-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathdifference-between-maximum-and-minimum-price-sum.cpp
199 lines (188 loc) · 6.72 KB
/
difference-between-maximum-and-minimum-price-sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Time: O(n)
// Space: O(n)
// iterative dfs, tree dp
class Solution {
public:
long long maxOutput(int n, vector<vector<int>>& edges, vector<int>& price) {
vector<vector<int>> adj(n);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
const auto& iter_dfs = [&]() {
int64_t result = 0;
using RET = vector<int64_t>;
RET ret = {price[0], 0};
vector<tuple<int, int, int, int, shared_ptr<RET>, RET *>> stk = {{1, 0, -1, -1, nullptr, &ret}};
while (!empty(stk)) {
const auto [step, u, p, i, new_ret, ret] = stk.back(); stk.pop_back();
if (step == 1) {
stk.emplace_back(2, u, p, 0, nullptr, ret);
} else if (step == 2) {
if (i == size(adj[u])) {
continue;
}
stk.emplace_back(2, u, p, i + 1, nullptr, ret);
const int v = adj[u][i];
if (v == p) {
continue;
}
const auto& new_ret = make_shared<RET>(vector<int64_t>{price[v], 0}); // [max_sum, max_sum_without_last_node]
stk.emplace_back(3, u, -1, -1, new_ret, ret);
stk.emplace_back(1, v, u, -1, nullptr, new_ret.get());
} else if (step == 3) {
result = max({result, (*ret)[0] + (*new_ret)[1], (*ret)[1] + (*new_ret)[0]});
(*ret)[0] = max((*ret)[0], (*new_ret)[0] + price[u]);
(*ret)[1] = max((*ret)[1], (*new_ret)[1] + price[u]);
}
}
return result;
};
return iter_dfs();
}
};
// Time: O(n)
// Space: O(n)
// dfs, tree dp
class Solution2 {
public:
long long maxOutput(int n, vector<vector<int>>& edges, vector<int>& price) {
vector<vector<int>> adj(n);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
int64_t result = 0;
const function<vector<int64_t>(int, int)> dfs = [&](int u, int p) {
vector<int64_t> dp = {price[u], 0}; // [max_sum, max_sum_without_last_node]
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
const auto& new_dp = dfs(v, u);
result = max({result, dp[0] + new_dp[1], dp[1] + new_dp[0]});
dp[0] = max(dp[0], new_dp[0] + price[u]);
dp[1] = max(dp[1], new_dp[1] + price[u]);
}
return dp;
};
dfs(0, -1);
return result;
}
};
// Time: O(n)
// Space: O(n)
// iterative dfs, tree dp
class Solution3 {
public:
long long maxOutput(int n, vector<vector<int>>& edges, vector<int>& price) {
vector<vector<int>> adj(n);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
const auto& iter_dfs = [&]() {
vector<int64_t> dp(n);
vector<tuple<int, int, int>> stk = {{1, 0, -1}};
while (!empty(stk)) {
const auto [step, u, p] = stk.back(); stk.pop_back();
if (step == 1) {
stk.emplace_back(2, u, p);
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
stk.emplace_back(1, v, u);
}
} else if (step == 2) {
dp[u] = price[u];
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
dp[u] = max(dp[u], dp[v] + price[u]);
}
}
}
return dp;
};
const auto& dp = iter_dfs();
const auto& iter_dfs2 = [&]() {
int64_t result = 0;
vector<tuple<int, int, int64_t>> stk = {{0, -1, 0}};
while (!empty(stk)) {
const auto [u, p, curr] = stk.back(); stk.pop_back();
result = max({result, curr, dp[u] - price[u]});
vector<vector<int64_t>> top2 = {{curr, p}, {0, -1}};
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
vector<int64_t> curr = {dp[v], v};
for (int i = 0; i < size(top2); ++i) {
if (curr > top2[i]) {
swap(top2[i], curr);
}
}
}
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
stk.emplace_back(v, u, ((top2[0][1] != v) ? top2[0][0] : top2[1][0]) + price[u]);
}
}
return result;
};
return iter_dfs2();
}
};
// Time: O(n)
// Space: O(n)
// dfs, tree dp
class Solution4_RE { // stack overflow due to deep recursion
public:
long long maxOutput(int n, vector<vector<int>>& edges, vector<int>& price) {
vector<vector<int>> adj(n);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
vector<int64_t> dp(n);
const function<int64_t(int, int)> dfs = [&](int u, int p) {
dp[u] = price[u];
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
dp[u] = max(dp[u], dfs(v, u) + price[u]);
}
return dp[u];
};
int64_t result = 0;
const function<void(int, int, int64_t)> dfs2 = [&](int u, int p, int64_t curr) {
result = max({result, curr, dp[u] - price[u]});
vector<vector<int64_t>> top2 = {{curr, p}, {0, -1}};
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
vector<int64_t> curr = {dp[v], v};
for (int i = 0; i < size(top2); ++i) {
if (curr > top2[i]) {
swap(top2[i], curr);
}
}
}
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
dfs2(v, u, ((top2[0][1] != v) ? top2[0][0] : top2[1][0]) + price[u]);
}
};
dfs(0, -1);
dfs2(0, -1, 0);
return result;
}
};