-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathmaximum-star-sum-of-a-graph.py
53 lines (48 loc) · 1.81 KB
/
maximum-star-sum-of-a-graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Time: O(n)
# Space: O(n)
import random
# quick select
class Solution(object):
def maxStarSum(self, vals, edges, k):
"""
:type vals: List[int]
:type edges: List[List[int]]
:type k: int
:rtype: int
"""
def nth_element(nums, n, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
left, right = 0, len(nums)-1
while left <= right:
pivot_idx = random.randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
adj = [[] for _ in xrange(len(vals))]
for u, v in edges:
if vals[v] > 0:
adj[u].append(v)
if vals[u] > 0:
adj[v].append(u)
result = float("-inf")
for u in xrange(len(vals)):
if 1 <= k <= len(adj[u]):
nth_element(adj[u], k-1, lambda a, b: vals[a] > vals[b])
result = max(result, vals[u]+sum(vals[adj[u][i]] for i in range(min(k, len(adj[u])))))
return result