-
Notifications
You must be signed in to change notification settings - Fork 914
/
Copy pathflux_train_network.py
583 lines (482 loc) · 27.4 KB
/
flux_train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import argparse
import copy
import math
import random
from typing import Any, Optional
import torch
from accelerate import Accelerator
from library.device_utils import clean_memory_on_device, init_ipex
init_ipex()
import train_network
from library import (
flux_models,
flux_train_utils,
flux_utils,
sd3_train_utils,
strategy_base,
strategy_flux,
train_util,
)
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
class FluxNetworkTrainer(train_network.NetworkTrainer):
def __init__(self):
super().__init__()
self.sample_prompts_te_outputs = None
self.is_schnell: Optional[bool] = None
self.is_swapping_blocks: bool = False
def assert_extra_args(self, args, train_dataset_group):
super().assert_extra_args(args, train_dataset_group)
# sdxl_train_util.verify_sdxl_training_args(args)
if args.fp8_base_unet:
args.fp8_base = True # if fp8_base_unet is enabled, fp8_base is also enabled for FLUX.1
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
logger.warning(
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled / cache_text_encoder_outputs_to_diskが有効になっているため、cache_text_encoder_outputsも有効になります"
)
args.cache_text_encoder_outputs = True
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# prepare CLIP-L/T5XXL training flags
self.train_clip_l = not args.network_train_unet_only
self.train_t5xxl = False # default is False even if args.network_train_unet_only is False
if args.max_token_length is not None:
logger.warning("max_token_length is not used in Flux training / max_token_lengthはFluxのトレーニングでは使用されません")
assert (
args.blocks_to_swap is None or args.blocks_to_swap == 0
) or not args.cpu_offload_checkpointing, "blocks_to_swap is not supported with cpu_offload_checkpointing / blocks_to_swapはcpu_offload_checkpointingと併用できません"
# deprecated split_mode option
if args.split_mode:
if args.blocks_to_swap is not None:
logger.warning(
"split_mode is deprecated. Because `--blocks_to_swap` is set, `--split_mode` is ignored."
" / split_modeは非推奨です。`--blocks_to_swap`が設定されているため、`--split_mode`は無視されます。"
)
else:
logger.warning(
"split_mode is deprecated. Please use `--blocks_to_swap` instead. `--blocks_to_swap 18` is automatically set."
" / split_modeは非推奨です。代わりに`--blocks_to_swap`を使用してください。`--blocks_to_swap 18`が自動的に設定されました。"
)
args.blocks_to_swap = 18 # 18 is safe for most cases
train_dataset_group.verify_bucket_reso_steps(32) # TODO check this
def load_target_model(self, args, weight_dtype, accelerator):
# currently offload to cpu for some models
# if the file is fp8 and we are using fp8_base, we can load it as is (fp8)
loading_dtype = None if args.fp8_base else weight_dtype
# if we load to cpu, flux.to(fp8) takes a long time, so we should load to gpu in future
self.is_schnell, model = flux_utils.load_flow_model(
args.pretrained_model_name_or_path, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors
)
if args.fp8_base:
# check dtype of model
if model.dtype == torch.float8_e4m3fnuz or model.dtype == torch.float8_e5m2 or model.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}")
elif model.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 FLUX model")
else:
logger.info(
"Cast FLUX model to fp8. This may take a while. You can reduce the time by using fp8 checkpoint."
" / FLUXモデルをfp8に変換しています。これには時間がかかる場合があります。fp8チェックポイントを使用することで時間を短縮できます。"
)
model.to(torch.float8_e4m3fn)
# if args.split_mode:
# model = self.prepare_split_model(model, weight_dtype, accelerator)
self.is_swapping_blocks = args.blocks_to_swap is not None and args.blocks_to_swap > 0
if self.is_swapping_blocks:
# Swap blocks between CPU and GPU to reduce memory usage, in forward and backward passes.
logger.info(f"enable block swap: blocks_to_swap={args.blocks_to_swap}")
model.enable_block_swap(args.blocks_to_swap, accelerator.device)
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
clip_l.eval()
# if the file is fp8 and we are using fp8_base (not unet), we can load it as is (fp8)
if args.fp8_base and not args.fp8_base_unet:
loading_dtype = None # as is
else:
loading_dtype = weight_dtype
# loading t5xxl to cpu takes a long time, so we should load to gpu in future
t5xxl = flux_utils.load_t5xxl(args.t5xxl, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
t5xxl.eval()
if args.fp8_base and not args.fp8_base_unet:
# check dtype of model
if t5xxl.dtype == torch.float8_e4m3fnuz or t5xxl.dtype == torch.float8_e5m2 or t5xxl.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
elif t5xxl.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 T5XXL model")
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model
def get_tokenize_strategy(self, args):
_, is_schnell, _, _ = flux_utils.analyze_checkpoint_state(args.pretrained_model_name_or_path)
if args.t5xxl_max_token_length is None:
if is_schnell:
t5xxl_max_token_length = 256
else:
t5xxl_max_token_length = 512
else:
t5xxl_max_token_length = args.t5xxl_max_token_length
logger.info(f"t5xxl_max_token_length: {t5xxl_max_token_length}")
return strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length, args.tokenizer_cache_dir)
def get_tokenizers(self, tokenize_strategy: strategy_flux.FluxTokenizeStrategy):
return [tokenize_strategy.clip_l, tokenize_strategy.t5xxl]
def get_latents_caching_strategy(self, args):
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy(args.cache_latents_to_disk, args.vae_batch_size, False)
return latents_caching_strategy
def get_text_encoding_strategy(self, args):
return strategy_flux.FluxTextEncodingStrategy(apply_t5_attn_mask=args.apply_t5_attn_mask)
def post_process_network(self, args, accelerator, network, text_encoders, unet):
# check t5xxl is trained or not
self.train_t5xxl = network.train_t5xxl
if self.train_t5xxl and args.cache_text_encoder_outputs:
raise ValueError(
"T5XXL is trained, so cache_text_encoder_outputs cannot be used / T5XXL学習時はcache_text_encoder_outputsは使用できません"
)
def get_models_for_text_encoding(self, args, accelerator, text_encoders):
if args.cache_text_encoder_outputs:
if self.train_clip_l and not self.train_t5xxl:
return text_encoders[0:1] # only CLIP-L is needed for encoding because T5XXL is cached
else:
return None # no text encoders are needed for encoding because both are cached
else:
return text_encoders # both CLIP-L and T5XXL are needed for encoding
def get_text_encoders_train_flags(self, args, text_encoders):
return [self.train_clip_l, self.train_t5xxl]
def get_text_encoder_outputs_caching_strategy(self, args):
if args.cache_text_encoder_outputs:
# if the text encoders is trained, we need tokenization, so is_partial is True
return strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk,
args.text_encoder_batch_size,
args.skip_cache_check,
is_partial=self.train_clip_l or self.train_t5xxl,
apply_t5_attn_mask=args.apply_t5_attn_mask,
)
else:
return None
def cache_text_encoder_outputs_if_needed(
self, args, accelerator: Accelerator, unet, vae, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
):
if args.cache_text_encoder_outputs:
if not args.lowram:
# メモリ消費を減らす
logger.info("move vae and unet to cpu to save memory")
org_vae_device = vae.device
org_unet_device = unet.device
vae.to("cpu")
unet.to("cpu")
clean_memory_on_device(accelerator.device)
# When TE is not be trained, it will not be prepared so we need to use explicit autocast
logger.info("move text encoders to gpu")
text_encoders[0].to(accelerator.device, dtype=weight_dtype) # always not fp8
text_encoders[1].to(accelerator.device)
if text_encoders[1].dtype == torch.float8_e4m3fn:
# if we load fp8 weights, the model is already fp8, so we use it as is
self.prepare_text_encoder_fp8(1, text_encoders[1], text_encoders[1].dtype, weight_dtype)
else:
# otherwise, we need to convert it to target dtype
text_encoders[1].to(weight_dtype)
with accelerator.autocast():
dataset.new_cache_text_encoder_outputs(text_encoders, accelerator)
# cache sample prompts
if args.sample_prompts is not None:
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}")
tokenize_strategy: strategy_flux.FluxTokenizeStrategy = strategy_base.TokenizeStrategy.get_strategy()
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
prompts = train_util.load_prompts(args.sample_prompts)
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
tokenize_strategy, text_encoders, tokens_and_masks, args.apply_t5_attn_mask
)
self.sample_prompts_te_outputs = sample_prompts_te_outputs
accelerator.wait_for_everyone()
# move back to cpu
if not self.is_train_text_encoder(args):
logger.info("move CLIP-L back to cpu")
text_encoders[0].to("cpu")
logger.info("move t5XXL back to cpu")
text_encoders[1].to("cpu")
clean_memory_on_device(accelerator.device)
if not args.lowram:
logger.info("move vae and unet back to original device")
vae.to(org_vae_device)
unet.to(org_unet_device)
else:
# Text Encoderから毎回出力を取得するので、GPUに乗せておく
text_encoders[0].to(accelerator.device, dtype=weight_dtype)
text_encoders[1].to(accelerator.device)
# def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
# noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
# # get size embeddings
# orig_size = batch["original_sizes_hw"]
# crop_size = batch["crop_top_lefts"]
# target_size = batch["target_sizes_hw"]
# embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# # concat embeddings
# encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
# vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
# text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
# noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
# return noise_pred
def sample_images(self, accelerator, args, epoch, global_step, device, ae, tokenizer, text_encoder, flux):
text_encoders = text_encoder # for compatibility
text_encoders = self.get_models_for_text_encoding(args, accelerator, text_encoders)
flux_train_utils.sample_images(
accelerator, args, epoch, global_step, flux, ae, text_encoders, self.sample_prompts_te_outputs
)
# return
"""
class FluxUpperLowerWrapper(torch.nn.Module):
def __init__(self, flux_upper: flux_models.FluxUpper, flux_lower: flux_models.FluxLower, device: torch.device):
super().__init__()
self.flux_upper = flux_upper
self.flux_lower = flux_lower
self.target_device = device
def prepare_block_swap_before_forward(self):
pass
def forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None, txt_attention_mask=None):
self.flux_lower.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_upper.to(self.target_device)
img, txt, vec, pe = self.flux_upper(img, img_ids, txt, txt_ids, timesteps, y, guidance, txt_attention_mask)
self.flux_upper.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_lower.to(self.target_device)
return self.flux_lower(img, txt, vec, pe, txt_attention_mask)
wrapper = FluxUpperLowerWrapper(self.flux_upper, flux, accelerator.device)
clean_memory_on_device(accelerator.device)
flux_train_utils.sample_images(
accelerator, args, epoch, global_step, wrapper, ae, text_encoders, self.sample_prompts_te_outputs
)
clean_memory_on_device(accelerator.device)
"""
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any:
noise_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift)
self.noise_scheduler_copy = copy.deepcopy(noise_scheduler)
return noise_scheduler
def encode_images_to_latents(self, args, accelerator, vae, images):
return vae.encode(images)
def shift_scale_latents(self, args, latents):
return latents
def get_noise_pred_and_target(
self,
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet: flux_models.Flux,
network,
weight_dtype,
train_unet,
):
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# get noisy model input and timesteps
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps(
args, noise_scheduler, latents, noise, accelerator.device, weight_dtype
)
# pack latents and get img_ids
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) # b, c, h*2, w*2 -> b, h*w, c*4
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2
img_ids = flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width).to(device=accelerator.device)
# get guidance
# ensure guidance_scale in args is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
for t in text_encoder_conds:
if t is not None and t.dtype.is_floating_point:
t.requires_grad_(True)
img_ids.requires_grad_(True)
guidance_vec.requires_grad_(True)
# Predict the noise residual
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
if not args.apply_t5_attn_mask:
t5_attn_mask = None
def call_dit(img, img_ids, t5_out, txt_ids, l_pooled, timesteps, guidance_vec, t5_attn_mask):
# if not args.split_mode:
# normal forward
with accelerator.autocast():
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transformer model (we should not keep it but I want to keep the inputs same for the model for testing)
model_pred = unet(
img=img,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
"""
else:
# split forward to reduce memory usage
assert network.train_blocks == "single", "train_blocks must be single for split mode"
with accelerator.autocast():
# move flux lower to cpu, and then move flux upper to gpu
unet.to("cpu")
clean_memory_on_device(accelerator.device)
self.flux_upper.to(accelerator.device)
# upper model does not require grad
with torch.no_grad():
intermediate_img, intermediate_txt, vec, pe = self.flux_upper(
img=packed_noisy_model_input,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
# move flux upper back to cpu, and then move flux lower to gpu
self.flux_upper.to("cpu")
clean_memory_on_device(accelerator.device)
unet.to(accelerator.device)
# lower model requires grad
intermediate_img.requires_grad_(True)
intermediate_txt.requires_grad_(True)
vec.requires_grad_(True)
pe.requires_grad_(True)
model_pred = unet(img=intermediate_img, txt=intermediate_txt, vec=vec, pe=pe, txt_attention_mask=t5_attn_mask)
"""
return model_pred
model_pred = call_dit(
img=packed_noisy_model_input,
img_ids=img_ids,
t5_out=t5_out,
txt_ids=txt_ids,
l_pooled=l_pooled,
timesteps=timesteps,
guidance_vec=guidance_vec,
t5_attn_mask=t5_attn_mask,
)
# unpack latents
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width)
# apply model prediction type
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas)
# flow matching loss: this is different from SD3
target = noise - latents
# differential output preservation
if "custom_attributes" in batch:
diff_output_pr_indices = []
for i, custom_attributes in enumerate(batch["custom_attributes"]):
if "diff_output_preservation" in custom_attributes and custom_attributes["diff_output_preservation"]:
diff_output_pr_indices.append(i)
if len(diff_output_pr_indices) > 0:
network.set_multiplier(0.0)
unet.prepare_block_swap_before_forward()
with torch.no_grad():
model_pred_prior = call_dit(
img=packed_noisy_model_input[diff_output_pr_indices],
img_ids=img_ids[diff_output_pr_indices],
t5_out=t5_out[diff_output_pr_indices],
txt_ids=txt_ids[diff_output_pr_indices],
l_pooled=l_pooled[diff_output_pr_indices],
timesteps=timesteps[diff_output_pr_indices],
guidance_vec=guidance_vec[diff_output_pr_indices] if guidance_vec is not None else None,
t5_attn_mask=t5_attn_mask[diff_output_pr_indices] if t5_attn_mask is not None else None,
)
network.set_multiplier(1.0) # may be overwritten by "network_multipliers" in the next step
model_pred_prior = flux_utils.unpack_latents(model_pred_prior, packed_latent_height, packed_latent_width)
model_pred_prior, _ = flux_train_utils.apply_model_prediction_type(
args,
model_pred_prior,
noisy_model_input[diff_output_pr_indices],
sigmas[diff_output_pr_indices] if sigmas is not None else None,
)
target[diff_output_pr_indices] = model_pred_prior.to(target.dtype)
return model_pred, target, timesteps, weighting
def post_process_loss(self, loss, args, timesteps, noise_scheduler):
return loss
def get_sai_model_spec(self, args):
return train_util.get_sai_model_spec(None, args, False, True, False, flux="dev")
def update_metadata(self, metadata, args):
metadata["ss_apply_t5_attn_mask"] = args.apply_t5_attn_mask
metadata["ss_weighting_scheme"] = args.weighting_scheme
metadata["ss_logit_mean"] = args.logit_mean
metadata["ss_logit_std"] = args.logit_std
metadata["ss_mode_scale"] = args.mode_scale
metadata["ss_guidance_scale"] = args.guidance_scale
metadata["ss_timestep_sampling"] = args.timestep_sampling
metadata["ss_sigmoid_scale"] = args.sigmoid_scale
metadata["ss_model_prediction_type"] = args.model_prediction_type
metadata["ss_discrete_flow_shift"] = args.discrete_flow_shift
def is_text_encoder_not_needed_for_training(self, args):
return args.cache_text_encoder_outputs and not self.is_train_text_encoder(args)
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder):
if index == 0: # CLIP-L
return super().prepare_text_encoder_grad_ckpt_workaround(index, text_encoder)
else: # T5XXL
text_encoder.encoder.embed_tokens.requires_grad_(True)
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype):
if index == 0: # CLIP-L
logger.info(f"prepare CLIP-L for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}")
text_encoder.to(te_weight_dtype) # fp8
text_encoder.text_model.embeddings.to(dtype=weight_dtype)
else: # T5XXL
def prepare_fp8(text_encoder, target_dtype):
def forward_hook(module):
def forward(hidden_states):
hidden_gelu = module.act(module.wi_0(hidden_states))
hidden_linear = module.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = module.dropout(hidden_states)
hidden_states = module.wo(hidden_states)
return hidden_states
return forward
for module in text_encoder.modules():
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["T5DenseGatedActDense"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
if flux_utils.get_t5xxl_actual_dtype(text_encoder) == torch.float8_e4m3fn and text_encoder.dtype == weight_dtype:
logger.info(f"T5XXL already prepared for fp8")
else:
logger.info(f"prepare T5XXL for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}, add hooks")
text_encoder.to(te_weight_dtype) # fp8
prepare_fp8(text_encoder, weight_dtype)
def prepare_unet_with_accelerator(
self, args: argparse.Namespace, accelerator: Accelerator, unet: torch.nn.Module
) -> torch.nn.Module:
if not self.is_swapping_blocks:
return super().prepare_unet_with_accelerator(args, accelerator, unet)
# if we doesn't swap blocks, we can move the model to device
flux: flux_models.Flux = unet
flux = accelerator.prepare(flux, device_placement=[not self.is_swapping_blocks])
accelerator.unwrap_model(flux).move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
accelerator.unwrap_model(flux).prepare_block_swap_before_forward()
return flux
def setup_parser() -> argparse.ArgumentParser:
parser = train_network.setup_parser()
train_util.add_dit_training_arguments(parser)
flux_train_utils.add_flux_train_arguments(parser)
parser.add_argument(
"--split_mode",
action="store_true",
# help="[EXPERIMENTAL] use split mode for Flux model, network arg `train_blocks=single` is required"
# + "/[実験的] Fluxモデルの分割モードを使用する。ネットワーク引数`train_blocks=single`が必要",
help="[Deprecated] This option is deprecated. Please use `--blocks_to_swap` instead."
" / このオプションは非推奨です。代わりに`--blocks_to_swap`を使用してください。",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
trainer = FluxNetworkTrainer()
trainer.train(args)