-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathmaximize-palindrome-length-from-subsequences.py
44 lines (41 loc) · 1.36 KB
/
maximize-palindrome-length-from-subsequences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Time: O((m + n)^2)
# Space: O((m + n)^2)
class Solution(object):
def longestPalindrome(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
s = word1+word2
dp = [[0]*len(s) for _ in xrange(len(s))]
result = 0
for j in xrange(len(s)):
dp[j][j] = 1
for i in reversed(xrange(j)):
if s[i] == s[j]:
dp[i][j] = 2 if i+1 == j else dp[i+1][j-1] + 2
if i < len(word1) <= j:
result = max(result, dp[i][j])
else:
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
return result
# Time: O((m + n)^2)
# Space: O((m + n)^2)
class Solution2(object):
def longestPalindrome(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
s = word1+word2
dp = [[0]*len(s) for _ in xrange(len(s))]
for j in xrange(len(s)):
dp[j][j] = 1
for i in reversed(xrange(j)):
if s[i] == s[j]:
dp[i][j] = 2 if i+1 == j else dp[i+1][j-1] + 2
else:
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
return max([dp[i][j] for i in xrange(len(word1)) for j in xrange(len(word1), len(s)) if s[i] == s[j]] or [0])