-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathshortest-path-in-a-grid-with-obstacles-elimination.cpp
68 lines (61 loc) · 2.43 KB
/
shortest-path-in-a-grid-with-obstacles-elimination.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
// Time: O(m * n * k)
// Space: O(m * n)
// A* Search Algorithm without heap
class Solution {
public:
int shortestPath(vector<vector<int>>& grid, int k) {
pair<int, int> b = {0, 0};
pair<int, int> t = {grid.size() - 1, grid[0].size() - 1};
return a_star(grid, b, t, k);
}
private:
int a_star(const vector<vector<int>>& grid,
const pair<int, int>& b,
const pair<int, int>& t,
int k) {
int f = g(b, t), dh = 2;
vector<pair<pair<int, int>, int>> closer{{b, k}}, detour;
unordered_map<int, int> lookup;
while (!closer.empty() || !detour.empty()) {
if (closer.empty()) {
f += dh;
swap(closer, detour);
}
const auto [b, k] = closer.back(); closer.pop_back();
if (b == t) {
return f;
}
if (lookup.count(b.first * grid[0].size() + b.second) &&
lookup[b.first * grid[0].size() + b.second] >= k) {
continue;
}
lookup[b.first * grid[0].size() + b.second] = k;
for (const auto& [dx, dy] : directions) {
pair<int, int> nb = {b.first + dx, b.second + dy};
if (!(0 <= nb.first && nb.first < grid.size() &&
0 <= nb.second && nb.second < grid[0].size() &&
(grid[nb.first][nb.second] == 0 || k > 0) &&
(!lookup.count(nb.first * grid[0].size() + nb.second) ||
lookup[nb.first * grid[0].size() + nb.second] < k))) {
continue;
}
if (dot({dx, dy}, {t.first - b.first, t.second - b.second}) > 0) {
closer.emplace_back(nb, k - int(grid[nb.first][nb.second] != 0));
} else {
detour.emplace_back(nb, k - int(grid[nb.first][nb.second] != 0));
}
}
}
return -1;
}
inline int g(const pair<int, int>& a,
const pair<int, int>& b) {
return abs(a.first - b.first) + abs(a.second - b.second);
}
inline int dot(const pair<int, int>& a,
const pair<int, int>& b) {
return a.first * b.first + a.second * b.second;
}
static const vector<pair<int, int>> directions;
};
const vector<pair<int, int>> Solution::directions = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};