-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathfind-the-largest-palindrome-divisible-by-k.py
49 lines (46 loc) · 1.46 KB
/
find-the-largest-palindrome-divisible-by-k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Time: O(n)
# Space: O(1)
# constructive algorithms, math
class Solution(object):
def largestPalindrome(self, n, k):
"""
:type n: int
:type k: int
:rtype: str
"""
def inv(x, p):
return pow(x, p-2, p)
def f(l):
p = 7
result = ['9']*l
if l:
curr = reduce(lambda accu, x: (accu*10+(ord(x)-ord('0')))%p, result, 0)
# l%2 == 0: (curr+(i-9)*11*pow(10, l//2-1, p))%p = 0
# l%2 == 1: (curr+(i-9)*pow(10, l//2, p))%p = 0
i = 9-(curr*inv(11 if l%2 == 0 else 1, p)*inv(pow(10, l//2-int(l%2 == 0), p), p))%p
if i <= 2:
i += p
result[l//2] = result[l//2-int(l%2 == 0)] = str(i)
return "".join(result)
if k in (1, 3, 9):
return '9'*n
if k in (2, 4, 8):
k = min(k, 6)
if n <= k:
return '8'*n
l = k//2
return '8'*l+'9'*(n-k)+'8'*l
if k == 5:
if n <= 2:
return '5'*n
return '5'+'9'*(n-2)+'5'
if k == 6:
if n <= 2:
return '6'*n
if n%2:
l = n//2-1
return '8'+'9'*l+'8'+'9'*l+'8'
l = n//2-2
return '8'+'9'*l+"77"+'9'*l+'8'
l, r = divmod(n, 12)
return "999999"*l+f(r)+"999999"*l # 999999%7 = 0