-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcount-almost-equal-pairs-i.py
80 lines (71 loc) · 2.34 KB
/
count-almost-equal-pairs-i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Time: O(n * l^2)
# Space: O(n)
import collections
# freq table, combinatorics
class Solution(object):
def countPairs(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
L = 7
POW10 = [0]*L
POW10[0] = 1
for i in xrange(L-1):
POW10[i+1] = POW10[i]*10
cnt1 = collections.Counter(nums)
cnt2 = collections.Counter()
for x, v in cnt1.iteritems():
for i in xrange(L):
a = x//POW10[i]%10
for j in xrange(i+1, L):
b = x//POW10[j]%10
if a == b or x-a*(POW10[i]-POW10[j])+b*(POW10[i]-POW10[j]) not in cnt1:
continue
cnt2[x-a*(POW10[i]-POW10[j])+b*(POW10[i]-POW10[j])] += v
return sum(v*(v-1)//2 for v in cnt1.itervalues())+sum(v*cnt2[x] for x, v in cnt1.iteritems())//2
# Time: O(n * l^(2 * k)) = O(n * l^2)
# Space: O(n + l^(2 * k)) = O(n + l^2) = O(n)
import collections
# freq table, combinatorics, bfs
class Solution2(object):
def countPairs(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
L = 7
K = 1
POW10 = [0]*L
POW10[0] = 1
for i in xrange(L-1):
POW10[i+1] = POW10[i]*10
def at_most(k, x):
lookup = {x}
result = [x]
u = 0
for _ in xrange(k):
for u in xrange(u, len(result)):
x = result[u]
for i in xrange(L):
a = x//POW10[i]%10
for j in xrange(i+1, L):
b = x//POW10[j]%10
if a == b:
continue
y = x-a*(POW10[i]-POW10[j])+b*(POW10[i]-POW10[j])
if y in lookup:
continue
lookup.add(y)
result.append(y)
return result
result = 0
cnt1 = collections.Counter(nums)
cnt2 = collections.Counter()
for x, v in cnt1.iteritems():
result += cnt2[x]*v+v*(v-1)//2
for x in at_most(K, x):
if x not in cnt1:
continue
cnt2[x] += v
return result