0:
logger.error(
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
# load VAE for caching latents
ae = None
if cache_latents:
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu", args.disable_mmap_load_safetensors)
ae.to(accelerator.device, dtype=weight_dtype)
ae.requires_grad_(False)
ae.eval()
train_dataset_group.new_cache_latents(ae, accelerator)
ae.to("cpu") # if no sampling, vae can be deleted
clean_memory_on_device(accelerator.device)
accelerator.wait_for_everyone()
# prepare tokenize strategy
if args.t5xxl_max_token_length is None:
if is_schnell:
t5xxl_max_token_length = 256
else:
t5xxl_max_token_length = 512
else:
t5xxl_max_token_length = args.t5xxl_max_token_length
flux_tokenize_strategy = strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length)
strategy_base.TokenizeStrategy.set_strategy(flux_tokenize_strategy)
# load clip_l, t5xxl for caching text encoder outputs
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", args.disable_mmap_load_safetensors)
t5xxl = flux_utils.load_t5xxl(args.t5xxl, weight_dtype, "cpu", args.disable_mmap_load_safetensors)
clip_l.eval()
t5xxl.eval()
clip_l.requires_grad_(False)
t5xxl.requires_grad_(False)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(args.apply_t5_attn_mask)
strategy_base.TextEncodingStrategy.set_strategy(text_encoding_strategy)
# cache text encoder outputs
sample_prompts_te_outputs = None
if args.cache_text_encoder_outputs:
# Text Encodes are eval and no grad here
clip_l.to(accelerator.device)
t5xxl.to(accelerator.device)
text_encoder_caching_strategy = strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk, args.text_encoder_batch_size, False, False, args.apply_t5_attn_mask
)
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(text_encoder_caching_strategy)
with accelerator.autocast():
train_dataset_group.new_cache_text_encoder_outputs([clip_l, t5xxl], accelerator)
# cache sample prompt's embeddings to free text encoder's memory
if args.sample_prompts is not None:
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}")
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
prompts = train_util.load_prompts(args.sample_prompts)
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = flux_tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
flux_tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, args.apply_t5_attn_mask
)
accelerator.wait_for_everyone()
# now we can delete Text Encoders to free memory
clip_l = None
t5xxl = None
clean_memory_on_device(accelerator.device)
# load FLUX
is_schnell, flux = flux_utils.load_flow_model(
args.pretrained_model_name_or_path, weight_dtype, "cpu", args.disable_mmap_load_safetensors
)
flux.requires_grad_(False)
# load controlnet
controlnet_dtype = torch.float32 if args.deepspeed else weight_dtype
controlnet = flux_utils.load_controlnet(
args.controlnet_model_name_or_path, is_schnell, controlnet_dtype, accelerator.device, args.disable_mmap_load_safetensors
)
controlnet.train()
if args.gradient_checkpointing:
if not args.deepspeed:
flux.enable_gradient_checkpointing(cpu_offload=args.cpu_offload_checkpointing)
controlnet.enable_gradient_checkpointing(cpu_offload=args.cpu_offload_checkpointing)
# block swap
# backward compatibility
if args.blocks_to_swap is None:
blocks_to_swap = args.double_blocks_to_swap or 0
if args.single_blocks_to_swap is not None:
blocks_to_swap += args.single_blocks_to_swap // 2
if blocks_to_swap > 0:
logger.warning(
"double_blocks_to_swap and single_blocks_to_swap are deprecated. Use blocks_to_swap instead."
" / double_blocks_to_swapとsingle_blocks_to_swapは非推奨です。blocks_to_swapを使ってください。"
)
logger.info(
f"double_blocks_to_swap={args.double_blocks_to_swap} and single_blocks_to_swap={args.single_blocks_to_swap} are converted to blocks_to_swap={blocks_to_swap}."
)
args.blocks_to_swap = blocks_to_swap
del blocks_to_swap
is_swapping_blocks = args.blocks_to_swap is not None and args.blocks_to_swap > 0
if is_swapping_blocks:
# Swap blocks between CPU and GPU to reduce memory usage, in forward and backward passes.
# This idea is based on 2kpr's great work. Thank you!
logger.info(f"enable block swap: blocks_to_swap={args.blocks_to_swap}")
flux.enable_block_swap(args.blocks_to_swap, accelerator.device)
flux.move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
# ControlNet only has two blocks, so we can keep it on GPU
# controlnet.enable_block_swap(args.blocks_to_swap, accelerator.device)
else:
flux.to(accelerator.device)
if not cache_latents:
# load VAE here if not cached
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu")
ae.requires_grad_(False)
ae.eval()
ae.to(accelerator.device, dtype=weight_dtype)
training_models = []
params_to_optimize = []
training_models.append(controlnet)
name_and_params = list(controlnet.named_parameters())
# single param group for now
params_to_optimize.append({"params": [p for _, p in name_and_params], "lr": args.learning_rate})
param_names = [[n for n, _ in name_and_params]]
# calculate number of trainable parameters
n_params = 0
for group in params_to_optimize:
for p in group["params"]:
n_params += p.numel()
accelerator.print(f"number of trainable parameters: {n_params}")
# 学習に必要なクラスを準備する
accelerator.print("prepare optimizer, data loader etc.")
if args.blockwise_fused_optimizers:
# fused backward pass: https://pytorch.org/tutorials/intermediate/optimizer_step_in_backward_tutorial.html
# Instead of creating an optimizer for all parameters as in the tutorial, we create an optimizer for each block of parameters.
# This balances memory usage and management complexity.
# split params into groups. currently different learning rates are not supported
grouped_params = []
param_group = {}
for group in params_to_optimize:
named_parameters = list(controlnet.named_parameters())
assert len(named_parameters) == len(group["params"]), "number of parameters does not match"
for p, np in zip(group["params"], named_parameters):
# determine target layer and block index for each parameter
block_type = "other" # double, single or other
if np[0].startswith("double_blocks"):
block_index = int(np[0].split(".")[1])
block_type = "double"
elif np[0].startswith("single_blocks"):
block_index = int(np[0].split(".")[1])
block_type = "single"
else:
block_index = -1
param_group_key = (block_type, block_index)
if param_group_key not in param_group:
param_group[param_group_key] = []
param_group[param_group_key].append(p)
block_types_and_indices = []
for param_group_key, param_group in param_group.items():
block_types_and_indices.append(param_group_key)
grouped_params.append({"params": param_group, "lr": args.learning_rate})
num_params = 0
for p in param_group:
num_params += p.numel()
accelerator.print(f"block {param_group_key}: {num_params} parameters")
# prepare optimizers for each group
optimizers = []
for group in grouped_params:
_, _, optimizer = train_util.get_optimizer(args, trainable_params=[group])
optimizers.append(optimizer)
optimizer = optimizers[0] # avoid error in the following code
logger.info(f"using {len(optimizers)} optimizers for blockwise fused optimizers")
if train_util.is_schedulefree_optimizer(optimizers[0], args):
raise ValueError("Schedule-free optimizer is not supported with blockwise fused optimizers")
optimizer_train_fn = lambda: None # dummy function
optimizer_eval_fn = lambda: None # dummy function
else:
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)
optimizer_train_fn, optimizer_eval_fn = train_util.get_optimizer_train_eval_fn(optimizer, args)
# prepare dataloader
# strategies are set here because they cannot be referenced in another process. Copy them with the dataset
# some strategies can be None
train_dataset_group.set_current_strategies()
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
if args.blockwise_fused_optimizers:
# prepare lr schedulers for each optimizer
lr_schedulers = [train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) for optimizer in optimizers]
lr_scheduler = lr_schedulers[0] # avoid error in the following code
else:
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
flux.to(weight_dtype)
controlnet.to(weight_dtype)
if clip_l is not None:
clip_l.to(weight_dtype)
t5xxl.to(weight_dtype) # TODO check works with fp16 or not
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
flux.to(weight_dtype)
controlnet.to(weight_dtype)
if clip_l is not None:
clip_l.to(weight_dtype)
t5xxl.to(weight_dtype)
# if we don't cache text encoder outputs, move them to device
if not args.cache_text_encoder_outputs:
clip_l.to(accelerator.device)
t5xxl.to(accelerator.device)
clean_memory_on_device(accelerator.device)
if args.deepspeed:
ds_model = deepspeed_utils.prepare_deepspeed_model(args, mmdit=controlnet)
# most of ZeRO stage uses optimizer partitioning, so we have to prepare optimizer and ds_model at the same time. # pull/1139#issuecomment-1986790007
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
ds_model, optimizer, train_dataloader, lr_scheduler
)
training_models = [ds_model]
else:
# accelerator does some magic
# if we doesn't swap blocks, we can move the model to device
controlnet = accelerator.prepare(controlnet) # , device_placement=[not is_swapping_blocks])
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
# During deepseed training, accelerate not handles fp16/bf16|mixed precision directly via scaler. Let deepspeed engine do.
# -> But we think it's ok to patch accelerator even if deepspeed is enabled.
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
if args.fused_backward_pass:
# use fused optimizer for backward pass: other optimizers will be supported in the future
import library.adafactor_fused
library.adafactor_fused.patch_adafactor_fused(optimizer)
for param_group, param_name_group in zip(optimizer.param_groups, param_names):
for parameter, param_name in zip(param_group["params"], param_name_group):
if parameter.requires_grad:
def create_grad_hook(p_name, p_group):
def grad_hook(tensor: torch.Tensor):
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
accelerator.clip_grad_norm_(tensor, args.max_grad_norm)
optimizer.step_param(tensor, p_group)
tensor.grad = None
return grad_hook
parameter.register_post_accumulate_grad_hook(create_grad_hook(param_name, param_group))
elif args.blockwise_fused_optimizers:
# prepare for additional optimizers and lr schedulers
for i in range(1, len(optimizers)):
optimizers[i] = accelerator.prepare(optimizers[i])
lr_schedulers[i] = accelerator.prepare(lr_schedulers[i])
# counters are used to determine when to step the optimizer
global optimizer_hooked_count
global num_parameters_per_group
global parameter_optimizer_map
optimizer_hooked_count = {}
num_parameters_per_group = [0] * len(optimizers)
parameter_optimizer_map = {}
for opt_idx, optimizer in enumerate(optimizers):
for param_group in optimizer.param_groups:
for parameter in param_group["params"]:
if parameter.requires_grad:
def grad_hook(parameter: torch.Tensor):
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
accelerator.clip_grad_norm_(parameter, args.max_grad_norm)
i = parameter_optimizer_map[parameter]
optimizer_hooked_count[i] += 1
if optimizer_hooked_count[i] == num_parameters_per_group[i]:
optimizers[i].step()
optimizers[i].zero_grad(set_to_none=True)
parameter.register_post_accumulate_grad_hook(grad_hook)
parameter_optimizer_map[parameter] = opt_idx
num_parameters_per_group[opt_idx] += 1
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training / 学習開始")
accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# accelerator.print(
# f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
# )
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"finetuning" if args.log_tracker_name is None else args.log_tracker_name,
config=train_util.get_sanitized_config_or_none(args),
init_kwargs=init_kwargs,
)
if is_swapping_blocks:
flux.prepare_block_swap_before_forward()
# For --sample_at_first
optimizer_eval_fn()
flux_train_utils.sample_images(
accelerator, args, 0, global_step, flux, ae, [clip_l, t5xxl], sample_prompts_te_outputs, controlnet=controlnet
)
optimizer_train_fn()
if len(accelerator.trackers) > 0:
# log empty object to commit the sample images to wandb
accelerator.log({}, step=0)
loss_recorder = train_util.LossRecorder()
epoch = 0 # avoid error when max_train_steps is 0
for epoch in range(num_train_epochs):
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
for m in training_models:
m.train()
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
if args.blockwise_fused_optimizers:
optimizer_hooked_count = {i: 0 for i in range(len(optimizers))} # reset counter for each step
with accelerator.accumulate(*training_models):
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device, dtype=weight_dtype)
else:
with torch.no_grad():
# encode images to latents. images are [-1, 1]
latents = ae.encode(batch["images"].to(ae.dtype)).to(accelerator.device, dtype=weight_dtype)
# NaNが含まれていれば警告を表示し0に置き換える
if torch.any(torch.isnan(latents)):
accelerator.print("NaN found in latents, replacing with zeros")
latents = torch.nan_to_num(latents, 0, out=latents)
text_encoder_outputs_list = batch.get("text_encoder_outputs_list", None)
if text_encoder_outputs_list is not None:
text_encoder_conds = text_encoder_outputs_list
else:
# not cached or training, so get from text encoders
tokens_and_masks = batch["input_ids_list"]
with torch.no_grad():
input_ids = [ids.to(accelerator.device) for ids in batch["input_ids_list"]]
text_encoder_conds = text_encoding_strategy.encode_tokens(
flux_tokenize_strategy, [clip_l, t5xxl], input_ids, args.apply_t5_attn_mask
)
text_encoder_conds = [c.to(weight_dtype) for c in text_encoder_conds]
# TODO support some features for noise implemented in get_noise_noisy_latents_and_timesteps
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# get noisy model input and timesteps
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps(
args, noise_scheduler_copy, latents, noise, accelerator.device, weight_dtype
)
# pack latents and get img_ids
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) # b, c, h*2, w*2 -> b, h*w, c*4
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2
img_ids = (
flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width)
.to(device=accelerator.device)
.to(weight_dtype)
)
# get guidance: ensure args.guidance_scale is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device, dtype=weight_dtype)
# call model
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
if not args.apply_t5_attn_mask:
t5_attn_mask = None
with accelerator.autocast():
block_samples, block_single_samples = controlnet(
img=packed_noisy_model_input,
img_ids=img_ids,
controlnet_cond=batch["conditioning_images"].to(accelerator.device).to(weight_dtype),
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transformer model (we should not keep it but I want to keep the inputs same for the model for testing)
model_pred = flux(
img=packed_noisy_model_input,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
block_controlnet_hidden_states=block_samples,
block_controlnet_single_hidden_states=block_single_samples,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
# unpack latents
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width)
# apply model prediction type
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas)
# flow matching loss: this is different from SD3
target = noise - latents
# calculate loss
loss = train_util.conditional_loss(
model_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=None
)
if weighting is not None:
loss = loss * weighting
if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None):
loss = apply_masked_loss(loss, batch)
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
loss = loss.mean()
# backward
accelerator.backward(loss)
if not (args.fused_backward_pass or args.blockwise_fused_optimizers):
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = []
for m in training_models:
params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
else:
# optimizer.step() and optimizer.zero_grad() are called in the optimizer hook
lr_scheduler.step()
if args.blockwise_fused_optimizers:
for i in range(1, len(optimizers)):
lr_schedulers[i].step()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
optimizer_eval_fn()
flux_train_utils.sample_images(
accelerator,
args,
None,
global_step,
flux,
ae,
[clip_l, t5xxl],
sample_prompts_te_outputs,
controlnet=controlnet,
)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
flux_train_utils.save_flux_model_on_epoch_end_or_stepwise(
args,
False,
accelerator,
save_dtype,
epoch,
num_train_epochs,
global_step,
accelerator.unwrap_model(controlnet),
)
optimizer_train_fn()
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if len(accelerator.trackers) > 0:
logs = {"loss": current_loss}
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True)
accelerator.log(logs, step=global_step)
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
avr_loss: float = loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if len(accelerator.trackers) > 0:
logs = {"loss/epoch": loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
optimizer_eval_fn()
if args.save_every_n_epochs is not None:
if accelerator.is_main_process:
flux_train_utils.save_flux_model_on_epoch_end_or_stepwise(
args,
True,
accelerator,
save_dtype,
epoch,
num_train_epochs,
global_step,
accelerator.unwrap_model(controlnet),
)
flux_train_utils.sample_images(
accelerator, args, epoch + 1, global_step, flux, ae, [clip_l, t5xxl], sample_prompts_te_outputs, controlnet=controlnet
)
optimizer_train_fn()
is_main_process = accelerator.is_main_process
# if is_main_process:
controlnet = accelerator.unwrap_model(controlnet)
accelerator.end_training()
optimizer_eval_fn()
if args.save_state or args.save_state_on_train_end:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
flux_train_utils.save_flux_model_on_train_end(args, save_dtype, epoch, global_step, controlnet)
logger.info("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
add_logging_arguments(parser)
train_util.add_sd_models_arguments(parser) # TODO split this
train_util.add_dataset_arguments(parser, False, True, True)
train_util.add_training_arguments(parser, False)
train_util.add_masked_loss_arguments(parser)
deepspeed_utils.add_deepspeed_arguments(parser)
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
add_custom_train_arguments(parser) # TODO remove this from here
train_util.add_dit_training_arguments(parser)
flux_train_utils.add_flux_train_arguments(parser)
parser.add_argument(
"--mem_eff_save",
action="store_true",
help="[EXPERIMENTAL] use memory efficient custom model saving method / メモリ効率の良い独自のモデル保存方法を使う",
)
parser.add_argument(
"--fused_optimizer_groups",
type=int,
default=None,
help="**this option is not working** will be removed in the future / このオプションは動作しません。将来削除されます",
)
parser.add_argument(
"--blockwise_fused_optimizers",
action="store_true",
help="enable blockwise optimizers for fused backward pass and optimizer step / fused backward passとoptimizer step のためブロック単位のoptimizerを有効にする",
)
parser.add_argument(
"--skip_latents_validity_check",
action="store_true",
help="[Deprecated] use 'skip_cache_check' instead / 代わりに 'skip_cache_check' を使用してください",
)
parser.add_argument(
"--double_blocks_to_swap",
type=int,
default=None,
help="[Deprecated] use 'blocks_to_swap' instead / 代わりに 'blocks_to_swap' を使用してください",
)
parser.add_argument(
"--single_blocks_to_swap",
type=int,
default=None,
help="[Deprecated] use 'blocks_to_swap' instead / 代わりに 'blocks_to_swap' を使用してください",
)
parser.add_argument(
"--cpu_offload_checkpointing",
action="store_true",
help="[EXPERIMENTAL] enable offloading of tensors to CPU during checkpointing / チェックポイント時にテンソルをCPUにオフロードする",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
train(args)