-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-total-distance-traveled.cpp
56 lines (54 loc) · 2.2 KB
/
minimum-total-distance-traveled.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Time: O(mlogm + nlogn + m * n)
// Space: O(n)
// sort, dp, prefix sum, mono deque
class Solution {
public:
long long minimumTotalDistance(vector<int>& robot, vector<vector<int>>& factory) {
static const int64_t INF = numeric_limits<int64_t>::max();
sort(begin(robot), end(robot));
sort(begin(factory), end(factory));
vector<int64_t> dp(size(robot) + 1, INF); // dp[j] at i: min of factory[:i+1] and robot[:j]
dp[0] = 0;
for (int i = 0; i < size(factory); ++i) {
int64_t prefix = 0;
deque<pair<int64_t, int>> dq = {{dp[0] - prefix, 0}}; // pattern of min in the sliding window with size (limit+1)
for (int j = 1; j <= size(robot); ++j) {
prefix += abs(robot[j - 1] - factory[i][0]);
if (j - dq.front().second == factory[i][1] + 1) {
dq.pop_front();
}
while (!empty(dq) && dq.back().first >= (dp[j] != INF ? dp[j] - prefix : INF)) {
dq.pop_back();
}
dq.emplace_back((dp[j] != INF ? dp[j] - prefix : INF), j);
dp[j] = dq.front().first != INF ? dq.front().first + prefix : INF;
}
}
return dp.back();
}
};
// Time: O(mlogm + nlogn + m * n * l), l is the max limit
// Space: O(n)
// sort, dp
class Solution2 {
public:
long long minimumTotalDistance(vector<int>& robot, vector<vector<int>>& factory) {
static const int64_t INF = numeric_limits<int64_t>::max();
sort(begin(robot), end(robot));
sort(begin(factory), end(factory));
vector<int64_t> dp(size(robot) + 1, INF); // dp[j] at i: min of factory[:i+1] and robot[:j]
dp[0] = 0;
for (int i = 0; i < size(factory); ++i) {
for (int j = size(robot); j >= 1; --j) {
int64_t curr = 0;
for (int k = 0; k <= min(factory[i][1], j); ++k) {
dp[j] = min(dp[j], dp[j - k] != INF ? dp[j - k] + curr : INF);
if ((j - 1) - k >= 0) {
curr += abs(robot[(j - 1) - k] - factory[i][0]);
}
}
}
}
return dp.back();
}
};