-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathREFERENCES.txt
89 lines (71 loc) · 3.6 KB
/
REFERENCES.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# References :
## Common
Campbell, G. S., & Norman, J. M.
Introduction to environmental biophysics (2nd ed.) (1998)
New York: Springer, pp. 168-169
http://dx.doi.org/10.1007/978-1-4612-1626-1
Joseph A. Santanello Jr. and Mark A. Friedl.
Diurnal Covariation in Soil Heat Flux and Net Radiation (2003)
J. Appl. Meteor., 42, pp. 851-862.
Remote Sensing of Environment, 112 (3), pp. 901-919.
http://dx.doi.org/10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2
## PT-JPL
Allen, R.G., Pereira, L.S., Raes, D., Smith, M.
Crop evapotranspiration —guidelines for computing crop water requirements
(1998) FAO Irrigation and drainage paper 56. Food and Agriculture
Organization, Rome, pp. 35-39.
http://www.fao.org/docrep/x0490e/x0490e00.htm
Aragon, B., Houborg, R., Tu, K., Fisher, J.B., McCabe, M.
Cubesats enable high spatiotemporal retrievals of crop-water use for
precision agriculture (2018)
Remote Sensing, 10 (12), art. no. 1867.
http://dx.doi.org/10.3390/rs10121867
Carlson, T.N., Capehart, W.J., Gillies, R.R.
A new look at the simplified method for remote sensing of daily
evapotranspiration (1995)
Remote Sensing of Environment, 54 (2), pp. 161-167.
http://dx.doi.org/10.1016/0034-4257(95)00139-R
Choudhury, B.J., Ahmed, N.U., Idso, S.B., Reginato, R.J., Daughtry, C.S.T.
Relations between evaporation coefficients and vegetation indices
studied by model simulations (1994)
Remote Sensing of Environment, 50 (1), pp. 1-17.
http://dx.doi.org/10.1016/0034-4257(94)90090-6
Fisher, J.B., Tu, K.P., Baldocchi, D.D.
Global estimates of the land-atmosphere water flux based on monthly
AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites (2008)
Remote Sensing of Environment, 112 (3), pp. 901-919.
http://dx.doi.org/10.1016/j.rse.2007.06.025
Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M.,
Mooney, H.A., Klooster, S.A.
Terrestrial ecosystem production: A process model based on global
satellite and surface data (1993)
Global Biogeochemical Cycles, 7 (4), pp. 811-841.
http://dx.doi.org/10.1029/93GB02725
Priestley, C.H.B. and Taylor, R.J.
On the Assessment of Surface Heat Flux and Evaporation Using Large Scale
Parameters (1972) Monthly Weather Review, 100, 81-92.
http://dx.doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
## TSEB:
Colaizzi, P. D., Kustas, William P., Anderson, Martha C.,
Agam, Nurit, Tolk, Judy A., Evett, Steven R., Howell, Terry A.,
Gowda, Prasanna H., and O’Shaughnessy, Susan A.
Two-source energy balance model estimates of evapotranspiration using
component and composite surface temperatures (2012)
Advances in Water Resources, 50, pp. 134-151.
https://doi.org/10.1016/j.advwatres.2012.06.004
Kustas, W. P. and J. M. Norman
Evaluation of soil and vegetation heat flux predictions using a
simple two-source model with radiometric temperatures for partial
canopy cover (1999)
Agricultural and Forest Meteorology, 94(1), pp. 13-29.
https://doi.org/10.1016/S0168-1923(99)00005-2
Norman, J. M., Kustas, W. P., and Humes, K. S.
Source approach for estimating soil and vegetation energy fluxes in
observations of directional radiometric surface temperature (1995)
Agricultural and Forest Meteorology, 77(3), pp. 263-293.
https://doi.org/10.1016/0168-1923(95)02265-Y
Zhuang, Q. and B. Wu
Estimating Evapotranspiration from an Improved Two-Source Energy
Balance Model Using ASTER Satellite Imagery (2015)
Water, 7(12), pp. 6673-6688.
https://doi.org/10.3390/w7126653