-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcount-the-number-of-ideal-arrays.py
92 lines (81 loc) · 3.16 KB
/
count-the-number-of-ideal-arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Time: O(sqrt(m) + n + m * (logm + pi(sqrt(m)))) = O(sqrt(m) + n + m * (logm + sqrt(m)/log(sqrt(m)))), pi(n) = number of primes in a range [1, n] = O(n/logn) by prime number theorem, see https://en.wikipedia.org/wiki/Prime_number_theorem
# Space: O(sqrt(m) + n + logm)
import collections
# dp, factorization, combinatorics
class Solution(object):
def idealArrays(self, n, maxValue):
"""
:type n: int
:type maxValue: int
:rtype: int
"""
MOD = 10**9+7
fact, inv, inv_fact = [[1]*2 for _ in xrange(3)]
def nCr(n, k):
while len(inv) <= n: # lazy initialization
fact.append(fact[-1]*len(inv) % MOD)
inv.append(inv[MOD%len(inv)]*(MOD-MOD//len(inv)) % MOD) # https://cp-algorithms.com/algebra/module-inverse.html
inv_fact.append(inv_fact[-1]*inv[-1] % MOD)
return (fact[n]*inv_fact[n-k] % MOD) * inv_fact[k] % MOD
def linear_sieve_of_eratosthenes(n): # Time: O(n), Space: O(n)
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return primes
def prime_factors(x):
factors = collections.Counter()
for p in primes:
if p*p > x:
break
while x%p == 0:
factors[p] += 1
x //= p
if x != 1:
factors[x] += 1
return factors
primes = linear_sieve_of_eratosthenes(int(maxValue**0.5))
result = 0
for k in xrange(1, maxValue+1):
total = 1
for c in prime_factors(k).itervalues():
total = (total*nCr(n+c-1, c))%MOD # H(n, c) = nCr(n+c-1, n)
result = (result+total)%MOD
return result
# Time: O(n * mlogm)
# Space: O(n + m)
import collections
# dp, combinatorics
class Solution2(object):
def idealArrays(self, n, maxValue):
"""
:type n: int
:type maxValue: int
:rtype: int
"""
MOD = 10**9+7
fact, inv, inv_fact = [[1]*2 for _ in xrange(3)]
def nCr(n, k):
while len(inv) <= n: # lazy initialization
fact.append(fact[-1]*len(inv) % MOD)
inv.append(inv[MOD%len(inv)]*(MOD-MOD//len(inv)) % MOD) # https://cp-algorithms.com/algebra/module-inverse.html
inv_fact.append(inv_fact[-1]*inv[-1] % MOD)
return (fact[n]*inv_fact[n-k] % MOD) * inv_fact[k] % MOD
result = 0
dp = collections.Counter(xrange(1, maxValue+1))
for i in xrange(n):
new_dp = collections.Counter()
total = 0
for x, c in dp.iteritems():
total = (total+c)%MOD
for y in xrange(x+x, maxValue+1, x):
new_dp[y] += c
result = (result+total*nCr(n-1, i))%MOD
dp = new_dp
return result