-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_carpentry_2016-08-24.R
372 lines (289 loc) · 8.5 KB
/
data_carpentry_2016-08-24.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# R intro script
# a calculation
2016 - 1969
# load data from web
surveys <- read.csv("http://kbroman.org/datacarp/portal_data_joined.csv")
# top few rows
head( surveys )
# last few rows
tail( surveys )
# structure
str(surveys)
# summary
summary(surveys)
# other useful summaries
dim(surveys)
ncol(surveys)
nrow(surveys)
names(surveys)
colnames(surveys)
rownames(surveys)
# download file from web as local file
download.file("http://kbroman.org/datacarp/portal_data_joined.csv",
"CleanData/portal_data_joined.csv")
# read data from local file
surveys <- read.csv("CleanData/portal_data_joined.csv")
# current working directory
getwd()
# indexing
surveys[1, 1]
surveys[1, 7]
surveys[10001, 7]
surveys[2, ]
surveys[2,] # don't _need_ the spaces
surveys[,7]
sex <- surveys[,7]
sex <- surveys[, "sex"]
sex <- surveys$sex
sex <- surveys[["sex"]]
# pull out a single value from a vector
sex[1]
sex[10001]
# create a vector
c(1, 4, 6)
# pull out multiple values
sex[c(1,4,6)] # <- ouch, 4 and 6 are "" and aren't seen
sex[c(1, 10001)] # <- pull out 1st and 10001th.
# more ways to create vectors
1:10
10:1
sex[1:10]
# every 2nd value
seq(1, 10, by=2)
sex[seq(1,10, by=2)]
# first ten rows of surveys
surveys[1:3,]
surveys[10001:10003,]
surveys[5:7, 1:7]
# seq function
seq(1, 11)
?seq # help
seq(1, 11, 2)
seq(1, 11, by=2)
seq(to=11, from=1, by=2)
# challenge # 2
nrow(surveys)
indexes <- seq(10, nrow(surveys), by=10)
surveys_by_10 <- surveys[indexes , ]
surveys_by_10 <- surveys[seq(10, nrow(surveys), by=10), ]
# those awful blanks in the data file
surveys <- read.csv("CleanData/portal_data_joined.csv",
na.strings="")
surveys[,"sex"]
### dplyr
# install packages
install.packages("dplyr")
install.packages("ggplot2")
# load the dplyr package
library(dplyr)
# select some columns
selected_col <- select(surveys, sex, species_id, plot_type, weight)
head(selected_col)
# filter out some rows
selected_row <- filter(surveys, year == 2002)
head(selected_row)
# filter out some rows
selected_row <- filter(surveys, year == 2002, weight>78)
head(selected_row)
selected_row <- filter(surveys, sex == "F", weight>78)
head(selected_row)
# pipe operator
surveys %>%
filter(weight < 5) %>%
select(species_id, sex, weight)
selected_rows <- filter(surveys, weight<5)
result <- select(selected_rows, species_id, sex, weight)
# challenge #4
surveys %>%
filter(year < 1995) %>%
select(year, sex, weight)
# variation on that, also filter on weight
surveys %>%
filter(year < 1995) %>%
filter(weight > 78) %>%
select(year, sex, weight)
# equivalent to that
surveys %>%
filter(year < 1995, weight > 78) %>%
select(year, sex, weight)
# also filter on species_id
selected_stuff <- surveys %>%
filter(year < 1995, weight > 78, species_id=="DM") %>%
select(year, sex, weight)
# you can actually do this
# (but please don't)
surveys %>%
filter(year < 1995, weight > 78, species_id=="DM") %>%
select(year, sex, weight) -> selected_stuff
# mutate
surveys %>%
mutate(weight_kg = weight / 1000) %>%
tail()
# mutate + filter
surveys %>%
filter(weight > 78) %>%
mutate(weight_kg = weight / 1000) %>%
tail()
# mutate + filter + select
surveys %>%
filter(weight > 78) %>%
mutate(weight_kg = weight / 1000) %>%
select(weight, weight_kg) %>%
tail()
# this won't work
surveys %>%
filter(weight > 78) %>%
select(weight, weight_kg) %>%
mutate(weight_kg = weight / 1000) %>%
tail()
surveys_plus_weight_kg <- surveys %>%
filter(weight > 78) %>%
mutate(weight_kg = weight / 1000)
# add column and write over the surveys data
surveys <- surveys %>%
mutate(weight_kg = weight / 1000)
# square-root function
sqrt(5)
# challenge 5
result <- surveys %>%
mutate(hindfoot_sqrt=sqrt(hindfoot_length)) %>%
filter(hindfoot_sqrt < 3) %>%
select(species_id, hindfoot_sqrt)
# variation on challenge 5, saving rows with NAs
result2 <- surveys %>%
mutate(hindfoot_sqrt=sqrt(hindfoot_length)) %>%
filter(is.na(hindfoot_sqrt) | hindfoot_sqrt < 3) %>%
select(species_id, hindfoot_sqrt)
# count individuals by sex
surveys %>%
group_by(sex) %>%
tally()
# average weight by sex
surveys %>%
group_by(sex) %>%
summarize(mean_weight = mean(weight, na.rm=TRUE) )
surveys %>%
filter(!is.na(sex), sex != "") %>% # <- need one or the other condition
group_by(sex) %>%
summarize(mean_weight = mean(weight, na.rm=TRUE) )
# average weight by sex and by species_id
surveys %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight, na.rm=TRUE) )
# average weight by sex and by species_id
# sort by mean weight
surveys %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight, na.rm=TRUE) ) %>%
arrange(mean_weight)
# average weight by sex and by species_id
# sort by mean weight, descending
surveys %>%
filter(!is.na(sex)) %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight, na.rm=TRUE) ) %>%
arrange(desc(mean_weight)) %>%
filter(!is.na(mean_weight)) %>%
tail
# challenge
surveys %>%
group_by(plot_type) %>%
tally()
###############
# keep only rows that have complete data
surveys_complete <- surveys %>%
filter(!is.na(weight)) %>%
filter(!is.na(hindfoot_length)) %>%
filter(sex != "", !is.na(sex)) %>%
filter(species_id != "", !is.na(species_id))
# count species
species_counts <- surveys_complete %>%
group_by(species_id) %>%
tally()
# frequent species...counts >= 10
frequent_species <- species_counts %>%
filter(n >= 10) %>%
select(species_id)
# filter out less-frequent species
reduced <- surveys_complete %>%
filter(species_id %in% frequent_species$species_id)
# save the reduced data to a file
write.csv(reduced, "CleanData/portal_data_reduced.csv")
## Now to the data visualization
library(ggplot2)
# a first plot
ggplot(reduced, aes(x=weight, y=hindfoot_length)) +
geom_point()
# save thing-to-be-plotted to an object
p <- ggplot(reduced, aes(y=weight, x=hindfoot_length)) +
geom_point()
# build that up in two steps
p1 <- ggplot(reduced, aes(x=weight, y=hindfoot_length))
p2 <- p1 + geom_point()
# challenge 9
reduced_DM <- reduced %>%
filter(species_id == "DM")
ggplot(reduced_DM, aes(x=weight, y=hindfoot_length)) +
geom_point()
# or fully piped
reduced %>%
filter(species_id == "DM") %>%
ggplot(aes(x=weight, y=hindfoot_length)) +
geom_point()
# use some other aesthetics
p <- reduced %>%
filter(species_id == "DM") %>%
ggplot(aes(x=weight, y=hindfoot_length))
p + geom_point(color = "slateblue")
p + geom_point(color = "slateblue", size=2)
p + geom_point(color = "slateblue", size=0.5)
p + geom_point(color = "slateblue", alpha=0.1)
# map further features aesthetics
ggplot(reduced, aes(x=weight, y=hindfoot_length))+
geom_point(aes(color = species_id))
# challenge 10
summaries <- reduced %>%
group_by(species_id) %>%
summarize(mean_weight=mean(weight),
mean_hfl = mean(hindfoot_length),
sample_size = n()) # for sample size
ggplot(summaries, aes(x=mean_weight, y=mean_hfl)) +
geom_point(aes(size=sample_size))
# geom_line to make a line plot
count_by_year <- reduced %>%
group_by(year) %>%
tally()
ggplot(count_by_year, aes(x=year, y=n)) +
geom_line(color="slateblue") + geom_point()
ggplot(count_by_year, aes(x=year, y=n)) +
geom_point(aes(color=year)) + geom_line()
# challenge 11
dmds_counts <- reduced %>%
filter(species_id=="DM" | species_id=="DS") %>%
group_by(year, species_id) %>%
tally()
ggplot(dmds_counts, aes(x=year, y=n, group=species_id)) +
geom_line()
ggplot(reduced, aes(x=weight, y=hindfoot_length)) +
geom_point() + facet_wrap(~ species_id)
ggplot(reduced, aes(x=weight, y=hindfoot_length)) +
geom_point() + facet_grid(~ year)
reduced %>%
filter(year < 1983) %>%
filter(species_id == "DM" | species_id == "DS") %>%
ggplot(aes(x=weight, y=hindfoot_length)) +
geom_point() + facet_grid(species_id ~ .)
# univariate plots
ggplot(reduced, aes(x=weight)) +
geom_histogram() + facet_wrap(~ species_id)
ggplot(reduced, aes(x=species_id, y=weight)) +
geom_boxplot()
ggplot(reduced, aes(x=species_id, y=weight)) +
geom_boxplot() + theme_bw()
# save a plot to a file
p <- ggplot(reduced, aes(x=species_id, y=weight)) +
geom_boxplot() + theme_bw()
ggsave("~/Desktop/my_ggplot.png", p,
height=8, width=10)
ggsave("~/Desktop/my_ggplot.pdf", p,
height=8, width=10)