-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathfinal-array-state-after-k-multiplication-operations-i.py
174 lines (153 loc) · 4.83 KB
/
final-array-state-after-k-multiplication-operations-i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Time: O(n + (n + logr) + nlog(logr) + nlogn) = O(nlogn), assumed log(x) takes O(1) time
# Space: O(n)
import math
# sort, two pointers, sliding window, fast exponentiation
class Solution(object):
def getFinalState(self, nums, k, multiplier):
"""
:type nums: List[int]
:type k: int
:type multiplier: int
:rtype: List[int]
"""
EPS = 1e-15
def count(x, target):
return int(target-x+EPS)
if multiplier == 1:
return nums
vals = sorted((log(x)/log(multiplier), i) for i, x in enumerate(nums))
left = 0
for right in xrange(1, (int(vals[-1][0])+1)+1):
while left < len(vals) and count(vals[left][0], right) >= 1:
left += 1
if k-left < 0:
right -= 1
break
k -= left
for idx, (x, i) in enumerate(vals):
c = count(x, right)
if c <= 0:
break
nums[i] *= pow(multiplier, c)
q, r = divmod(k, len(nums))
m = pow(multiplier, q)
result = [0]*len(nums)
for idx, (x, i) in enumerate(sorted((x, i) for i, x in enumerate(nums))):
result[i] = x*m*(multiplier if idx < r else 1)
return result
# Time: O(n + min(n, k) * log(logr) + nlog(logr) + nlogn) = O(nlogr), assumed log(x) takes O(1) time
# Space: O(n)
import math
# binary search, sort, fast exponentiation
class Solution2(object):
def getFinalState(self, nums, k, multiplier):
"""
:type nums: List[int]
:type k: int
:type multiplier: int
:rtype: List[int]
"""
EPS = 1e-15
def binary_search_right(left, right, check):
while left <= right:
mid = left+(right-left)//2
if not check(mid):
right = mid-1
else:
left = mid+1
return right
def count(x, target):
return int(target-x+EPS)
def check(target):
result = 0
for x, i in vals:
c = count(x, target)
if c <= 0:
break
result += c
return result <= k
if multiplier == 1:
return nums
vals = sorted((log(x)/log(multiplier), i) for i, x in enumerate(nums))
target = binary_search_right(1, int(vals[-1][0])+1, check)
for idx, (x, i) in enumerate(vals):
c = count(x, target)
if c <= 0:
break
k -= c
nums[i] *= pow(multiplier, c)
q, r = divmod(k, len(nums))
m = pow(multiplier, q)
result = [0]*len(nums)
for idx, (x, i) in enumerate(sorted((x, i) for i, x in enumerate(nums))):
result[i] = x*m*(multiplier if idx < r else 1)
return result
# Time: O(min(nlogr, k) * logn + nlogn) = O(nlogn * logr)
# Space: O(n)
import heapq
# heap, sort, fast exponentiation
class Solution3(object):
def getFinalState(self, nums, k, multiplier):
"""
:type nums: List[int]
:type k: int
:type multiplier: int
:rtype: List[int]
"""
if multiplier == 1:
return nums
min_heap = [(x, i) for i, x in enumerate(nums)]
heapq.heapify(min_heap)
mx = max(nums)
for k in reversed(xrange(1, k+1)):
if min_heap[0][0]*multiplier > mx:
break
x, i = heapq.heappop(min_heap)
heapq.heappush(min_heap, (x*multiplier, i))
else:
k = 0
vals = sorted(min_heap)
q, r = divmod(k, len(nums))
m = pow(multiplier, q)
result = [0]*len(nums)
for idx, (x, i) in enumerate(vals):
result[i] = x*m*(multiplier if idx < r else 1)
return result
# Time: O(n + klogn)
# Space: O(n)
import heapq
# simulation, heap
class Solution4(object):
def getFinalState(self, nums, k, multiplier):
"""
:type nums: List[int]
:type k: int
:type multiplier: int
:rtype: List[int]
"""
if multiplier == 1:
return nums
min_heap = [(x, i) for i, x in enumerate(nums)]
heapq.heapify(min_heap)
for _ in xrange(k):
i = heapq.heappop(min_heap)[1]
nums[i] *= multiplier
heapq.heappush(min_heap, (nums[i], i))
return nums
# Time: O(k * n)
# Space: O(1)
# simulation
class Solution5(object):
def getFinalState(self, nums, k, multiplier):
"""
:type nums: List[int]
:type k: int
:type multiplier: int
:rtype: List[int]
"""
if multiplier == 1:
return nums
for _ in xrange(k):
i = min(xrange(len(nums)), key=lambda i: nums[i])
nums[i] *= multiplier
return nums